default search action
Bart Dhoedt
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j121]Daria de Tinguy, Toon Van de Maele, Tim Verbelen, Bart Dhoedt:
Spatial and Temporal Hierarchy for Autonomous Navigation Using Active Inference in Minigrid Environment. Entropy 26(1): 83 (2024) - [j120]Daria de Tinguy, Tim Verbelen, Bart Dhoedt:
Learning dynamic cognitive map with autonomous navigation. Frontiers Comput. Neurosci. 18 (2024) - [j119]Samuel T. Wauthier, Tim Verbelen, Bart Dhoedt, Bram Vanhecke:
Planning with tensor networks based on active inference. Mach. Learn. Sci. Technol. 5(4): 45012 (2024) - [j118]Toon Van de Maele, Tim Verbelen, Pietro Mazzaglia, Stefano Ferraro, Bart Dhoedt:
Object-Centric Scene Representations Using Active Inference. Neural Comput. 36(4): 677-704 (2024) - [i46]Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt, Aaron C. Courville, Sai Rajeswar:
Multimodal foundation world models for generalist embodied agents. CoRR abs/2406.18043 (2024) - [i45]Daria de Tinguy, Tim Verbelen, Bart Dhoedt:
Exploring and Learning Structure: Active Inference Approach in Navigational Agents. CoRR abs/2408.05982 (2024) - [i44]Stefano Ferraro, Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt, Sai Rajeswar:
Representing Positional Information in Generative World Models for Object Manipulation. CoRR abs/2409.12005 (2024) - [i43]Daria de Tinguy, Tim Verbelen, Bart Dhoedt:
Learning Dynamic Cognitive Map with Autonomous Navigation. CoRR abs/2411.08447 (2024) - 2023
- [c194]Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt, Alexandre Lacoste, Sai Rajeswar:
Choreographer: Learning and Adapting Skills in Imagination. ICLR 2023 - [c193]Sai Rajeswar, Pietro Mazzaglia, Tim Verbelen, Alexandre Piché, Bart Dhoedt, Aaron C. Courville, Alexandre Lacoste:
Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels. ICML 2023: 28598-28617 - [c192]Toon Van de Maele, Bart Dhoedt, Tim Verbelen, Giovanni Pezzulo:
Integrating Cognitive Map Learning and Active Inference for Planning in Ambiguous Environments. IWAI 2023: 204-217 - [i42]Ali Safa, Tim Verbelen, Ozan Çatal, Toon Van de Maele, Matthias Hartmann, Bart Dhoedt, André Bourdoux:
FMCW Radar Sensing for Indoor Drones Using Learned Representations. CoRR abs/2301.02451 (2023) - [i41]Toon Van de Maele, Tim Verbelen, Pietro Mazzaglia, Stefano Ferraro, Bart Dhoedt:
Object-Centric Scene Representations using Active Inference. CoRR abs/2302.03288 (2023) - [i40]Stefano Ferraro, Toon Van de Maele, Tim Verbelen, Bart Dhoedt:
Symmetry and Complexity in Object-Centric Deep Active Inference Models. CoRR abs/2304.14493 (2023) - [i39]Daria de Tinguy, Toon Van de Maele, Tim Verbelen, Bart Dhoedt:
Inferring Hierarchical Structure in Multi-Room Maze Environments. CoRR abs/2306.13546 (2023) - [i38]Stefano Ferraro, Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt:
FOCUS: Object-Centric World Models for Robotics Manipulation. CoRR abs/2307.02427 (2023) - [i37]Toon Van de Maele, Bart Dhoedt, Tim Verbelen, Giovanni Pezzulo:
Integrating cognitive map learning and active inference for planning in ambiguous environments. CoRR abs/2308.08307 (2023) - [i36]Daria de Tinguy, Sven Remmery, Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt:
Learning to Navigate from Scratch using World Models and Curiosity: the Good, the Bad, and the Ugly. CoRR abs/2308.15852 (2023) - [i35]Daria de Tinguy, Toon Van de Maele, Tim Verbelen, Bart Dhoedt:
Learning Spatial and Temporal Hierarchies: Hierarchical Active Inference for navigation in Multi-Room Maze Environments. CoRR abs/2309.09864 (2023) - [i34]Daria de Tinguy, Toon Van de Maele, Tim Verbelen, Bart Dhoedt:
Spatial and Temporal Hierarchy for Autonomous Navigation using Active Inference in Minigrid Environment. CoRR abs/2312.05058 (2023) - 2022
- [j117]Pietro Mazzaglia, Tim Verbelen, Ozan Çatal, Bart Dhoedt:
The Free Energy Principle for Perception and Action: A Deep Learning Perspective. Entropy 24(2): 301 (2022) - [j116]Samuel T. Wauthier, Cedric De Boom, Ozan Çatal, Tim Verbelen, Bart Dhoedt:
Model Reduction Through Progressive Latent Space Pruning in Deep Active Inference. Frontiers Neurorobotics 16: 795846 (2022) - [j115]Toon Van de Maele, Tim Verbelen, Ozan Çatal, Bart Dhoedt:
Embodied Object Representation Learning and Recognition. Frontiers Neurorobotics 16: 840658 (2022) - [j114]Sam Leroux, Tim Verbelen, Pieter Simoens, Bart Dhoedt:
Iterative neural networks for adaptive inference on resource-constrained devices. Neural Comput. Appl. 34(13): 10321-10336 (2022) - [j113]Stefano Ferraro, Toon Van de Maele, Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt:
Computational Optimization of Image-Based Reinforcement Learning for Robotics. Sensors 22(19): 7382 (2022) - [c191]Pietro Mazzaglia, Ozan Çatal, Tim Verbelen, Bart Dhoedt:
Curiosity-Driven Exploration via Latent Bayesian Surprise. AAAI 2022: 7752-7760 - [c190]Ozan Çatal, Tim Verbelen, Ni Wang, Matthias Hartmann, Bart Dhoedt:
Bio-inspired monocular drone SLAM. DroneSE/RAPIDO@HiPEAC 2022: 21-26 - [c189]Stefano Ferraro, Toon Van de Maele, Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt:
Disentangling Shape and Pose for Object-Centric Deep Active Inference Models. IWAI 2022: 32-49 - [c188]Daria de Tinguy, Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt:
Home Run: Finding Your Way Home by Imagining Trajectories. IWAI 2022: 210-221 - [c187]Samuel T. Wauthier, Bram Vanhecke, Tim Verbelen, Bart Dhoedt:
Learning Generative Models for Active Inference Using Tensor Networks. IWAI 2022: 285-297 - [i33]Pietro Mazzaglia, Tim Verbelen, Ozan Çatal, Bart Dhoedt:
The Free Energy Principle for Perception and Action: A Deep Learning Perspective. CoRR abs/2207.06415 (2022) - [i32]James Marien, Sam Leroux, Bart Dhoedt, Cedric De Boom:
Audio-guided Album Cover Art Generation with Genetic Algorithms. CoRR abs/2207.07162 (2022) - [i31]Samuel T. Wauthier, Bram Vanhecke, Tim Verbelen, Bart Dhoedt:
Learning Generative Models for Active Inference using Tensor Networks. CoRR abs/2208.08713 (2022) - [i30]Daria de Tinguy, Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt:
Home Run: Finding Your Way Home by Imagining Trajectories. CoRR abs/2208.10914 (2022) - [i29]Stefano Ferraro, Toon Van de Maele, Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt:
Disentangling Shape and Pose for Object-Centric Deep Active Inference Models. CoRR abs/2209.09097 (2022) - [i28]Sai Rajeswar, Pietro Mazzaglia, Tim Verbelen, Alexandre Piché, Bart Dhoedt, Aaron C. Courville, Alexandre Lacoste:
Unsupervised Model-based Pre-training for Data-efficient Control from Pixels. CoRR abs/2209.12016 (2022) - [i27]Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt, Alexandre Lacoste, Sai Rajeswar:
Choreographer: Learning and Adapting Skills in Imagination. CoRR abs/2211.13350 (2022) - 2021
- [j112]Toon Van de Maele, Tim Verbelen, Ozan Çatal, Cedric De Boom, Bart Dhoedt:
Active Vision for Robot Manipulators Using the Free Energy Principle. Frontiers Neurorobotics 15: 642780 (2021) - [j111]Pieter Van Molle, Tim Verbelen, Bert Vankeirsbilck, Jonas De Vylder, Bart Diricx, Tom Kimpe, Pieter Simoens, Bart Dhoedt:
Leveraging the Bhattacharyya coefficient for uncertainty quantification in deep neural networks. Neural Comput. Appl. 33(16): 10259-10275 (2021) - [j110]Ozan Çatal, Tim Verbelen, Toon Van de Maele, Bart Dhoedt, Adam Safron:
Robot navigation as hierarchical active inference. Neural Networks 142: 192-204 (2021) - [j109]Pieter Van Molle, Cedric De Boom, Tim Verbelen, Bert Vankeirsbilck, Jonas De Vylder, Bart Diricx, Pieter Simoens, Bart Dhoedt:
Data-Efficient Sensor Upgrade Path Using Knowledge Distillation. Sensors 21(19): 6523 (2021) - [c186]Ozan Çatal, Wouter Jansen, Tim Verbelen, Bart Dhoedt, Jan Steckel:
LatentSLAM: unsupervised multi-sensor representation learning for localization and mapping. ICRA 2021: 6739-6745 - [c185]Cedric De Boom, Samuel Wauthier, Tim Verbelen, Bart Dhoedt:
Dynamic Narrowing of VAE Bottlenecks Using GECO and L0 Regularization. IJCNN 2021: 1-8 - [c184]Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt:
Contrastive Active Inference. NeurIPS 2021: 13870-13882 - [c183]Toon Van de Maele, Tim Verbelen, Ozan Çatal, Bart Dhoedt:
Disentangling What and Where for 3D Object-Centric Representations Through Active Inference. PKDD/ECML Workshops (1) 2021: 701-714 - [i26]Pietro Mazzaglia, Ozan Çatal, Tim Verbelen, Bart Dhoedt:
Self-Supervised Exploration via Latent Bayesian Surprise. CoRR abs/2104.07495 (2021) - [i25]Samuel T. Wauthier, Pietro Mazzaglia, Ozan Çatal, Cedric De Boom, Tim Verbelen, Bart Dhoedt:
A learning gap between neuroscience and reinforcement learning. CoRR abs/2104.10995 (2021) - [i24]Ozan Çatal, Wouter Jansen, Tim Verbelen, Bart Dhoedt, Jan Steckel:
LatentSLAM: unsupervised multi-sensor representation learning for localization and mapping. CoRR abs/2105.03265 (2021) - [i23]Ni Wang, Ozan Çatal, Tim Verbelen, Matthias Hartmann, Bart Dhoedt:
Towards bio-inspired unsupervised representation learning for indoor aerial navigation. CoRR abs/2106.09326 (2021) - [i22]Toon Van de Maele, Tim Verbelen, Ozan Çatal, Bart Dhoedt:
Disentangling What and Where for 3D Object-Centric Representations Through Active Inference. CoRR abs/2108.11762 (2021) - [i21]Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt:
Contrastive Active Inference. CoRR abs/2110.10083 (2021) - 2020
- [j108]Ozan Çatal, Samuel Wauthier, Cedric De Boom, Tim Verbelen, Bart Dhoedt:
Learning Generative State Space Models for Active Inference. Frontiers Comput. Neurosci. 14: 574372 (2020) - [j107]Sam Leroux, Bert Vankeirsbilck, Tim Verbelen, Pieter Simoens, Bart Dhoedt:
Training binary neural networks with knowledge transfer. Neurocomputing 396: 534-541 (2020) - [j106]Elias De Coninck, Tim Verbelen, Pieter Van Molle, Pieter Simoens, Bart Dhoedt:
Learning robots to grasp by demonstration. Robotics Auton. Syst. 127: 103474 (2020) - [c182]Ozan Çatal, Tim Verbelen, Johannes Nauta, Cedric De Boom, Bart Dhoedt:
Learning Perception and Planning With Deep Active Inference. ICASSP 2020: 3952-3956 - [c181]Ozan Çatal, Sam Leroux, Cedric De Boom, Tim Verbelen, Bart Dhoedt:
Anomaly Detection for Autonomous Guided Vehicles using Bayesian Surprise. IROS 2020: 8148-8153 - [c180]Samuel T. Wauthier, Ozan Çatal, Cedric De Boom, Tim Verbelen, Bart Dhoedt:
Sleep: Model Reduction in Deep Active Inference. IWAI 2020: 72-83 - [c179]Toon Van de Maele, Tim Verbelen, Ozan Çatal, Cedric De Boom, Bart Dhoedt:
You Only Look as Much as You Have To - Using the Free Energy Principle for Active Vision. IWAI 2020: 92-100 - [i20]Ozan Çatal, Lawrence De Mol, Tim Verbelen, Bart Dhoedt:
Learning to Catch Piglets in Flight. CoRR abs/2001.10220 (2020) - [i19]Ozan Çatal, Tim Verbelen, Johannes Nauta, Cedric De Boom, Bart Dhoedt:
Learning Perception and Planning with Deep Active Inference. CoRR abs/2001.11841 (2020) - [i18]Cedric De Boom, Stephanie Van Laere, Tim Verbelen, Bart Dhoedt:
Rhythm, Chord and Melody Generation for Lead Sheets using Recurrent Neural Networks. CoRR abs/2002.10266 (2020) - [i17]Ozan Çatal, Samuel Wauthier, Tim Verbelen, Cedric De Boom, Bart Dhoedt:
Deep Active Inference for Autonomous Robot Navigation. CoRR abs/2003.03220 (2020) - [i16]Cedric De Boom, Samuel Wauthier, Tim Verbelen, Bart Dhoedt:
Dynamic Narrowing of VAE Bottlenecks Using GECO and L0 Regularization. CoRR abs/2003.10901 (2020)
2010 – 2019
- 2019
- [j105]Amirreza Yousefzadeh, Teresa Serrano-Gotarredona, Bernabé Linares-Barranco, Mina A. Khoei, Sahar Hosseini, Priscila C. Holanda, Sam Leroux, Orlando Moreira, Jonathan Tapson, Bart Dhoedt, Pieter Simoens:
Asynchronous Spiking Neurons, the Natural Key to Exploit Temporal Sparsity. IEEE J. Emerg. Sel. Topics Circuits Syst. 9(4): 668-678 (2019) - [j104]Sam Leroux, Steven Bohez, Elias De Coninck, Pieter Van Molle, Bert Vankeirsbilck, Tim Verbelen, Pieter Simoens, Bart Dhoedt:
Multi-fidelity deep neural networks for adaptive inference in the internet of multimedia things. Future Gener. Comput. Syst. 97: 355-360 (2019) - [j103]Cedric De Boom, Thomas Demeester, Bart Dhoedt:
Character-level recurrent neural networks in practice: comparing training and sampling schemes. Neural Comput. Appl. 31(8): 4001-4017 (2019) - [c178]Amirreza Yousefzadeh, Sahar Hosseini, Priscila C. Holanda, Sam Leroux, Thilo Werner, Teresa Serrano-Gotarredona, Bernabé Linares-Barranco, Bart Dhoedt, Pieter Simoens:
Conversion of Synchronous Artificial Neural Network to Asynchronous Spiking Neural Network using sigma-delta quantization. AICAS 2019: 81-85 - [c177]Elias De Coninck, Tim Verbelen, Pieter Van Molle, Pieter Simoens, Bart Dhoedt:
Learning to Grasp Arbitrary Household Objects from a Single Demonstration. IROS 2019: 2372-2377 - [c176]Pieter Van Molle, Tim Verbelen, Cedric De Boom, Bert Vankeirsbilck, Jonas De Vylder, Bart Diricx, Tom Kimpe, Pieter Simoens, Bart Dhoedt:
Quantifying Uncertainty of Deep Neural Networks in Skin Lesion Classification. UNSURE/CLIP@MICCAI 2019: 52-61 - [c175]Cedric De Boom, Stephanie Van Laere, Tim Verbelen, Bart Dhoedt:
Rhythm, Chord and Melody Generation for Lead Sheets Using Recurrent Neural Networks. PKDD/ECML Workshops (2) 2019: 454-461 - [i15]Ozan Çatal, Johannes Nauta, Tim Verbelen, Pieter Simoens, Bart Dhoedt:
Bayesian policy selection using active inference. CoRR abs/1904.08149 (2019) - 2018
- [j102]Elias De Coninck, Steven Bohez, Sam Leroux, Tim Verbelen, Bert Vankeirsbilck, Pieter Simoens, Bart Dhoedt:
DIANNE: a modular framework for designing, training and deploying deep neural networks on heterogeneous distributed infrastructure. J. Syst. Softw. 141: 52-65 (2018) - [j101]Steven Bohez, Glenn Daneels, Lander Van Herzeele, Niels Van Kets, Sam Decrock, Matthias De Geyter, Glenn Van Wallendael, Peter Lambert, Bart Dhoedt, Pieter Simoens, Steven Latré, Jeroen Famaey:
The crowd as a cameraman: on-stage display of crowdsourced mobile video at large-scale events. Multim. Tools Appl. 77(1): 597-629 (2018) - [j100]Steven Van Canneyt, Philip Leroux, Bart Dhoedt, Thomas Demeester:
Modeling and predicting the popularity of online news based on temporal and content-related features. Multim. Tools Appl. 77(1): 1409-1436 (2018) - [j99]Cedric De Boom, Rohan Agrawal, Samantha Hansen, Esh Kumar, Romain Yon, Ching-Wei Chen, Thomas Demeester, Bart Dhoedt:
Large-scale user modeling with recurrent neural networks for music discovery on multiple time scales. Multim. Tools Appl. 77(12): 15385-15407 (2018) - [j98]Piet Smet, Bart Dhoedt, Pieter Simoens:
Docker Layer Placement for On-Demand Provisioning of Services on Edge Clouds. IEEE Trans. Netw. Serv. Manag. 15(3): 1161-1174 (2018) - [c174]Sam Leroux, Pavlo Molchanov, Pieter Simoens, Bart Dhoedt, Thomas M. Breuel, Jan Kautz:
IamNN: Iterative and Adaptive Mobile Neural Network for efficient image classification. ICLR (Workshop) 2018 - [c173]Pieter Van Molle, Miguel De Strooper, Tim Verbelen, Bert Vankeirsbilck, Pieter Simoens, Bart Dhoedt:
Visualizing Convolutional Neural Networks to Improve Decision Support for Skin Lesion Classification. MLCN/DLF/iMIMIC@MICCAI 2018: 115-123 - [c172]Sam Leroux, Steven Bohez, Pieter-Jan Maenhaut, Nathan Meheus, Pieter Simoens, Bart Dhoedt:
Fingerprinting encrypted network traffic types using machine learning. NOMS 2018: 1-5 - [i14]Cedric De Boom, Thomas Demeester, Bart Dhoedt:
Character-level Recurrent Neural Networks in Practice: Comparing Training and Sampling Schemes. CoRR abs/1801.00632 (2018) - [i13]Sam Leroux, Pavlo Molchanov, Pieter Simoens, Bart Dhoedt, Thomas M. Breuel, Jan Kautz:
IamNN: Iterative and Adaptive Mobile Neural Network for Efficient Image Classification. CoRR abs/1804.10123 (2018) - [i12]Sam Leroux, Tim Verbelen, Pieter Simoens, Bart Dhoedt:
Privacy Aware Offloading of Deep Neural Networks. CoRR abs/1805.12024 (2018) - [i11]Pieter Van Molle, Tim Verbelen, Elias De Coninck, Cedric De Boom, Pieter Simoens, Bart Dhoedt:
Learning to Grasp from a Single Demonstration. CoRR abs/1806.03486 (2018) - [i10]Pieter Van Molle, Miguel De Strooper, Tim Verbelen, Bert Vankeirsbilck, Pieter Simoens, Bart Dhoedt:
Visualizing Convolutional Neural Networks to Improve Decision Support for Skin Lesion Classification. CoRR abs/1809.03851 (2018) - [i9]Xander Steenbrugge, Sam Leroux, Tim Verbelen, Bart Dhoedt:
Improving Generalization for Abstract Reasoning Tasks Using Disentangled Feature Representations. CoRR abs/1811.04784 (2018) - 2017
- [j97]Sam Leroux, Steven Bohez, Elias De Coninck, Tim Verbelen, Bert Vankeirsbilck, Pieter Simoens, Bart Dhoedt:
The cascading neural network: building the Internet of Smart Things. Knowl. Inf. Syst. 52(3): 791-814 (2017) - [c171]Steven Bohez, Tim Verbelen, Elias De Coninck, Bert Vankeirsbilck, Pieter Simoens, Bart Dhoedt:
Sensor fusion for robot control through deep reinforcement learning. IROS 2017: 2365-2370 - [i8]Steven Bohez, Tim Verbelen, Elias De Coninck, Bert Vankeirsbilck, Pieter Simoens, Bart Dhoedt:
Sensor Fusion for Robot Control through Deep Reinforcement Learning. CoRR abs/1703.04550 (2017) - [i7]Pieter Van Molle, Tim Verbelen, Steven Bohez, Sam Leroux, Pieter Simoens, Bart Dhoedt:
Decoupled Learning of Environment Characteristics for Safe Exploration. CoRR abs/1708.02838 (2017) - [i6]Cedric De Boom, Rohan Agrawal, Samantha Hansen, Esh Kumar, Romain Yon, Ching-Wei Chen, Thomas Demeester, Bart Dhoedt:
Large-Scale User Modeling with Recurrent Neural Networks for Music Discovery on Multiple Time Scales. CoRR abs/1708.06520 (2017) - [i5]Sam Leroux, Steven Bohez, Tim Verbelen, Bert Vankeirsbilck, Pieter Simoens, Bart Dhoedt:
Transfer Learning with Binary Neural Networks. CoRR abs/1711.10761 (2017) - 2016
- [j96]Niels Sluijs, Tim Wauters, Chris Develder, Filip De Turck, Piet Demeester, Bart Dhoedt:
Using topology information for quality-aware Peer-to-Peer multilayer video streaming. Int. J. Commun. Syst. 29(10): 1620-1644 (2016) - [j95]Steven Van Canneyt, Steven Schockaert, Bart Dhoedt:
Categorizing events using spatio-temporal and user features from Flickr. Inf. Sci. 328: 76-96 (2016) - [j94]Farhan Azmat Ali, Pieter Simoens, Tim Verbelen, Piet Demeester, Bart Dhoedt:
Mobile device power models for energy efficient dynamic offloading at runtime. J. Syst. Softw. 113: 173-187 (2016) - [j93]Elias De Coninck, Tim Verbelen, Bert Vankeirsbilck, Steven Bohez, Pieter Simoens, Bart Dhoedt:
Dynamic auto-scaling and scheduling of deadline constrained service workloads on IaaS clouds. J. Syst. Softw. 118: 101-114 (2016) - [j92]Peter Quax, Jori Liesenborgs, Arno Barzan, Martijn Croonen, Wim Lamotte, Bert Vankeirsbilck, Bart Dhoedt, Tom Kimpe, Kurt Pattyn, Matthew McLin:
Remote rendering solutions using web technologies. Multim. Tools Appl. 75(8): 4383-4410 (2016) - [j91]Cedric De Boom, Steven Van Canneyt, Thomas Demeester, Bart Dhoedt:
Representation learning for very short texts using weighted word embedding aggregation. Pattern Recognit. Lett. 80: 150-156 (2016) - [c170]Elias De Coninck, Steven Bohez, Sam Leroux, Tim Verbelen, Bert Vankeirsbilck, Bart Dhoedt, Pieter Simoens:
Middleware Platform for Distributed Applications Incorporating Robots, Sensors and the Cloud. CloudNet 2016: 218-223 - [c169]Sam Leroux, Steven Bohez, Elias De Coninck, Tim Verbelen, Bert Vankeirsbilck, Pieter Simoens, Bart Dhoedt:
Multi-fidelity matryoshka neural networks for constrained IoT devices. IJCNN 2016: 1305-1309 - [c168]Hendrik Moens, Bart Dhoedt, Filip De Turck:
Management of customizable Software-as-a-Service in cloud and network environments. NOMS 2016: 955-960 - [c167]Piet Smet, Bart Dhoedt, Pieter Simoens:
On-demand provisioning of long-tail services in distributed clouds. NOMS 2016: 1320-1323 - [c166]Piet Smet, Bart Dhoedt, Pieter Simoens:
QuLa: Service Selection and Forwarding Table Population in Service-Centric Networking Using Real-Life Topologies. PDP 2016: 58-65 - [i4]Cedric De Boom, Sam Leroux, Steven Bohez, Pieter Simoens, Thomas Demeester, Bart Dhoedt:
Efficiency Evaluation of Character-level RNN Training Schedules. CoRR abs/1605.02486 (2016) - [i3]Sam Leroux, Steven Bohez, Cedric De Boom, Elias De Coninck, Tim Verbelen, Bert Vankeirsbilck, Pieter Simoens, Bart Dhoedt:
Lazy Evaluation of Convolutional Filters. CoRR abs/1605.08543 (2016) - [i2]Cedric De Boom, Steven Van Canneyt, Thomas Demeester, Bart Dhoedt:
Representation learning for very short texts using weighted word embedding aggregation. CoRR abs/1607.00570 (2016) - 2015
- [j90]Dieter De Witte, Jan Van de Velde, Dries Decap, Michiel Van Bel, Pieter Audenaert, Piet Demeester, Bart Dhoedt, Klaas Vandepoele, Jan Fostier:
BLSSpeller: exhaustive comparative discovery of conserved cis-regulatory elements. Bioinform. 31(23): 3758-3766 (2015) - [j89]Hendrik Moens, Bart Dhoedt, Filip De Turck:
Allocating resources for customizable multi-tenant applications in clouds using dynamic feature placement. Future Gener. Comput. Syst. 53: 63-76 (2015) - [j88]Piet Smet, Pieter Simoens, Bart Dhoedt:
QuLa: Queue and latency-aware service selection and routing in service-centric networking. J. Commun. Networks 17(3): 306-320 (2015) - [j87]Steven Bohez, Tim Verbelen, Pieter Simoens, Bart Dhoedt:
Discrete-event simulation for efficient and stable resource allocation in collaborative mobile cloudlets. Simul. Model. Pract. Theory 50: 109-129 (2015) - [c165]Steven Van Canneyt, Nathan Claeys, Bart Dhoedt:
Topic-Dependent Sentiment Classification on Twitter. ECIR 2015: 441-446 - [c164]Steven Bohez, Elias De Coninck, Tim Verbelen, Bart Dhoedt:
Androsgi: bringing the power of OSGi to Android. ETX 2015: 1-6 - [c163]Cedric De Boom, Steven Van Canneyt, Steven Bohez, Thomas Demeester, Bart Dhoedt:
Learning Semantic Similarity for Very Short Texts. ICDM Workshops 2015: 1229-1234 - [c162]