default search action
GECCO 2020: Cancún, Mexico
- Carlos Artemio Coello Coello:
GECCO '20: Genetic and Evolutionary Computation Conference, Companion Volume, Cancún, Mexico, July 8-12, 2020. ACM 2020, ISBN 978-1-4503-7127-8
Competition entry: Competition evolutionary computation in the energy domain: Smart grid applications
- Yoan Martínez-López, Ansel Y. Rodríguez-González, Julio Madera Quintana, Miguel Bethencourt Mayedo, Alexis Moya, Oscar Martínez Santiago:
Applying some EDAs and hybrid variants to the ERM problem under uncertainty. 1-2
Competition entry: Competition on the optimal camera placement problem (OCP) and the unicost set covering problem (USCP)
- Weibo Lin, Fuda Ma, Zhouxing Su, Qingyun Zhang, Chumin Li, Zhipeng Lü:
Weighting-based parallel local search for optimal camera placement and unicost set covering. 3-4
Competition entry: Competition open optimization competition 2020
- Tome Eftimov, Gasper Petelin, Rok Hribar, Gorjan Popovski, Urban Skvorc, Peter Korosec:
Deep statistics: more robust performance statistics for single-objective optimization benchmarking. 5-6 - Tome Eftimov, Rok Hribar, Urban Skvorc, Gorjan Popovski, Gasper Petelin, Peter Korosec:
PerformViz: a machine learning approach to visualize and understand the performance of single-objective optimization algorithms. 7-8
Competition entry: Competition on single objective bound constrained numerical optimization
- Tomas Kadavy, Michal Pluhacek, Adam Viktorin, Roman Senkerik:
SOMA-CL for competition on single objective bound constrained numerical optimization benchmark: a competition entry on single objective bound constrained numerical optimization at the genetic and evolutionary computation conference (GECCO) 2020. 9-10
Competition entry: Competition on single objective constrained numerical optimization
- Abhishek Kumar, Swagatam Das, Ivan Zelinka:
A modified covariance matrix adaptation evolution strategy for real-world constrained optimization problems. 11-12 - Abhishek Kumar, Swagatam Das, Ivan Zelinka:
A self-adaptive spherical search algorithm for real-world constrained optimization problems. 13-14
Hot off the press
- Benjamin Doerr, Weijie Zheng:
Sharp bounds for genetic drift in estimation of distribution algorithms (Hot-off-the-press track at GECCO 2020). 15-16 - Benjamin Doerr, Martin S. Krejca:
The univariate marginal distribution algorithm copes well with deception and epistasis. 17-18 - Tome Eftimov, Peter Korosec:
Is the statistical significance between stochastic optimization algorithms' performances also significant in practice? 19-20 - Trang T. Le, Weixuan Fu, Jason H. Moore:
Large scale biomedical data analysis with tree-based automated machine learning. 21-22 - Michal Witold Przewozniczek, Marcin M. Komarnicki:
Empirical linkage learning. 23-24 - Stefano Ruberto, Valerio Terragni, Jason H. Moore:
SGP-DT: towards effective symbolic regression with a semantic GP approach based on dynamic targets. 25-26 - Urban Skvorc, Tome Eftimov, Peter Korosec:
Using exploratory landscape analysis to visualize single-objective problems. 27-28
Late-breaking abstract
- Tanguy Appriou, Koji Shimoyama:
Combined kriging surrogate model for efficient global optimization using the optimal weighting method. 29-30 - Dong-Hee Cho, Seung-Hyun Moon, Yong-Hyuk Kim:
A daily stock index predictor using feature selection based on a genetic wrapper. 31-32 - Hwi-Yeon Cho, Yong-Hyuk Kim:
A genetic algorithm to optimize SMOTE and GAN ratios in class imbalanced datasets. 33-34 - Tanguy Damart, Werner Van Geit, Henry Markram:
Data driven building of realistic neuron model using IBEA and CMA evolution strategies. 35-36 - Jesús A. Gómez-Avilés, Ángel G. Andrade, Anabel Martínez-Vargas:
A bio-inspired approach for the spectrum allocation problem in IoT networks. 37-38 - Hye-Jin Kim, Yong-Hyuk Kim:
A surrogate model using deep neural networks for optimal oil skimmer assignment. 39-40 - Mateus Interciso, Plínio Barrio Garcia:
Usage of a genetic algorithm for optimizing stock usage. 41-42 - Anna V. Kalyuzhnaya, Nikolay O. Nikitin, Pavel Vychuzhanin, Alexander Hvatov, Alexander Boukhanovsky:
Automatic evolutionary learning of composite models with knowledge enrichment. 43-44 - Jeongmin Kim, Kwang Ryel Ryu:
An RTS-based algorithm for noisy optimization by strategic sample accumulation. 45-46 - Tengyue Li, Simon Fong, Antonio J. Tallón-Ballesteros:
Teng-Yue algorithm: a novel metaheuristic search method for fast cancer classification. 47-48 - Soo Ling Lim, Yi Kuo, Peter J. Bentley:
Constraint handling in genotype to phenotype mapping and genetic operators for project staffing. 49-50 - Joel Simon, Joel Lehman:
Antimander: open source detection of gerrymandering though multi-objective evolutionary algorithms. 51-52 - Anh Due Ta, Danilo Vasconcellos Vargas:
Towards improvement of SUNA in multiplexers with preliminary results of simple logic gate neuron variation. 53-54 - Antonio J. Tallón-Ballesteros, Tengyue Li, Simon Fong:
Quality enhancement of stochastic feature subset selection via genetic algorithms. Assessment in bioinformatics data sets. 55-56 - Lei Wang, Qian Sun, Qingzheng Xu, Balin Tian, Wei Li:
On the order of variables for multitasking optimization. 57-58 - Qingzheng Xu, Balin Tian, Lei Wang, Qian Sun, Feng Zou:
An effective variable transfer strategy in multitasking optimization. 59-60 - Dong-Pil Yu, Yong-Hyuk Kim:
On the co-authorship network in evolutionary computation. 61-62
Poster Session: Ant colony optimization and swarm intelligence
- Delia Dumitru, Anca Andreica, Laura Diosan, Zoltán Bálint:
Evolutionary curriculum learning approach for transferable cellular automata rule optimization. 63-64 - Judhi Prasetyo, Giulia De Masi, Elio Tuci, Eliseo Ferrante:
The effect of differential quality and differential zealotry in the best-of-n problem. 65-66 - Jian Shi, Wei-Neng Chen:
Multi-objective ant colony optimization for task allocation in vehicle-based crowdsourcing. 67-68 - Victor L. F. Souza, Adriano L. I. Oliveira, Rafael M. O. Cruz, Robert Sabourin:
Improving BPSO-based feature selection applied to offline WI handwritten signature verification through overfitting control. 69-70
Poster Session: Complex systems (artificial life/artificial immune systems/generative and developmental systems/evolutionary robotics/evolvable hardware)
- Christian Carvelli, Djordje Grbic, Sebastian Risi:
Evolving hypernetworks for game-playing agents. 71-72 - Matteo De Carlo, Eliseo Ferrante, A. E. Eiben:
Comparing indirect encodings by evolutionary attractor analysis in the trait space of modular robots. 73-74 - Heba El-Fiqi, Benjamin Campbell, Saber M. Elsayed, Anthony Perry, Hemant Kumar Singh, Robert A. Hunjet, Hussein A. Abbass:
A preliminary study towards an improved shepherding model. 75-76 - Djordje Grbic, Sebastian Risi:
Safer reinforcement learning through evolved instincts. 77-78 - Vikas Gupta, Nathanaël Aubert-Kato, Leo Cazenille:
Exploring the BipedalWalker benchmark with MAP-Elites and curiosity-driven A3C. 79-80 - Gerard David Howard, Thomas Lowe, Wade Geles:
Diversity-based design assist for large legged robots. 81-82 - Tanja Katharina Kaiser, Heiko Hamann:
Diversity in swarm robotics with task-independent behavior characterization. 83-84 - Gregory Furman, Geoff Nitschke:
Evolving an artificial creole. 85-86 - Scott Hallauer, Geoff Nitschke:
The expense of neuro-morpho functional machines. 87-88 - Samuel Schmidgall:
Adaptive reinforcement learning through evolving self-modifying neural networks. 89-90 - Jeremy Tan, Bernhard Kainz:
Divergent search for image classification behaviors. 91-92 - Anil Yaman, Giovanni Iacca, Decebal Constantin Mocanu, George Fletcher, Mykola Pechenizkiy:
Novelty producing synaptic plasticity. 93-94 - Wen Zhou, Yiwen Liang:
An artificial sequential immune responses model for anomaly detection. 95-96
Poster Session: Digital entertainment technologies and arts
- Daniel Lopes, João Correia, Penousal Machado:
Adea - Evolving glyphs for aiding creativity in typeface design. 97-98 - Adam Tupper, Kourosh Neshatian:
Evolving neural network agents to play atari games with compact state representations. 99-100
Poster Session: Evolutionary combinatorial optimization and metaheuristics
- Vincent Hénaux, Adrien Goëffon, Frédéric Saubion:
Evolving search trajectories. 101-102 - Riccardo Lucato, Jonas K. Falkner, Lars Schmidt-Thieme:
An efficient evolutionary solution to the joint order batching - order picking planning problem. 103-104 - Soheila Sadeghiram, Hui Ma, Gang Chen:
QoS-constrained multi-objective distributed data-intensive web service composition - NSGA-II with repair method. 105-106 - Fangfang Zhang, Yi Mei, Su Nguyen, Mengjie Zhang:
A preliminary approach to evolutionary multitasking for dynamic flexible job shop scheduling via genetic programming. 107-108
Poster Session: Evolutionary machine learning
- Hayden Andersen, Xiaoying Gao, Bing Xue, Mengjie Zhang:
Evolving network structures for text classification using genetic algorithms. 109-110 - Etor Arza, Josu Ceberio, Aritz Pérez, Ekhiñe Irurozki:
An adaptive neuroevolution-based hyperheuristic. 111-112 - Mohammed Oualid Attaoui, Hanene Azzag, Mustapha Lebbah, Nabil Keskes:
Multi-objective data stream clustering. 113-114 - Dustin K. Barnes, Sara R. Davis, Emily M. Hand, Sushil J. Louis:
A first step toward incremental evolution of convolutional neural networks. 115-116 - Ying Bi, Bing Xue, Mengjie Zhang:
Automatically extracting features for face classification using multi-objective genetic programming. 117-118 - Rui P. Cardoso, Emma Hart, Jeremy V. Pitt:
Diversity-driven wide learning for training distributed classification models. 119-120 - Yue Gu, Wei Li, Roderich Groß:
Turing learning with hybrid discriminators: combining the best of active and passive learning. 121-122 - Jeffrey Hajewski, Suely Oliveira, Xiaoyu Xing:
Evolving deep autoencoders. 123-124 - Tim Hansmeier, Paul Kaufmann, Marco Platzner:
Enabling XCSF to cope with dynamic environments via an adaptive error threshold. 125-126 - Michael Heider, David Pätzel, Jörg Hähner:
Towards a Pittsburgh-style LCS for learning manufacturing machinery parametrizations. 127-128 - Alexander Hvatov, Mikhail Maslyaev:
The data-driven physical-based equations discovery using evolutionary approach. 129-130 - Masayuki Kobayashi, Tomoharu Nagao:
An evolution-based approach for efficient differentiable architecture search. 131-132 - Masayuki Kobayashi, Tomoharu Nagao:
A Multi-objective architecture search for generative adversarial networks. 133-134 - Shashank Kotyan, Danilo Vasconcellos Vargas:
Towards evolving robust neural architectures to defend from adversarial attacks. 135-136 - Rodica Ioana Lung, Mihai-Alexandru Suciu:
Equilibrium in classification: a new game theoretic approach to supervised learning. 137-138 - Javier Maldonado, María Cristina Riff:
Improving an evolutionary wrapper for attack detection by including feature importance information. 139-140 - Gurshaant Singh Malik, Lucian Petrica, Nachiket Kapre, Michaela Blott:
DarwiNN: efficient distributed neuroevolution under communication constraints. 141-142 - Thiago Zafalon Miranda, Diorge Brognara Sardinha, Márcio Porto Basgalupp, Yaochu Jin, Ricardo Cerri:
Generation of consistent sets of multi-label classification rules with a multi-objective evolutionary algorithm. 143-144 - Andrew Nader, Danielle Azar:
Searching for activation functions using a self-adaptive evolutionary algorithm. 145-146 - Romain Orhand, Anne Jeannin-Girardon, Pierre Parrend, Pierre Collet:
BACS: integrating behavioral sequences to ACS2. 147-148 - Wenbin Pei, Bing Xue, Lin Shang, Mengjie Zhang:
A genetic programming method for classifier construction and cost learning in high-dimensional unbalanced classification. 149-150 - Baptiste Rozière, Nathanaël Carraz Rakotonirina, Vlad Hosu, Hanhe Lin, Andry Rasoanaivo, Olivier Teytaud, Camille Couprie:
Evolutionary super-resolution. 151-152 - Amna Shahab, Boris Grot:
Population-based evolutionary distributed SGD. 153-154 - Léo Souquet, Nadiya Shvai, Arcadi Llanza, Amir Nakib:
HyperFDA: a bi-level optimization approach to neural architecture search and hyperparameters' optimization via fractal decomposition-based algorithm. 155-156 - Zhaoyang Wu, Lin Lin, Guoliang Gong, Rui Xu, Mitsuo Gen, Yong Zhou:
Evolutionary neural network structure search for DNN pruning and features separation. 157-158
Poster Session: Evolutionary multiobjective optimization
- Luiz Carlos Felix Carvalho, Márcia Aparecida Fernandes:
An EDA with swarm intelligence for the multi-objective flexible job-shop problem. 159-160 - Kanish Garg, Anish Mukherjee, Sukrit Mittal, Dhish Kumar Saxena, Kalyanmoy Deb:
A generic and computationally efficient automated innovization method for power-law design rules. 161-162 - Luhana Aracelli González Zarza, Alan Mathías Ruiz Díaz Nodari, José Luis Vázquez Noguera, Diego Pedro Pinto-Roa:
Framework to select an improved radiographic image using Speed-constrained modified particle swarm optimization. 163-164 - Jinglei Guo, Miaomiao Shao, Shouyong Jiang, Shengxiang Yang:
An improved multiobjective optimization evolutionary algorithm based on decomposition with hybrid penalty scheme. 165-166 - Edgar Manoatl López, Carlos Ignacio Hernández Castellanos:
A local hypervolume contribution schema to improve spread of the pareto front and computational time. 167-168 - Sumit Mishra, Maxim Buzdalov, Rakesh Senwar:
Time complexity analysis of the dominance degree approach for non-dominated sorting. 169-170 - Sukrit Mittal, Dhish Kumar Saxena, Kalyanmoy Deb:
Learning-based multi-objective optimization through ANN-assisted online Innovization. 171-172 - Miguel A. Rodriguez, Dario F. Lopez, Sergio F. Contreras, Camilo A. Cortés, Johanna M. A. Myrzik:
Performance evaluation of the MOEA/D algorithm for the solution of a microgrid planning problem. 173-174 - A. K. M. Khaled Ahsan Talukder, Kalyanmoy Deb:
PaletteStarViz: a visualization method for multi-criteria decision making from high-dimensional pareto-optimal front. 175-176 - Lourdes Uribe, Adriana Lara, Kalyanmoy Deb, Oliver Schütze:
Using gradient-free local search within MOEAs for the treatment of constrained MOPs. 177-178 - Bernard van Tonder, Mardé Helbig:
Dynamic Multi-objective Optimisation Problems with Intertemporal Dependencies. 179-180 - Yali Wang, Bas van Stein, Thomas Bäck, Michael Emmerich:
Improving NSGA-III for flexible job shop scheduling using automatic configuration, smart initialization and local search. 181-182 - Jens Weise, Sanaz Mostaghim:
A many-objective route planning benchmark problem for navigation. 183-184 - Sorrachai Yingchareonthawornchai, Proteek Chandan Roy, Bundit Laekhanukit, Eric Torng, Kalyanmoy Deb:
Worst-case conditional hardness and fast algorithms with random inputs for non-dominated sorting. 185-186
Poster Session: Evolutionary numerical optimization
- Margarita Antoniou, Gregor Papa:
Solving min-max optimisation problems by means of bilevel evolutionary algorithms: a preliminary study. 187-188 - David H. Brookes, Akosua Busia, Clara Fannjiang, Kevin Murphy, Jennifer Listgarten:
A view of estimation of distribution algorithms through the lens of expectation-maximization. 189-190 - Jhih-Wei Chen, Ming-Chun Lu, Tian-Li Yu:
Continuous optimization by hierarchical gaussian mixture with clustering embedded resource allocation. 191-192 - Tome Eftimov, Gorjan Popovski, Dragi Kocev, Peter Korosec:
Performance2vec: a step further in explainable stochastic optimization algorithm performance. 193-194 - Jin Liang Jia, Alfredo Alan Flores Saldivar, Lin Li, Yun Li:
Look-ahead natural evolutionary strategies. 195-196 - Karol R. Opara, Anas A. Hadi, Ali Wagdy Mohamed:
Parametrized Benchmarking: an outline of the idea and a feasibility study. 197-198 - Anna Ouskova Leonteva, Ulviya Abdulkarimova, Tobias M. Wintermantel, Anne Jeannin-Girardon, Pierre Parrend, Pierre Collet:
A quantum simulation algorithm for continuous optimization. 199-200 - Kamrul Hasan Rahi, Ahsanul Habib, Hemant Kumar Singh, Tapabrata Ray:
Expediting the convergence of evolutionary algorithms by identifying promising regions of the search space. 201-202 - Eric Benhamou, David Saltiel, Sébastien Vérel:
Bayesian CMA-ES: a new approach. 203-204 - Jakub M. Tomczak, Ewelina Weglarz-Tomczak, Ágoston E. Eiben:
Differential Evolution with Reversible Linear Transformations. 205-206 - Gabriel Vázquez, Carlos Segura:
Differential evolution with explicit control of diversity for constrained optimization. 207-208
Poster Session: Genetic algorithms
- Glen Cancian, Wayne J. Pullan:
Impact of additional hardware resources on a parallel genetic algorithm. 209-210 - Juan José Escobar, Julio Ortega, Antonio Francisco Díaz, Jesús González, Miguel Damas:
A parallel and distributed multi-population GA with asynchronous migrations: energy-time analysis for heterogeneous systems. 211-212 - Zhou Hong, Wei Fang, Jun Sun, Xiaojun Wu:
A fast GA for automatically evolving CNN architectures. 213-214 - Rune Krauss, Marcel Merten, Mirco Bockholt, Saman Fröhlich, Rolf Drechsler:
Efficient machine learning through evolving combined deep neural networks. 215-216 - Takumi Nakane, Xuequan Lu, Chao Zhang:
SHX: search history driven crossover for real-coded genetic algorithm. 217-218 - Takatoshi Niwa, Koya Ihara, Shohei Kato:
Cooperative coevolutionary genetic algorithm using hierarchical clustering of linkage tree. 219-220 - Kei Ohnishi, Shota Ikeda, Tian-Li Yu:
A test problem with difficulty in decomposing into sub-problems for model-based genetic algorithms. 221-222 - Oliver Withington:
Illuminating super mario bros: quality-diversity within platformer level generation. 223-224
Poster Session: General evolutionary computation and hybrids
- Lukas Atkinson, Robin Müller-Bady, Martin Kappes:
Hybrid bayesian evolutionary optimization for hyperparameter tuning. 225-226 - Gabriel Duflo, Grégoire Danoy, El-Ghazali Talbi, Pascal Bouvry:
Automated design of efficient swarming behaviours: a Q-learning hyper-heuristic approach. 227-228 - Yong-Hoon Kim, Yong-Hyuk Kim:
Finding a better basis on binary representation through DNN-based epistasis estimation. 229-230 - Margarita Alejandra Rebolledo Coy, Frederik Rehbach, A. E. Eiben, Thomas Bartz-Beielstein:
Parallelized bayesian optimization for problems with expensive evaluation functions. 231-232 - Siddharth Verma, Piyush Borole, Ryan J. Urbanowicz:
Evolving genetic programming trees in a rule-based learning framework. 233-234