


default search action
17th ECCV 2022: Tel Aviv, Israel - Volume 20
- Shai Avidan, Gabriel J. Brostow

, Moustapha Cissé, Giovanni Maria Farinella
, Tal Hassner
:
Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XX. Lecture Notes in Computer Science 13680, Springer 2022, ISBN 978-3-031-20043-4 - Jinxiang Lai, Siqian Yang, Wenlong Liu, Yi Zeng, Zhongyi Huang, Wenlong Wu, Jun Liu, Bin-Bin Gao

, Chengjie Wang
:
tSF: Transformer-Based Semantic Filter for Few-Shot Learning. 1-19 - Yanxu Hu, Andy J. Ma

:
Adversarial Feature Augmentation for Cross-domain Few-Shot Classification. 20-37 - Yue Xu

, Yong-Lu Li
, Jiefeng Li
, Cewu Lu
:
Constructing Balance from Imbalance for Long-Tailed Image Recognition. 38-56 - Yuzhe Yang

, Hao Wang, Dina Katabi:
On Multi-Domain Long-Tailed Recognition, Imbalanced Domain Generalization and Beyond. 57-75 - Qi Fan, Chi-Keung Tang, Yu-Wing Tai

:
Few-Shot Video Object Detection. 76-98 - Minghao Fu

, Yun-Hao Cao
, Jianxin Wu
:
Worst Case Matters for Few-Shot Recognition. 99-115 - Kai Yi

, Xiaoqian Shen
, Yunhao Gou
, Mohamed Elhoseiny
:
Exploring Hierarchical Graph Representation for Large-Scale Zero-Shot Image Classification. 116-132 - Zhitong Xiong

, Haopeng Li
, Xiao Xiang Zhu
:
Doubly Deformable Aggregation of Covariance Matrices for Few-Shot Segmentation. 133-150 - Xinyu Shi

, Dong Wei, Yu Zhang, Donghuan Lu, Munan Ning, Jiashun Chen
, Kai Ma, Yefeng Zheng:
Dense Cross-Query-and-Support Attention Weighted Mask Aggregation for Few-Shot Segmentation. 151-168 - Xingping Dong

, Jianbing Shen
, Ling Shao
:
Rethinking Clustering-Based Pseudo-Labeling for Unsupervised Meta-Learning. 169-186 - Shreyank N. Gowda, Laura Sevilla-Lara, Frank Keller, Marcus Rohrbach:

CLASTER: Clustering with Reinforcement Learning for Zero-Shot Action Recognition. 187-203 - Townim F. Chowdhury

, Ali Cheraghian
, Sameera Ramasinghe
, Sahar Ahmadi
, Morteza Saberi
, Shafin Rahman
:
Few-Shot Class-Incremental Learning for 3D Point Cloud Objects. 204-220 - Zhenyi Wang, Li Shen, Le Fang, Qiuling Suo, Donglin Zhan, Tiehang Duan, Mingchen Gao:

Meta-Learning with Less Forgetting on Large-Scale Non-Stationary Task Distributions. 221-238 - Ziyu Jiang, Tianlong Chen, Xuxi Chen, Yu Cheng, Luowei Zhou, Lu Yuan, Ahmed Awadallah, Zhangyang Wang:

DnA: Improving Few-Shot Transfer Learning with Low-Rank Decomposition and Alignment. 239-256 - Rongkai Ma

, Pengfei Fang
, Gil Avraham, Yan Zuo
, Tianyu Zhu
, Tom Drummond
, Mehrtash Harandi
:
Learning Instance and Task-Aware Dynamic Kernels for Few-Shot Learning. 257-274 - Quande Liu, Youpeng Wen, Jianhua Han, Chunjing Xu, Hang Xu, Xiaodan Liang:

Open-World Semantic Segmentation via Contrasting and Clustering Vision-Language Embedding. 275-292 - Zhanyuan Yang

, Jinghua Wang
, Yingying Zhu
:
Few-Shot Classification with Contrastive Learning. 293-309 - Shan Zhang

, Naila Murray
, Lei Wang
, Piotr Koniusz
:
Time-rEversed DiffusioN tEnsor Transformer: A New TENET of Few-Shot Object Detection. 310-328 - Bowen Dong

, Pan Zhou
, Shuicheng Yan, Wangmeng Zuo:
Self-Promoted Supervision for Few-Shot Transformer. 329-347 - Thanh Nguyen, Chau Pham, Khoi Nguyen, Minh Hoai:

Few-Shot Object Counting and Detection. 348-365 - Kibok Lee, Hao Yang, Satyaki Chakraborty, Zhaowei Cai, Gurumurthy Swaminathan, Avinash Ravichandran, Onkar Dabeer:

Rethinking Few-Shot Object Detection on a Multi-Domain Benchmark. 366-382 - Wentao Chen, Zhang Zhang, Wei Wang, Liang Wang, Zilei Wang, Tieniu Tan:

Cross-Domain Cross-Set Few-Shot Learning via Learning Compact and Aligned Representations. 383-399 - TianXue Ma, Mingwei Bi, Jian Zhang, Wang Yuan, Zhizhong Zhang, Yuan Xie, Shouhong Ding, Lizhuang Ma:

Mutually Reinforcing Structure with Proposal Contrastive Consistency for Few-Shot Object Detection. 400-416 - Huisi Wu, Fangyan Xiao, Chongxin Liang:

Dual Contrastive Learning with Anatomical Auxiliary Supervision for Few-Shot Medical Image Segmentation. 417-434 - Quentin Bouniot

, Ievgen Redko
, Romaric Audigier
, Angélique Loesch
, Amaury Habrard
:
Improving Few-Shot Learning Through Multi-task Representation Learning Theory. 435-452 - Min Zhang, Siteng Huang

, Wenbin Li, Donglin Wang:
Tree Structure-Aware Few-Shot Image Classification via Hierarchical Aggregation. 453-470 - Khoi D. Nguyen, Quoc-Huy Tran, Khoi Nguyen, Binh-Son Hua, Rang Nguyen:

Inductive and Transductive Few-Shot Video Classification via Appearance and Temporal Alignments. 471-487 - Otniel-Bogdan Mercea

, Thomas Hummel
, A. Sophia Koepke
, Zeynep Akata
:
Temporal and Cross-modal Attention for Audio-Visual Zero-Shot Learning. 488-505 - Seonghyeon Moon, Samuel S. Sohn, Honglu Zhou, Sejong Yoon, Vladimir Pavlovic, Muhammad Haris Khan, Mubbasir Kapadia:

HM: Hybrid Masking for Few-Shot Segmentation. 506-523 - Haoquan Li

, Laoming Zhang
, Daoan Zhang
, Lang Fu
, Peng Yang
, Jianguo Zhang
:
TransVLAD: Focusing on Locally Aggregated Descriptors for Few-Shot Learning. 524-540 - Tao Zhang

, Wu Huang
:
Kernel Relative-prototype Spectral Filtering for Few-Shot Learning. 541-557 - Niv Cohen

, Rinon Gal
, Eli A. Meirom, Gal Chechik
, Yuval Atzmon
:
"This Is My Unicorn, Fluffy": Personalizing Frozen Vision-Language Representations. 558-577 - Zixuan Zhou, Xuefei Ning, Yi Cai, Jiashu Han, Yiping Deng, Yuhan Dong, Huazhong Yang, Yu Wang:

CLOSE: Curriculum Learning on the Sharing Extent Towards Better One-Shot NAS. 578-594 - Junwoo Cho, Seungtae Nam, Daniel Rho, Jong Hwan Ko, Eunbyung Park:

Streamable Neural Fields. 595-612 - Julia Hornauer, Vasileios Belagiannis:

Gradient-Based Uncertainty for Monocular Depth Estimation. 613-630 - Zhen Wang, Liu Liu, Yajing Kong, Jiaxian Guo, Dacheng Tao

:
Online Continual Learning with Contrastive Vision Transformer. 631-650 - Taeho Kim, Yongin Kwon, Jemin Lee, Taeho Kim, Sangtae Ha:

CPrune: Compiler-Informed Model Pruning for Efficient Target-Aware DNN Execution. 651-667 - Xiaoxing Wang, Jiale Lin, Juanping Zhao, Xiaokang Yang, Junchi Yan:

EAutoDet: Efficient Architecture Search for Object Detection. 668-684 - Chao Xue, Xiaoxing Wang, Junchi Yan, Chun-Guang Li:

A Max-Flow Based Approach for Neural Architecture Search. 685-701 - Robik Shrestha

, Kushal Kafle
, Christopher Kanan
:
OccamNets: Mitigating Dataset Bias by Favoring Simpler Hypotheses. 702-721 - Martin Trimmel

, Mihai Zanfir
, Richard I. Hartley
, Cristian Sminchisescu
:
ERA: Enhanced Rational Activations. 722-738 - Cong Wang

, Hongmin Xu, Xiong Zhang, Li Wang, Zhitong Zheng, Haifeng Liu:
Convolutional Embedding Makes Hierarchical Vision Transformer Stronger. 739-756

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














