default search action
Jerzy Stefanowski
Person information
- affiliation: Poznan University of Technology, Poland
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
Journal Articles
- 2024
- [j43]Ignacy Stepka, Mateusz Lango, Jerzy Stefanowski:
A multi-criteria approach for selecting an explanation from the set of counterfactuals produced by an ensemble of explainers. Int. J. Appl. Math. Comput. Sci. 34(1) (2024) - [j42]Dariusz Brzezinski, Julia Stachowiak, Jerzy Stefanowski, Izabela Szczech, Robert Susmaga, Sofya Aksenyuk, Uladzimir Ivashka, Oleksandr Yasinskyi:
Properties of Fairness Measures in the Context of Varying Class Imbalance and Protected Group Ratios. ACM Trans. Knowl. Discov. Data 18(7): 170 (2024) - 2022
- [j41]Mateusz Lango, Jerzy Stefanowski:
What makes multi-class imbalanced problems difficult? An experimental study. Expert Syst. Appl. 199: 116962 (2022) - 2021
- [j40]Dariusz Brzezinski, Leandro L. Minku, Tomasz Pewinski, Jerzy Stefanowski, Artur Szumaczuk:
The impact of data difficulty factors on classification of imbalanced and concept drifting data streams. Knowl. Inf. Syst. 63(6): 1429-1469 (2021) - 2020
- [j39]Dariusz Brzezinski, Jerzy Stefanowski, Robert Susmaga, Izabela Szczech:
On the Dynamics of Classification Measures for Imbalanced and Streaming Data. IEEE Trans. Neural Networks Learn. Syst. 31(8): 2868-2878 (2020) - 2019
- [j38]Malgorzata Janicka, Mateusz Lango, Jerzy Stefanowski:
Using Information on Class Interrelations to Improve Classification of Multiclass Imbalanced Data: A New Resampling Algorithm. Int. J. Appl. Math. Comput. Sci. 29(4): 769-781 (2019) - 2018
- [j37]Dariusz Brzezinski, Jerzy Stefanowski, Robert Susmaga, Izabela Szczech:
Visual-based analysis of classification measures and their properties for class imbalanced problems. Inf. Sci. 462: 242-261 (2018) - [j36]Mateusz Lango, Jerzy Stefanowski:
Multi-class and feature selection extensions of Roughly Balanced Bagging for imbalanced data. J. Intell. Inf. Syst. 50(1): 97-127 (2018) - 2017
- [j35]Jerzy Stefanowski, Krzysztof Krawiec, Robert Wrembel:
Exploring complex and big data. Int. J. Appl. Math. Comput. Sci. 27(4): 669-679 (2017) - [j34]Bartosz Krawczyk, Leandro L. Minku, João Gama, Jerzy Stefanowski, Michal Wozniak:
Ensemble learning for data stream analysis: A survey. Inf. Fusion 37: 132-156 (2017) - [j33]Dariusz Brzezinski, Jerzy Stefanowski:
Prequential AUC: properties of the area under the ROC curve for data streams with concept drift. Knowl. Inf. Syst. 52(2): 531-562 (2017) - 2016
- [j32]Krystyna Napierala, Jerzy Stefanowski:
Post-processing of BRACID Rules Induced from Imbalanced Data. Fundam. Informaticae 148(1-2): 51-64 (2016) - [j31]Krystyna Napierala, Jerzy Stefanowski:
Types of minority class examples and their influence on learning classifiers from imbalanced data. J. Intell. Inf. Syst. 46(3): 563-597 (2016) - 2015
- [j30]Krystyna Napierala, Jerzy Stefanowski:
Addressing imbalanced data with argument based rule learning. Expert Syst. Appl. 42(24): 9468-9481 (2015) - [j29]Krystyna Napierala, Jerzy Stefanowski:
Abstaining in rule set bagging for imbalanced data. Log. J. IGPL 23(3): 421-430 (2015) - [j28]Bartosz Krawczyk, Jerzy Stefanowski, Michal Wozniak:
Data stream classification and big data analytics. Neurocomputing 150: 238-239 (2015) - [j27]Jerzy Blaszczynski, Jerzy Stefanowski:
Neighbourhood sampling in bagging for imbalanced data. Neurocomputing 150: 529-542 (2015) - [j26]José A. Sáez, Julián Luengo, Jerzy Stefanowski, Francisco Herrera:
SMOTE-IPF: Addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering. Inf. Sci. 291: 184-203 (2015) - 2014
- [j25]Dariusz Brzezinski, Jerzy Stefanowski:
Combining block-based and online methods in learning ensembles from concept drifting data streams. Inf. Sci. 265: 50-67 (2014) - [j24]Jerzy Stefanowski, Alfredo Cuzzocrea, Dominik Slezak:
Processing and mining complex data streams. Inf. Sci. 285: 63-65 (2014) - [j23]Georg Krempl, Indre Zliobaite, Dariusz Brzezinski, Eyke Hüllermeier, Mark Last, Vincent Lemaire, Tino Noack, Ammar Shaker, Sonja Sievi, Myra Spiliopoulou, Jerzy Stefanowski:
Open challenges for data stream mining research. SIGKDD Explor. 16(1): 1-10 (2014) - [j22]Dariusz Brzezinski, Jerzy Stefanowski:
Reacting to Different Types of Concept Drift: The Accuracy Updated Ensemble Algorithm. IEEE Trans. Neural Networks Learn. Syst. 25(1): 81-94 (2014) - 2012
- [j21]Jerzy Blaszczynski, Magdalena Deckert, Jerzy Stefanowski, Szymon Wilk:
IIvotes ensemble for imbalanced data. Intell. Data Anal. 16(5): 777-801 (2012) - [j20]Krystyna Napierala, Jerzy Stefanowski:
BRACID: a comprehensive approach to learning rules from imbalanced data. J. Intell. Inf. Syst. 39(2): 335-373 (2012) - 2010
- [j19]Jerzy Blaszczynski, Roman Slowinski, Jerzy Stefanowski:
Variable Consistency Bagging Ensembles. Trans. Rough Sets 11: 40-52 (2010) - 2009
- [j18]Jerzy Stefanowski, Radoslaw Z. Ziembinski:
An experimental evaluation of two approaches to mining context based sequential patterns. Control. Cybern. 38(1): 27-45 (2009) - 2007
- [j17]Jerzy Stefanowski:
On Combined Classifiers, Rule Induction and Rough Sets. Trans. Rough Sets 6: 329-350 (2007) - 2006
- [j16]Mariusz Flasinski, Edward Nawarecki, Lech Polkowski, Robert Schaefer, Jerzy Stefanowski, Zbigniew Suraj:
Preface. Fundam. Informaticae 71(1) (2006) - [j15]Jerzy Stefanowski:
An Empirical Study of Using Rule Induction and Rough Sets to Software Cost Estimation. Fundam. Informaticae 71(1): 63-82 (2006) - [j14]Jerzy Stefanowski, Szymon Wilk:
Rough Sets for Handling Imbalanced Data: Combining Filtering and Rule-based Classifiers. Fundam. Informaticae 72(1-3): 379-391 (2006) - 2005
- [j13]Jerzy W. Grzymala-Busse, Jerzy Stefanowski, Szymon Wilk:
A Comparison of Two Approaches to Data Mining from Imbalanced Data. J. Intell. Manuf. 16(6): 565-573 (2005) - 2004
- [j12]Jerzy Stefanowski:
An experimental evaluation of improving rule based classifiers with two approaches that change representations of learning examples. Eng. Appl. Artif. Intell. 17(4): 439-445 (2004) - [j11]Roman Pindur, Robert Susmaga, Jerzy Stefanowski:
Hyperplane Aggregation of Dominance Decision Rules. Fundam. Informaticae 61(2): 117-137 (2004) - [j10]Jerzy Zaluski, Renata Szoszkiewicz, Jerzy Krysinski, Jerzy Stefanowski:
Rough Set Theory and Decision Rules in Data Analysis of Breast Cancer Patients. Trans. Rough Sets 1: 375-391 (2004) - [j9]Salvatore Greco, Roman Slowinski, Jerzy Stefanowski, Marcin Zurawski:
Incremental versus Non-incremental Rule Induction for Multicriteria Classification. Trans. Rough Sets 2: 33-53 (2004) - 2002
- [j8]Krzysztof Slowinski, Jerzy Stefanowski, Dariusz Siwinski:
Application of Rule Induction and Rough Sets to Verification of Magnetic Resonance Diagnosis. Fundam. Informaticae 53(3-4): 345-363 (2002) - 2001
- [j7]Jerzy Stefanowski, Alexis Tsoukiàs:
Incomplete Information Tables and Rough Classification. Comput. Intell. 17(3): 545-566 (2001) - [j6]Jerzy Stefanowski, Daniel Vanderpooten:
Induction of decision rules in classification and discovery-oriented perspectives. Int. J. Intell. Syst. 16(1): 13-27 (2001) - [j5]Jerzy W. Grzymala-Busse, Jerzy Stefanowski:
Three discretization methods for rule induction. Int. J. Intell. Syst. 16(1): 29-38 (2001) - [j4]Jerzy Stefanowski, Szymon Wilk:
Evaluating business credit risk by means of approach-integrating decision rules and case-based learning. Intell. Syst. Account. Finance Manag. 10(2): 97-114 (2001) - 1997
- [j3]Jacek Jelonek, Jerzy Stefanowski:
Feature subset selection for classification of histological images. Artif. Intell. Medicine 9(3): 227-239 (1997) - 1996
- [j2]Roman Slowinski, Jerzy Stefanowski:
Rough-Set Reasoning about Uncertain Data. Fundam. Informaticae 27(2/3): 229-243 (1996) - [j1]Jerzy W. Grzymala-Busse, Jerzy Stefanowski, Wojciech Ziarko:
Rough Sets: Facts Versus Misconceptions. Informatica (Slovenia) 20(4) (1996)
Conference and Workshop Papers
- 2024
- [c73]Patryk Wielopolski, Oleksii Furman, Jerzy Stefanowski, Maciej Zieba:
Probabilistically Plausible Counterfactual Explanations with Normalizing Flows. ECAI 2024: 954-961 - [c72]Natalia Wojak-Strzelecka, Szymon Bobek, Grzegorz J. Nalepa, Jerzy Stefanowski:
Towards Differentiating Between Failures and Domain Shifts in Industrial Data Streams. HAII5.0@ECAI 2024 - 2023
- [c71]Jerzy Stefanowski:
Multi-criteria Approaches to Explaining Black Box Machine Learning Models. ACIIDS (2) 2023: 195-208 - [c70]Jakub Raczynski, Mateusz Lango, Jerzy Stefanowski:
The Problem of Coherence in Natural Language Explanations of Recommendations. ECAI 2023: 1922-1929 - [c69]Damian Horna, Mateusz Lango, Jerzy Stefanowski:
Deep Similarity Learning Loss Functions in Data Transformation for Class Imbalance. LIDTA 2023: 1-15 - [c68]Marcin Korcz, Dawid Plaskowski, Mateusz Politycki, Jerzy Stefanowski, Alex Terentowicz:
PIQARD System for Experimenting and Testing Language Models with Prompting Strategies. ECML/PKDD (7) 2023: 320-323 - 2022
- [c67]Witold Andrzejewski, Jedrzej Potoniec, Maciej Drozdowski, Jerzy Stefanowski, Robert Wrembel, Pawel Stapf:
Quality Versus Speed in Energy Demand Prediction - Experience Report from an R &D project. DEXA (1) 2022: 447-452 - [c66]Agnieszka Lipska, Jerzy Stefanowski:
The Influence of Multiple Classes on Learning from Imbalanced Data Streams. LIDTA 2022: 187-198 - 2021
- [c65]Maria Naklicka, Jerzy Stefanowski:
Two Ways of Extending BRACID Rule-based Classifiers for Multi-class Imbalanced Data. LIDTA@ECML/PKDD 2021: 90-103 - [c64]Piotr Janiszewski, Mateusz Lango, Jerzy Stefanowski:
Time Aspect in Making an Actionable Prediction of a Conversation Breakdown. ECML/PKDD (5) 2021: 351-364 - [c63]Kamil Plucinski, Mateusz Lango, Jerzy Stefanowski:
Prototypical Convolutional Neural Network for a Phrase-Based Explanation of Sentiment Classification. PKDD/ECML Workshops (1) 2021: 457-472 - [c62]Jerzy Stefanowski:
Classification of Multi-class Imbalanced Data: Data Difficulty Factors and Selected Methods for Improving Classifiers. IJCRS 2021: 57-72 - 2020
- [c61]Jacek Grycza, Damian Horna, Hanna Klimczak, Mateusz Lango, Kamil Plucinski, Jerzy Stefanowski:
multi-imbalance: Open Source Python Toolbox for Multi-class Imbalanced Classification. ECML/PKDD (5) 2020: 546-549 - 2018
- [c60]Jerzy Blaszczynski, Jerzy Stefanowski:
Local Data Characteristics in Learning Classifiers from Imbalanced Data. Advances in Data Analysis with Computational Intelligence Methods 2018: 51-85 - [c59]Mateusz Lango, Dariusz Brzezinski, Jerzy Stefanowski:
ImWeights: Classifying Imbalanced Data Using Local and Neighborhood Information. LIDTA@ECML/PKDD 2018: 95-109 - 2017
- [c58]Szymon Wojciechowski, Szymon Wilk, Jerzy Stefanowski:
An Algorithm for Selective Preprocessing of Multi-class Imbalanced Data. CORES 2017: 238-247 - [c57]Mateusz Lango, Dariusz Brzezinski, Sebastian Firlik, Jerzy Stefanowski:
Discovering Minority Sub-clusters and Local Difficulty Factors from Imbalanced Data. DS 2017: 324-339 - [c56]Jerzy Blaszczynski, Jerzy Stefanowski:
Actively Balanced Bagging for Imbalanced Data. ISMIS 2017: 271-281 - [c55]Mateusz Lango, Krystyna Napierala, Jerzy Stefanowski:
Evaluating Difficulty of Multi-class Imbalanced Data. ISMIS 2017: 312-322 - [c54]Dariusz Brzezinski, Jerzy Stefanowski, Robert Susmaga, Izabela Szczech:
Tetrahedron: Barycentric Measure Visualizer. ECML/PKDD (3) 2017: 419-422 - 2016
- [c53]Dariusz Brzezinski, Jerzy Stefanowski:
Ensemble Diversity in Evolving Data Streams. DS 2016: 229-244 - [c52]Szymon Wilk, Jerzy Stefanowski, Szymon Wojciechowski, Ken J. Farion, Wojtek Michalowski:
Application of Preprocessing Methods to Imbalanced Clinical Data: An Experimental Study. ITIB (1) 2016: 503-515 - [c51]Krystyna Napierala, Jerzy Stefanowski, Izabela Szczech:
Increasing the Interpretability of Rules Induced from Imbalanced Data by Using Bayesian Confirmation Measures. NFMCP@PKDD/ECML 2016: 84-98 - [c50]Jerzy Blaszczynski, Jerzy Stefanowski, Roman Slowinski:
Consistency Driven Feature Subspace Aggregating for Ordinal Classification. IJCRS 2016: 580-589 - [c49]Mateusz Lango, Dariusz Brzezinski, Jerzy Stefanowski:
PUT at SemEval-2016 Task 4: The ABC of Twitter Sentiment Analysis. SemEval@NAACL-HLT 2016: 126-132 - 2015
- [c48]Jerzy Stefanowski:
On Properties of Undersampling Bagging and Its Extensions for Imbalanced Data. CORES 2015: 407-417 - [c47]Jerzy Stefanowski:
Adaptive Ensembles for Evolving Data Streams - Combining Block-Based and Online Solutions. NFMCP 2015: 3-16 - [c46]Mateusz Lango, Jerzy Stefanowski:
The Usefulness of Roughly Balanced Bagging for Complex and High-Dimensional Imbalanced Data. NFMCP 2015: 93-107 - 2014
- [c45]José A. Sáez, Julián Luengo, Jerzy Stefanowski, Francisco Herrera:
Managing Borderline and Noisy Examples in Imbalanced Classification by Combining SMOTE with Ensemble Filtering. IDEAL 2014: 61-68 - [c44]Magdalena Deckert, Jerzy Stefanowski:
RILL: Algorithm for Learning Rules from Streaming Data with Concept Drift. ISMIS 2014: 20-29 - [c43]Jerzy Stefanowski, Krystyna Napierala, Malgorzata Trzcielinska:
Local Characteristics of Minority Examples in Pre-processing of Imbalanced Data. ISMIS 2014: 123-132 - [c42]Dariusz Brzezinski, Jerzy Stefanowski:
Prequential AUC for Classifier Evaluation and Drift Detection in Evolving Data Streams. NFMCP 2014: 87-101 - [c41]Jerzy Stefanowski:
The Impact of Local Data Characteristics on Learning from Imbalanced Data. RSEISP 2014: 1-13 - 2013
- [c40]Jerzy Blaszczynski, Jerzy Stefanowski, Lukasz Idkowiak:
Extending Bagging for Imbalanced Data. CORES 2013: 269-278 - 2012
- [c39]Magdalena Deckert, Jerzy Stefanowski:
Comparing Block Ensembles for Data Streams with Concept Drift. ADBIS Workshops 2012: 69-78 - [c38]Krystyna Napierala, Jerzy Stefanowski:
Identification of Different Types of Minority Class Examples in Imbalanced Data. HAIS (2) 2012: 139-150 - [c37]Krystyna Napierala, Jerzy Stefanowski:
Modifications of Classification Strategies in Rule Set Based Bagging for Imbalanced Data. HAIS (2) 2012: 514-525 - 2011
- [c36]Tomasz Maciejewski, Jerzy Stefanowski:
Local neighbourhood extension of SMOTE for mining imbalanced data. CIDM 2011: 104-111 - [c35]Dariusz Brzezinski, Jerzy Stefanowski:
Accuracy Updated Ensemble for Data Streams with Concept Drift. HAIS (2) 2011: 155-163 - 2010
- [c34]Krystyna Napierala, Jerzy Stefanowski:
Argument Based Generalization of MODLEM Rule Induction Algorithm. RSCTC 2010: 138-147 - [c33]Jerzy Blaszczynski, Magdalena Deckert, Jerzy Stefanowski, Szymon Wilk:
Integrating Selective Pre-processing of Imbalanced Data with Ivotes Ensemble. RSCTC 2010: 148-157 - [c32]Krystyna Napierala, Jerzy Stefanowski, Szymon Wilk:
Learning from Imbalanced Data in Presence of Noisy and Borderline Examples. RSCTC 2010: 158-167 - [c31]Jerzy Blaszczynski, Roman Slowinski, Jerzy Stefanowski:
Ordinal Classification with Monotonicity Constraints by Variable Consistency Bagging. RSCTC 2010: 392-401 - 2009
- [c30]Jerzy Blaszczynski, Jerzy Stefanowski, Magdalena Zajac:
Ensembles of Abstaining Classifiers Based on Rule Sets. ISMIS 2009: 382-391 - 2008
- [c29]Jerzy Stefanowski, Szymon Wilk:
Selective Pre-processing of Imbalanced Data for Improving Classification Performance. DaWaK 2008: 283-292 - 2007
- [c28]Jerzy Stefanowski, Dawid Weiss:
Comprehensible and Accurate Cluster Labels in Text Clustering. RIAO 2007: 198-209 - [c27]Jerzy Stefanowski:
Combining Answers of Sub-classifiers in the Bagging-Feature Ensembles. RSEISP 2007: 574-583 - [c26]Salvatore Greco, Roman Slowinski, Jerzy Stefanowski:
Evaluating Importance of Conditions in the Set of Discovered Rules. RSFDGrC 2007: 314-321 - 2006
- [c25]Jerzy Stefanowski, Marcin Zienkowicz:
Classification of Polish Email Messages: Experiments with Various Data Representations. ISMIS 2006: 723-728 - 2005
- [c24]Jerzy Stefanowski, Radoslaw Z. Ziembinski:
Mining Context Based Sequential Patterns. AWIC 2005: 401-407 - [c23]Jerzy Stefanowski, Slawomir Nowaczyk:
On Using Rule Induction in Multiple Classifiers with a Combiner Aggregation Strategy. ISDA 2005: 432-437 - 2004
- [c22]Stanislaw Osinski, Jerzy Stefanowski, Dawid Weiss:
Lingo: Search Results Clustering Algorithm Based on Singular Value Decomposition. Intelligent Information Systems 2004: 359-368 - [c21]Jerzy W. Grzymala-Busse, Jerzy Stefanowski, Szymon Wilk:
A Comparison of Two Approaches to Data Mining from Imbalanced Data. KES 2004: 757-763 - [c20]Jerzy Stefanowski:
The Bagging and n2-Classifiers Based on Rules Induced by MODLEM. Rough Sets and Current Trends in Computing 2004: 488-497 - 2003
- [c19]Jerzy Stefanowski, Dawid Weiss:
Carrot and Language Properties in Web Search Results Clustering. AWIC 2003: 240-249 - [c18]Dawid Weiss, Jerzy Stefanowski:
Web Search Results Clustering in Polish: Experimental Evaluation of Carrot. IIS 2003: 209-218 - [c17]Jerzy Stefanowski, Marcin Zurawski:
Incremental Rule Induction for Multicriteria and Multiattribute Classification. IIS 2003: 311-319 - 2002
- [c16]Jerzy Stefanowski:
Bagging and Induction of Decision Rules. Intelligent Information Systems 2002: 121-130 - [c15]Salvatore Greco, Roman Slowinski, Jerzy Stefanowski:
Mining Association Rules in Preference-Ordered Data. ISMIS 2002: 442-450 - [c14]Salvatore Greco, Benedetto Matarazzo, Roman Slowinski, Jerzy Stefanowski:
Importance and Interaction of Conditions in Decision Rules. Rough Sets and Current Trends in Computing 2002: 255-262 - [c13]Jerzy Stefanowski, Alexis Tsoukiàs:
Induction of Decision Rules and Classification in the Valued Tolerance Approach. Rough Sets and Current Trends in Computing 2002: 271-278 - 2000
- [c12]Salvatore Greco, Benedetto Matarazzo, Roman Slowinski, Jerzy Stefanowski:
Variable Consistency Model of Dominance-Based Rough Sets Approach. Rough Sets and Current Trends in Computing 2000: 170-181 - [c11]Jerzy Stefanowski, Alexis Tsoukiàs:
Valued Tolerance and Decision Rules. Rough Sets and Current Trends in Computing 2000: 212-219 - [c10]Salvatore Greco, Benedetto Matarazzo, Roman Slowinski, Jerzy Stefanowski:
An Algorithm for Induction of Decision Rules Consistent with the Dominance Principle. Rough Sets and Current Trends in Computing 2000: 304-313 - 1999
- [c9]Jerzy Stefanowski, Alexis Tsoukiàs:
On the Extension of Rough Sets under Incomplete Information. RSFDGrC 1999: 73-81 - 1998
- [c8]Jacek Jelonek, Jerzy Stefanowski:
Experiments on Solving Multiclass Learning Problems by n2-classifier. ECML 1998: 172-177 - [c7]Jerzy Stefanowski:
Handling Continuous Attributes in Discovery of Strong Decision Rules. Rough Sets and Current Trends in Computing 1998: 394-401 - [c6]Bartlomiej Predki, Roman Slowinski, Jerzy Stefanowski, Robert Susmaga, Szymon Wilk:
ROSE - Software Implementation of the Rough Set Theory. Rough Sets and Current Trends in Computing 1998: 605-608 - 1997
- [c5]Jerzy Stefanowski, Krzysztof Slowinski:
Rough Set Theory and Rule Induction Techniques for Discovery of Attribute Dependencies in Medical Information Systems. PKDD 1997: 36-46 - 1993
- [c4]Jerzy Stefanowski, Daniel Vanderpooten:
A General Two-Stage Approach to Inducing Rules from Examples. RSKD 1993: 317-325 - [c3]Roman Slowinski, Jerzy Stefanowski:
Handling Various Types of Uncertainty in the Rough Set Approach. RSKD 1993: 366-376 - [c2]Jacek Jelonek, Krzysztof Krawiec, Roman Slowinski, Jerzy Stefanowski, Janusz Szymas:
Neural Networks and Rough Sets - Comparison and Combination for Classification of Histological Pictures. RSKD 1993: 426-433 - 1992
- [c1]Jerzy Stefanowski, Roman Slowinski, Ryszard Nowicki:
The Rough Sets Approach to Knowledge Analysis for Classification Support in Technical Diagnostics of Mechanical Objects. IEA/AIE 1992: 556-565
Parts in Books or Collections
- 2018
- [p5]Jerzy Blaszczynski, Jerzy Stefanowski:
Improving Bagging Ensembles for Class Imbalanced Data by Active Learning. Advances in Feature Selection for Data and Pattern Recognition 2018: 25-52 - 2016
- [p4]Jerzy Stefanowski:
Dealing with Data Difficulty Factors While Learning from Imbalanced Data. Challenges in Computational Statistics and Data Mining 2016: 333-363 - 1992
- [p3]Ryszard Nowicki, Roman Slowinski, Jerzy Stefanowski:
Analysis of Diagnostic Symptoms in Vibroacoustic Diagnostics by Means of the Rough Sets Theory. Intelligent Decision Support 1992: 33-48 - [p2]Ewa Krusinska, Ankica Babic, Roman Slowinski, Jerzy Stefanowski:
Comparison of the Rough Sets Approach and Probabilistic Data Analysis Techniques on a Common Set of Medical Data. Intelligent Decision Support 1992: 251-265 - [p1]Roman Slowinski, Jerzy Stefanowski:
'Roughdas' and 'Roughclass' Software Implementations of the Rough Sets Approach. Intelligent Decision Support 1992: 445-456
Editorship
- 2019
- [e3]Mar Marcos, Jose M. Juarez, Richard Lenz, Grzegorz J. Nalepa, Slawomir Nowaczyk, Mor Peleg, Jerzy Stefanowski, Gregor Stiglic:
Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems - AIME 2019 International Workshops, KR4HC/ProHealth and TEAAM, Poznan, Poland, June 26-29, 2019, Revised Selected Papers. Lecture Notes in Computer Science 11979, Springer 2019, ISBN 978-3-030-37445-7 [contents] - 2017
- [e2]Yasemin Altun, Kamalika Das, Taneli Mielikäinen, Donato Malerba, Jerzy Stefanowski, Jesse Read, Marinka Zitnik, Michelangelo Ceci, Saso Dzeroski:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18-22, 2017, Proceedings, Part III. Lecture Notes in Computer Science 10536, Springer 2017, ISBN 978-3-319-71272-7 [contents] - 2007
- [e1]Aijun An, Jerzy Stefanowski, Sheela Ramanna, Cory J. Butz, Witold Pedrycz, Guoyin Wang:
Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, 11th International Conference, RSFDGrC 2007, Toronto, Canada, May 14-16, 2007, Proceedings. Lecture Notes in Computer Science 4482, Springer 2007, ISBN 978-3-540-72529-9 [contents]
Reference Works
- 2017
- [r1]Jerzy Stefanowski, Dariusz Brzezinski:
Stream Classification. Encyclopedia of Machine Learning and Data Mining 2017: 1191-1199
Informal and Other Publications
- 2024
- [i11]Ignacy Stepka, Mateusz Lango, Jerzy Stefanowski:
Multi-criteria approach for selecting an explanation from the set of counterfactuals produced by an ensemble of explainers. CoRR abs/2403.13940 (2024) - [i10]Patryk Wielopolski, Oleksii Furman, Jerzy Stefanowski, Maciej Zieba:
Probabilistically Plausible Counterfactual Explanations with Normalizing Flows. CoRR abs/2405.17640 (2024) - [i9]Patryk Wielopolski, Oleksii Furman, Jerzy Stefanowski, Maciej Zieba:
Unifying Perspectives: Plausible Counterfactual Explanations on Global, Group-wise, and Local Levels. CoRR abs/2405.17642 (2024) - [i8]Jacek Karolczak, Jerzy Stefanowski:
A-PETE: Adaptive Prototype Explanations of Tree Ensembles. CoRR abs/2405.21036 (2024) - [i7]Ignacy Stepka, Mateusz Lango, Jerzy Stefanowski:
Counterfactual Explanations with Probabilistic Guarantees on their Robustness to Model Change. CoRR abs/2408.04842 (2024) - 2023
- [i6]Riccardo Albertoni, Sara Colantonio, Piotr Skrzypczynski, Jerzy Stefanowski:
Reproducibility of Machine Learning: Terminology, Recommendations and Open Issues. CoRR abs/2302.12691 (2023) - [i5]Damian Horna, Mateusz Lango, Jerzy Stefanowski:
Deep Similarity Learning Loss Functions in Data Transformation for Class Imbalance. CoRR abs/2312.10556 (2023) - [i4]Jakub Raczynski, Mateusz Lango, Jerzy Stefanowski:
The Problem of Coherence in Natural Language Explanations of Recommendations. CoRR abs/2312.11356 (2023) - 2022
- [i3]Witold Andrzejewski, Jedrzej Potoniec, Maciej Drozdowski, Jerzy Stefanowski, Robert Wrembel, Pawel Stapf:
Quality versus speed in energy demand prediction for district heating systems. CoRR abs/2205.07863 (2022) - [i2]Agnieszka Lipska, Jerzy Stefanowski:
The Influence of Multiple Classes on Learning Online Classifiers from Imbalanced and Concept Drifting Data Streams. CoRR abs/2210.08359 (2022) - 2017
- [i1]Dariusz Brzezinski, Jerzy Stefanowski, Robert Susmaga, Izabela Szczech:
Visual-Based Analysis of Classification Measures with Applications to Imbalanced Data. CoRR abs/1704.07122 (2017)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-31 20:13 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint