


default search action
23rd ICML 2006: Pittsburgh, Pennsylvania, USA
- William W. Cohen, Andrew W. Moore:

Machine Learning, Proceedings of the Twenty-Third International Conference (ICML 2006), Pittsburgh, Pennsylvania, USA, June 25-29, 2006. ACM International Conference Proceeding Series 148, ACM 2006, ISBN 1-59593-383-2 - Pieter Abbeel, Morgan Quigley, Andrew Y. Ng:

Using inaccurate models in reinforcement learning. 1-8 - Amit Agarwal, Elad Hazan

, Satyen Kale, Robert E. Schapire:
Algorithms for portfolio management based on the Newton method. 9-16 - Sameer Agarwal, Kristin Branson, Serge J. Belongie

:
Higher order learning with graphs. 17-24 - Shivani Agarwal:

Ranking on graph data. 25-32 - Cédric Archambeau, Nicolas Delannay, Michel Verleysen

:
Robust probabilistic projections. 33-40 - Andreas Argyriou, Raphael Hauser

, Charles A. Micchelli, Massimiliano Pontil:
A DC-programming algorithm for kernel selection. 41-48 - Nima Asgharbeygi, David J. Stracuzzi, Pat Langley:

Relational temporal difference learning. 49-56 - Arik Azran, Zoubin Ghahramani:

A new approach to data driven clustering. 57-64 - Maria-Florina Balcan, Alina Beygelzimer, John Langford:

Agnostic active learning. 65-72 - Maria-Florina Balcan, Avrim Blum:

On a theory of learning with similarity functions. 73-80 - Arindam Banerjee:

On Bayesian bounds. 81-88 - Onureena Banerjee, Laurent El Ghaoui, Alexandre d'Aspremont, Georges Natsoulis:

Convex optimization techniques for fitting sparse Gaussian graphical models. 89-96 - Alina Beygelzimer, Sham M. Kakade, John Langford:

Cover trees for nearest neighbor. 97-104 - Ivona Bezáková, Adam Kalai, Rahul Santhanam:

Graph model selection using maximum likelihood. 105-112 - David M. Blei, John D. Lafferty:

Dynamic topic models. 113-120 - Edwin V. Bonilla, Christopher K. I. Williams, Felix V. Agakov, John Cavazos, John Thomson, Michael F. P. O'Boyle:

Predictive search distributions. 121-128 - Michael H. Bowling, Peter McCracken, Michael James, James Neufeld, Dana F. Wilkinson:

Learning predictive state representations using non-blind policies. 129-136 - Ulf Brefeld, Thomas Gärtner

, Tobias Scheffer, Stefan Wrobel:
Efficient co-regularised least squares regression. 137-144 - Ulf Brefeld, Tobias Scheffer:

Semi-supervised learning for structured output variables. 145-152 - Miguel Á. Carreira-Perpiñán:

Fast nonparametric clustering with Gaussian blurring mean-shift. 153-160 - Rich Caruana, Alexandru Niculescu-Mizil:

An empirical comparison of supervised learning algorithms. 161-168 - Lawrence Cayton, Sanjoy Dasgupta:

Robust Euclidean embedding. 169-176 - Nicolò Cesa-Bianchi, Claudio Gentile, Luca Zaniboni:

Hierarchical classification: combining Bayes with SVM. 177-184 - Olivier Chapelle, Mingmin Chi, Alexander Zien:

A continuation method for semi-supervised SVMs. 185-192 - Pak-Ming Cheung, James T. Kwok:

A regularization framework for multiple-instance learning. 193-200 - Ronan Collobert, Fabian H. Sinz

, Jason Weston, Léon Bottou:
Trading convexity for scalability. 201-208 - Vincent Conitzer, Nikesh Garera:

Learning algorithms for online principal-agent problems (and selling goods online). 209-216 - Bruno Castro da Silva, Eduardo W. Basso, Ana L. C. Bazzan, Paulo Martins Engel:

Dealing with non-stationary environments using context detection. 217-224 - Juan Dai, Shuicheng Yan, Xiaoou Tang, James T. Kwok:

Locally adaptive classification piloted by uncertainty. 225-232 - Jesse Davis

, Mark H. Goadrich:
The relationship between Precision-Recall and ROC curves. 233-240 - Fernando De la Torre, Takeo Kanade:

Discriminative cluster analysis. 241-248 - Dennis DeCoste:

Collaborative prediction using ensembles of Maximum Margin Matrix Factorizations. 249-256 - Thomas Degris, Olivier Sigaud, Pierre-Henri Wuillemin

:
Learning the structure of Factored Markov Decision Processes in reinforcement learning problems. 257-264 - François Denis, Christophe Nicolas Magnan, Liva Ralaivola:

Efficient learning of Naive Bayes classifiers under class-conditional classification noise. 265-272 - Marie desJardins, Eric Eaton, Kiri Wagstaff

:
Learning user preferences for sets of objects. 273-280 - Chris H. Q. Ding, Ding Zhou, Xiaofeng He, Hongyuan Zha:

R1-PCA: rotational invariant L1-norm principal component analysis for robust subspace factorization. 281-288 - Charles Elkan:

Clustering documents with an exponential-family approximation of the Dirichlet compound multinomial distribution. 289-296 - Barbara E. Engelhardt, Michael I. Jordan

, Steven E. Brenner:
A graphical model for predicting protein molecular function. 297-304 - Arkady Epshteyn, Gerald DeJong:

Qualitative reinforcement learning. 305-312 - Michael Fink, Shai Shalev-Shwartz, Yoram Singer, Shimon Ullman:

Online multiclass learning by interclass hypothesis sharing. 313-320 - Jochen Garcke:

Regression with the optimised combination technique. 321-328 - Yang Ge, Wenxin Jiang:

A note on mixtures of experts for multiclass responses: approximation rate and Consistent Bayesian Inference. 329-335 - Peter V. Gehler, Alex Holub, Max Welling:

The rate adapting poisson model for information retrieval and object recognition. 337-344 - Pierre Geurts, Louis Wehenkel

, Florence d'Alché-Buc
:
Kernelizing the output of tree-based methods. 345-352 - Amir Globerson, Sam T. Roweis:

Nightmare at test time: robust learning by feature deletion. 353-360 - Dilan Görür, Frank Jäkel, Carl Edward Rasmussen:

A choice model with infinitely many latent features. 361-368 - Alex Graves, Santiago Fernández, Faustino J. Gomez, Jürgen Schmidhuber:

Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. 369-376 - Derek Greene

, Padraig Cunningham
:
Practical solutions to the problem of diagonal dominance in kernel document clustering. 377-384 - Patrick Haffner:

Fast transpose methods for kernel learning on sparse data. 385-392 - Steve Hanneke:

An analysis of graph cut size for transductive learning. 393-399 - Tomer Hertz

, Aharon Bar-Hillel, Daphna Weinshall:
Learning a kernel function for classification with small training samples. 401-408 - Michael P. Holmes, Charles Lee Isbell Jr.:

Looping suffix tree-based inference of partially observable hidden state. 409-416 - Steven C. H. Hoi

, Rong Jin, Jianke Zhu, Michael R. Lyu:
Batch mode active learning and its application to medical image classification. 417-424 - Tzu-Kuo Huang, Chih-Jen Lin

, Ruby C. Weng:
Ranking individuals by group comparisons. 425-432 - Rebecca A. Hutchinson, Tom M. Mitchell, Indrayana Rustandi:

Hidden process models. 433-440 - Brendan Juba:

Estimating relatedness via data compression. 441-448 - Philipp W. Keller, Shie Mannor

, Doina Precup:
Automatic basis function construction for approximate dynamic programming and reinforcement learning. 449-456 - Wolf Kienzle, Kumar Chellapilla:

Personalized handwriting recognition via biased regularization. 457-464 - Seung-Jean Kim, Alessandro Magnani, Stephen P. Boyd:

Optimal kernel selection in Kernel Fisher discriminant analysis. 465-472 - Seung-Jean Kim, Alessandro Magnani, Sikandar Samar, Stephen P. Boyd, Johan Lim:

Pareto optimal linear classification. 473-480 - Mike Klaas, Mark Briers, Nando de Freitas, Arnaud Doucet

, Simon Maskell, Dustin Lang:
Fast particle smoothing: if I had a million particles. 481-488 - George Dimitri Konidaris, Andrew G. Barto:

Autonomous shaping: knowledge transfer in reinforcement learning. 489-496 - Andreas Krause, Jure Leskovec

, Carlos Guestrin:
Data association for topic intensity tracking. 497-504 - Brian Kulis, Mátyás A. Sustik, Inderjit S. Dhillon:

Learning low-rank kernel matrices. 505-512 - Neil D. Lawrence

, Joaquin Quiñonero Candela:
Local distance preservation in the GP-LVM through back constraints. 513-520 - Quoc V. Le, Alexander J. Smola, Thomas Gärtner

:
Simpler knowledge-based support vector machines. 521-528 - Chi-Hoon Lee, Russell Greiner, Shaojun Wang:

Using query-specific variance estimates to combine Bayesian classifiers. 529-536 - Alain D. Lehmann, John Shawe-Taylor

:
A probabilistic model for text kernels. 537-544 - Marius Leordeanu, Martial Hebert:

Efficient MAP approximation for dense energy functions. 545-552 - Darrin P. Lewis, Tony Jebara, William Stafford Noble:

Nonstationary kernel combination. 553-560 - Hui Li, Xuejun Liao, Lawrence Carin

:
Region-based value iteration for partially observable Markov decision processes. 561-568 - Ling Li:

Multiclass boosting with repartitioning. 569-576 - Wei Li, Andrew McCallum:

Pachinko allocation: DAG-structured mixture models of topic correlations. 577-584 - Bo Long, Zhongfei (Mark) Zhang, Xiaoyun Wu, Philip S. Yu:

Spectral clustering for multi-type relational data. 585-592 - Le Lu, René Vidal:

Combined central and subspace clustering for computer vision applications. 593-600 - Mauro Maggioni

, Sridhar Mahadevan:
Fast direct policy evaluation using multiscale analysis of Markov diffusion processes. 601-608 - Gonzalo Martínez-Muñoz

, Alberto Suárez:
Pruning in ordered bagging ensembles. 609-616 - Julian J. McAuley, Tibério S. Caetano, Alexander J. Smola, Matthias O. Franz:

Learning high-order MRF priors of color images. 617-624 - Marina Meila:

The uniqueness of a good optimum for K-means. 625-632 - Roland Memisevic:

Kernel information embeddings. 633-640 - Baback Moghaddam, Yair Weiss, Shai Avidan:

Generalized spectral bounds for sparse LDA. 641-648 - Moni Naor, Guy N. Rothblum:

Learning to impersonate. 649-656 - Mukund Narasimhan, Paul A. Viola, Michael Shilman:

Online decoding of Markov models under latency constraints. 657-664 - Negin Nejati, Pat Langley, Tolga Könik:

Learning hierarchical task networks by observation. 665-672 - Yuriy Nevmyvaka, Yi Feng, Michael J. Kearns:

Reinforcement learning for optimized trade execution. 673-680 - Navneet Panda, Edward Y. Chang, Gang Wu:

Concept boundary detection for speeding up SVMs. 681-688 - Francisco Pereira, Geoffrey J. Gordon:

The support vector decomposition machine. 689-696 - Pascal Poupart, Nikos Vlassis, Jesse Hoey, Kevin Regan:

An analytic solution to discrete Bayesian reinforcement learning. 697-704 - Rouhollah Rahmani, Sally A. Goldman:

MISSL: multiple-instance semi-supervised learning. 705-712 - Rajat Raina, Andrew Y. Ng, Daphne Koller:

Constructing informative priors using transfer learning. 713-720 - Liva Ralaivola, François Denis, Christophe Nicolas Magnan:

CN = CPCN. 721-728 - Nathan D. Ratliff, J. Andrew Bagnell, Martin Zinkevich:

Maximum margin planning. 729-736 - Pradeep Ravikumar, John D. Lafferty:

Quadratic programming relaxations for metric labeling and Markov random field MAP estimation. 737-744 - Jean-Michel Renders, Éric Gaussier, Cyril Goutte

, François Pacull, Gabriela Csurka:
Categorization in multiple category systems. 745-752 - Lev Reyzin

, Robert E. Schapire:
How boosting the margin can also boost classifier complexity. 753-760 - David A. Ross, Simon Osindero, Richard S. Zemel:

Combining discriminative features to infer complex trajectories. 761-768 - Josep Roure

, Andrew W. Moore:
Sequential update of ADtrees. 769-776 - Matthew R. Rudary, Satinder Singh:

Predictive linear-Gaussian models of controlled stochastic dynamical systems. 777-784 - Ulrich Rückert, Stefan Kramer:

A statistical approach to rule learning. 785-792 - Sunita Sarawagi:

Efficient inference on sequence segmentation models. 793-800 - Prithviraj Sen, Lise Getoor:

Cost-sensitive learning with conditional Markov networks. 801-808 - Victor S. Sheng, Charles X. Ling:

Feature value acquisition in testing: a sequential batch test algorithm. 809-816 - Pannagadatta K. Shivaswamy, Tony Jebara:

Permutation invariant SVMs. 817-824 - Ricardo Bezerra de Andrade e Silva, Richard Scheines:

Bayesian learning of measurement and structural models. 825-832 - Özgür Simsek

, Andrew G. Barto:
An intrinsic reward mechanism for efficient exploration. 833-840 - Vikas Sindhwani, S. Sathiya Keerthi, Olivier Chapelle:

Deterministic annealing for semi-supervised kernel machines. 841-848 - Surendra K. Singhi, Huan Liu:

Feature subset selection bias for classification learning. 849-856 - Le Song, Julien Epps

:
Classifying EEG for brain-computer interfaces: learning optimal filters for dynamical system features. 857-864 - Nathan Srebro, Gregory Shakhnarovich, Sam T. Roweis:

An investigation of computational and informational limits in Gaussian mixture clustering. 865-872 - David H. Stern, Ralf Herbrich, Thore Graepel:

Bayesian pattern ranking for move prediction in the game of Go. 873-880 - Alexander L. Strehl, Lihong Li, Eric Wiewiora, John Langford, Michael L. Littman:

PAC model-free reinforcement learning. 881-888 - Alexander L. Strehl, Chris Mesterharm, Michael L. Littman, Haym Hirsh:

Experience-efficient learning in associative bandit problems. 889-896 - Jiang Su, Harry Zhang:

Full Bayesian network classifiers. 897-904 - Masashi Sugiyama:

Local Fisher discriminant analysis for supervised dimensionality reduction. 905-912 - Yijun Sun, Jian Li:

Iterative RELIEF for feature weighting. 913-920 - Benyang Tang, Dominic Mazzoni:

Multiclass reduced-set support vector machines. 921-928 - Choon Hui Teo, S. V. N. Vishwanathan:

Fast and space efficient string kernels using suffix arrays. 929-936 - Jo-Anne Ting, Aaron D'Souza, Stefan Schaal:

Bayesian regression with input noise for high dimensional data. 937-944 - Marc Toussaint

, Amos J. Storkey:
Probabilistic inference for solving discrete and continuous state Markov Decision Processes. 945-952 - Koji Tsuda, Taku Kudo:

Clustering graphs by weighted substructure mining. 953-960 - Sriharsha Veeramachaneni, Emanuele Olivetti

, Paolo Avesani
:
Active sampling for detecting irrelevant features. 961-968 - S. V. N. Vishwanathan, Nicol N. Schraudolph, Mark W. Schmidt, Kevin P. Murphy:

Accelerated training of conditional random fields with stochastic gradient methods. 969-976 - Hanna M. Wallach:

Topic modeling: beyond bag-of-words. 977-984 - Fei Wang, Changshui Zhang:

Label propagation through linear neighborhoods. 985-992 - Gang Wang, Dit-Yan Yeung, Frederick H. Lochovsky

:
Two-dimensional solution path for support vector regression. 993-1000 - Manfred K. Warmuth, Jun Liao, Gunnar Rätsch

:
Totally corrective boosting algorithms that maximize the margin. 1001-1008 - Jason Weston, Ronan Collobert, Fabian H. Sinz

, Léon Bottou, Vladimir Vapnik:
Inference with the Universum. 1009-1016 - David Wingate, Satinder Singh:

Kernel Predictive Linear Gaussian models for nonlinear stochastic dynamical systems. 1017-1024 - Britton Wolfe, Satinder Singh:

Predictive state representations with options. 1025-1032 - Xiaopeng Xi, Eamonn J. Keogh, Christian R. Shelton, Li Wei, Chotirat Ann Ratanamahatana:

Fast time series classification using numerosity reduction. 1033-1040 - Lin Xiao, Jun Sun, Stephen P. Boyd:

A duality view of spectral methods for dimensionality reduction. 1041-1048 - Eric P. Xing, Kyung-Ah Sohn

, Michael I. Jordan
, Yee Whye Teh:
Bayesian multi-population haplotype inference via a hierarchical dirichlet process mixture. 1049-1056 - Linli Xu, Dana F. Wilkinson, Finnegan Southey, Dale Schuurmans:

Discriminative unsupervised learning of structured predictors. 1057-1064 - Xin Yang, Haoying Fu, Hongyuan Zha, Jesse L. Barlow:

Semi-supervised nonlinear dimensionality reduction. 1065-1072 - Jieping Ye, Tao Xiong:

Null space versus orthogonal linear discriminant analysis. 1073-1080 - Kai Yu, Jinbo Bi, Volker Tresp:

Active learning via transductive experimental design. 1081-1088 - Shipeng Yu, Kai Yu, Volker Tresp, Hans-Peter Kriegel:

Collaborative ordinal regression. 1089-1096 - Kai Zhang, James T. Kwok:

Block-quantized kernel matrix for fast spectral embedding. 1097-1104 - Alice X. Zheng, Michael I. Jordan

, Ben Liblit
, Mayur Naik, Alex Aiken:
Statistical debugging: simultaneous identification of multiple bugs. 1105-1112 - Fei Zheng, Geoffrey I. Webb

:
Efficient lazy elimination for averaged one-dependence estimators. 1113-1120

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














