default search action
Andrew W. Moore 0001
Person information
- affiliation: Carnegie Mellon University, PA, USA
- affiliation (former): Google Pittsburgh, USA
Other persons with the same name
- Andrew W. Moore — disambiguation page
- Andrew W. Moore 0002 (aka: Andrew William Moore) — University of Cambridge, UK
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2010 – 2019
- 2016
- [j18]Andrew W. Moore, Tim O'Reilly, Paul D. Nielsen, Kevin Fall:
Four Thought Leaders on Where the Industry Is Headed. IEEE Softw. 33(1): 36-39 (2016) - 2013
- [i8]Scott Davies, Andrew W. Moore:
Interpolating Conditional Density Trees. CoRR abs/1301.0563 (2013) - [i7]Andrew W. Moore, Jeff G. Schneider:
Real-valued All-Dimensions search: Low-overhead rapid searching over subsets of attributes. CoRR abs/1301.0589 (2013) - [i6]Scott Davies, Andrew W. Moore:
Mix-nets: Factored Mixtures of Gaussians in Bayesian Networks With Mixed Continuous And Discrete Variables. CoRR abs/1301.3852 (2013) - [i5]Andrew W. Moore:
The Anchors Hierachy: Using the triangle inequality to survive high dimensional data. CoRR abs/1301.3877 (2013) - 2012
- [i4]Purnamrita Sarkar, Andrew W. Moore:
A Tractable Approach to Finding Closest Truncated-commute-time Neighbors in Large Graphs. CoRR abs/1206.5259 (2012) - 2011
- [c86]Purnamrita Sarkar, Deepayan Chakrabarti, Andrew W. Moore:
Theoretical Justification of Popular Link Prediction Heuristics. IJCAI 2011: 2722-2727 - [p1]Purnamrita Sarkar, Andrew W. Moore:
Random Walks in Social Networks and their Applications: A Survey. Social Network Data Analytics 2011: 43-77 - [i3]Dongryeol Lee, Alexander G. Gray, Andrew W. Moore:
Dual-Tree Fast Gauss Transforms. CoRR abs/1102.2878 (2011) - 2010
- [j17]Artur Dubrawski, John Östlund, Lujie Chen, Andrew W. Moore:
Computationally efficient scoring of activity using demographics and connectivity of entities. Inf. Technol. Manag. 11(2): 77-89 (2010) - [c85]Purnamrita Sarkar, Deepayan Chakrabarti, Andrew W. Moore:
Theoretical Justification of Popular Link Prediction Heuristics. COLT 2010: 295-307 - [c84]Purnamrita Sarkar, Andrew W. Moore:
Fast nearest-neighbor search in disk-resident graphs. KDD 2010: 513-522
2000 – 2009
- 2009
- [c83]Purnamrita Sarkar, Andrew W. Moore:
Fast dynamic reranking in large graphs. WWW 2009: 31-40 - 2008
- [c82]Purnamrita Sarkar, Andrew W. Moore, Amit Prakash:
Fast incremental proximity search in large graphs. ICML 2008: 896-903 - 2007
- [c81]Purnamrita Sarkar, Andrew W. Moore:
A Tractable Approach to Finding Closest Truncated-commute-time Neighbors in Large Graphs. UAI 2007: 335-343 - [c80]Sajid M. Siddiqi, Geoffrey J. Gordon, Andrew W. Moore:
Fast State Discovery for HMM Model Selection and Learning. AISTATS 2007: 492-499 - 2006
- [j16]Ting Liu, Andrew W. Moore, Alexander G. Gray:
New Algorithms for Efficient High-Dimensional Nonparametric Classification. J. Mach. Learn. Res. 7: 1135-1158 (2006) - [j15]Dan Pelleg, Andrew W. Moore:
Dependency trees in sub-linear time and bounded memory. VLDB J. 15(3): 250-262 (2006) - [c79]Artur Dubrawski, Kimberly Elenberg, Andrew W. Moore, Maheshkumar Sabhnani:
Monitoring Food Safety by Detecting Patterns in Consumer Complaints. AAAI 2006: 1782-1788 - [c78]Josep Roure, Andrew W. Moore:
Sequential update of ADtrees. ICML 2006: 769-776 - [c77]Andrew W. Moore:
New cached-sufficient statistics algorithms for quickly answering statistical questions. KDD 2006: 2 - [c76]Khalid El-Arini, Andrew W. Moore, Ting Liu:
Autonomous Visualization. PKDD 2006: 495-502 - [e1]William W. Cohen, Andrew W. Moore:
Machine Learning, Proceedings of the Twenty-Third International Conference (ICML 2006), Pittsburgh, Pennsylvania, USA, June 25-29, 2006. ACM International Conference Proceeding Series 148, ACM 2006, ISBN 1-59593-383-2 [contents] - 2005
- [j14]David L. Buckeridge, Howard S. Burkom, Murray Campbell, William R. Hogan, Andrew W. Moore:
Algorithms for rapid outbreak detection: a research synthesis. J. Biomed. Informatics 38(2): 99-113 (2005) - [j13]Weng-Keen Wong, Andrew W. Moore, Gregory F. Cooper, Michael M. Wagner:
What's Strange About Recent Events (WSARE): An Algorithm for the Early Detection of Disease Outbreaks. J. Mach. Learn. Res. 6: 1961-1998 (2005) - [j12]Purnamrita Sarkar, Andrew W. Moore:
Dynamic social network analysis using latent space models. SIGKDD Explor. 7(2): 31-40 (2005) - [c75]Paul Komarek, Andrew W. Moore:
Making Logistic Regression a Core Data Mining Tool with TR-IRLS. ICDM 2005: 685-688 - [c74]Sajid M. Siddiqi, Andrew W. Moore:
Fast inference and learning in large-state-space HMMs. ICML 2005: 800-807 - [c73]Anna Goldenberg, Andrew W. Moore:
Bayes net graphs to understand co-authorship networks? LinkKDD 2005: 1-8 - [c72]Jeremy Kubica, Andrew W. Moore, Andrew J. Connolly, Robert Jedicke:
A multiple tree algorithm for the efficient association of asteroid observations. KDD 2005: 138-146 - [c71]Daniel B. Neill, Andrew W. Moore, Maheshkumar Sabhnani, Kenny Daniel:
Detection of emerging space-time clusters. KDD 2005: 218-227 - [c70]Brigham S. Anderson, Andrew W. Moore:
Fast Information Value for Graphical Models. NIPS 2005: 51-58 - [c69]Jeremy Kubica, Joseph Masiero, Andrew W. Moore, Robert Jedicke, Andrew J. Connolly:
Variable KD-Tree Algorithms for Spatial Pattern Search and Discovery. NIPS 2005: 691-698 - [c68]Dongryeol Lee, Alexander G. Gray, Andrew W. Moore:
Dual-Tree Fast Gauss Transforms. NIPS 2005: 747-754 - [c67]Daniel B. Neill, Andrew W. Moore, Gregory F. Cooper:
A Bayesian Spatial Scan Statistic. NIPS 2005: 1003-1010 - [c66]Purnamrita Sarkar, Andrew W. Moore:
Dynamic Social Network Analysis using Latent Space Models. NIPS 2005: 1145-1152 - 2004
- [c65]Anna Goldenberg, Andrew W. Moore:
Tractable learning of large Bayes net structures from sparse data. ICML 2004 - [c64]Brigham S. Anderson, Andrew W. Moore, Andrew J. Connolly, Robert Nichol:
Fast nonlinear regression via eigenimages applied to galactic morphology. KDD 2004: 40-48 - [c63]Daniel B. Neill, Andrew W. Moore:
Rapid detection of significant spatial clusters. KDD 2004: 256-265 - [c62]Kaustav Das, Andrew W. Moore, Jeff G. Schneider:
Belief state approaches to signaling alarms in surveillance systems. KDD 2004: 539-544 - [c61]Ting Liu, Ke Yang, Andrew W. Moore:
The IOC algorithm: efficient many-class non-parametric classification for high-dimensional data. KDD 2004: 629-634 - [c60]Ting Liu, Andrew W. Moore, Alexander G. Gray, Ke Yang:
An Investigation of Practical Approximate Nearest Neighbor Algorithms. NIPS 2004: 825-832 - [c59]Daniel B. Neill, Andrew W. Moore, Francisco Pereira, Tom M. Mitchell:
Detecting Significant Multidimensional Spatial Clusters. NIPS 2004: 969-976 - [c58]Dan Pelleg, Andrew W. Moore:
Active Learning for Anomaly and Rare-Category Detection. NIPS 2004: 1073-1080 - 2003
- [j11]Per H. Gesteland, Reed M. Gardner, Fu-Chiang Tsui, Jeremy U. Espino, Robert T. Rolfs, Brent C. James, Wendy Webber Chapman, Andrew W. Moore, Michael M. Wagner:
Application of Information Technology: Automated Syndromic Surveillance for the 2002 Winter Olympics. J. Am. Medical Informatics Assoc. 10(6): 547-554 (2003) - [c57]Alexander G. Gray, Andrew W. Moore:
Rapid Evaluation of Multiple Density Models. AISTATS 2003: 117-123 - [c56]Paul Komarek, Andrew W. Moore:
Fast Robust Logistic Regression for Large Sparse Datasets with Binary Outputs. AISTATS 2003: 163-170 - [c55]Jeremy Kubica, Andrew W. Moore:
Probabilistic Noise Identification and Data Cleaning. ICDM 2003: 131-138 - [c54]Jeremy Kubica, Andrew W. Moore, Jeff G. Schneider:
Tractable Group Detection on Large Link Data Sets. ICDM 2003: 573-576 - [c53]Jeremy Kubica, Andrew W. Moore, David Cohn, Jeff G. Schneider:
Finding Underlying Connections: A Fast Graph-Based Method for Link Analysis and Collaboration Queries. ICML 2003: 392-399 - [c52]Andrew W. Moore, Weng-Keen Wong:
Optimal Reinsertion: A New Search Operator for Accelerated and More Accurate Bayesian Network Structure Learning. ICML 2003: 552-559 - [c51]Weng-Keen Wong, Andrew W. Moore, Gregory F. Cooper, Michael M. Wagner:
Bayesian Network Anomaly Pattern Detection for Disease Outbreaks. ICML 2003: 808-815 - [c50]Ting Liu, Andrew W. Moore, Alexander G. Gray:
New Algorithms for Efficient High Dimensional Non-parametric Classification. NIPS 2003: 265-272 - [c49]Daniel B. Neill, Andrew W. Moore:
A Fast Multi-Resolution Method for Detection of Significant Spatial Disease Clusters. NIPS 2003: 651-658 - [c48]Alexander G. Gray, Andrew W. Moore:
Nonparametric Density Estimation: Toward Computational Tractability. SDM 2003: 203-211 - 2002
- [j10]Malcolm J. A. Strens, Andrew W. Moore:
Policy Search using Paired Comparisons. J. Mach. Learn. Res. 3: 921-950 (2002) - [j9]Rémi Munos, Andrew W. Moore:
Variable Resolution Discretization in Optimal Control. Mach. Learn. 49(2-3): 291-323 (2002) - [c47]Weng-Keen Wong, Andrew W. Moore, Gregory F. Cooper, Michael M. Wagner:
Rule-Based Anomaly Pattern Detection for Detecting Disease Outbreaks. AAAI/IAAI 2002: 217-223 - [c46]Jeremy Kubica, Andrew W. Moore, Jeff G. Schneider, Yiming Yang:
Stochastic Link and Group Detection. AAAI/IAAI 2002: 798-806 - [c45]Fu-Chiang Tsui, Jeremy U. Espino, Michael M. Wagner, Per H. Gesteland, Oleg Ivanov, Robert T. Olszewski, Zhen Liu, Xiaoming Zeng, Wendy W. Chapman, Weng-Keen Wong, Andrew W. Moore:
Data, network, and application: technical description of the Utah RODS Winter Olympic Biosurveillance System. AMIA 2002 - [c44]Dan Pelleg, Andrew W. Moore:
Using Tarjan's Red Rule for Fast Dependency Tree Construction. NIPS 2002: 801-808 - [c43]Scott Davies, Andrew W. Moore:
Interpolating Conditional Density Trees. UAI 2002: 119-127 - [c42]Andrew W. Moore, Jeff G. Schneider:
Real-valued All-Dimensions Search: Low-overhead Rapid Searching over Subsets of Attributes. UAI 2002: 360-369 - 2001
- [c41]Dan Pelleg, Andrew W. Moore:
Mixtures of Rectangles: Interpretable Soft Clustering. ICML 2001: 401-408 - [c40]Peter Sand, Andrew W. Moore:
Repairing Faulty Mixture Models using Density Estimation. ICML 2001: 457-464 - [c39]Malcolm J. A. Strens, Andrew W. Moore:
Direct Policy Search using Paired Statistical Tests. ICML 2001: 545-552 - [c38]Yanxi Liu, Frank Dellaert, William E. Rothfus, Andrew W. Moore, Jeff G. Schneider, Takeo Kanade:
Classification-Driven Pathological Neuroimage Retrieval Using Statistical Asymmetry Measures. MICCAI 2001: 655-665 - 2000
- [j8]Justin A. Boyan, Andrew W. Moore:
Learning Evaluation Functions to Improve Optimization by Local Search. J. Mach. Learn. Res. 1: 77-112 (2000) - [c37]Martin A. Riedmiller, Andrew W. Moore, Jeff G. Schneider:
Reinforcement Learning for Cooperating and Communicating Reactive Agents in Electrical Power Grids. Balancing Reactivity and Social Deliberation in Multi-Agent Systems 2000: 137-149 - [c36]Brigham S. Anderson, Andrew W. Moore, David Cohn:
A Nonparametric Approach to Noisy and Costly Optimization. ICML 2000: 17-24 - [c35]Geoffrey J. Gordon, Andrew W. Moore:
Learning Filaments. ICML 2000: 335-342 - [c34]Paul Komarek, Andrew W. Moore:
A Dynamic Adaptation of AD-trees for Efficient Machine Learning on Large Data Sets. ICML 2000: 495-502 - [c33]Rémi Munos, Andrew W. Moore:
Rates of Convergence for Variable Resolution Schemes in Optimal Control. ICML 2000: 647-654 - [c32]Dan Pelleg, Andrew W. Moore:
X-means: Extending K-means with Efficient Estimation of the Number of Clusters. ICML 2000: 727-734 - [c31]Andrew W. Moore, Jeff G. Schneider, Justin A. Boyan, Mary S. Lee:
Q2: Memory-Based Active Learning for Optimizing Noisy Continuous Functions. ICRA 2000: 4096- - [c30]Alexander G. Gray, Andrew W. Moore:
'N-Body' Problems in Statistical Learning. NIPS 2000: 521-527 - [c29]Scott Davies, Andrew W. Moore:
Mix-nets: Factored Mixtures of Gaussians in Bayesian Networks with Mixed Continuous And Discrete Variables. UAI 2000: 168-175 - [c28]Andrew W. Moore:
The Anchors Hierarchy: Using the Triangle Inequality to Survive High Dimensional Data. UAI 2000: 397-405
1990 – 1999
- 1999
- [c27]Jeff G. Schneider, Weng-Keen Wong, Andrew W. Moore, Martin A. Riedmiller:
Distributed Value Functions. ICML 1999: 371-378 - [c26]Andrew W. Moore, Leemon C. Baird III, Leslie Pack Kaelbling:
Multi-Value-Functions: Efficient Automatic Action Hierarchies for Multiple Goal MDPs. IJCAI 1999: 1316-1323 - [c25]Rémi Munos, Andrew W. Moore:
Variable Resolution Discretization for High-Accuracy Solutions of Optimal Control Problems. IJCAI 1999: 1348-1355 - [c24]Rémi Munos, Leemon C. Baird III, Andrew W. Moore:
Gradient descent approaches to neural-net-based solutions of the Hamilton-Jacobi-Bellman equation. IJCNN 1999: 2152-2157 - [c23]Dan Pelleg, Andrew W. Moore:
Accelerating Exact k-means Algorithms with Geometric Reasoning. KDD 1999: 277-281 - [c22]Scott Davies, Andrew W. Moore:
Bayesian Networks for Lossless Dataset Compression. KDD 1999: 387-391 - 1998
- [j7]Andrew W. Moore, Mary S. Lee:
Cached Sufficient Statistics for Efficient Machine Learning with Large Datasets. J. Artif. Intell. Res. 8: 67-91 (1998) - [c21]Justin A. Boyan, Andrew W. Moore:
Learning Evaluation Functions for Global Optimization and Boolean Satisfiability. AAAI/IAAI 1998: 3-10 - [c20]Scott Davies, Andrew Y. Ng, Andrew W. Moore:
Applying Online Search Techniques to Continuous-State Reinforcement Learning. AAAI/IAAI 1998: 753-760 - [c19]Andrew W. Moore, Jeff G. Schneider, Justin A. Boyan, Mary S. Lee:
Q2: Memory-Based Active Learning for Optimizing Noisy Continuous Functions. ICML 1998: 386-394 - [c18]Jeff G. Schneider, Justin A. Boyan, Andrew W. Moore:
Value Function Based Production Scheduling. ICML 1998: 522-530 - [c17]Brigham S. Anderson, Andrew W. Moore:
ADtrees for Fast Counting and for Fast Learning of Association Rules. KDD 1998: 134-138 - [c16]Andrew W. Moore:
Very Fast EM-Based Mixture Model Clustering Using Multiresolution Kd-Trees. NIPS 1998: 543-549 - [c15]Leemon C. Baird III, Andrew W. Moore:
Gradient Descent for General Reinforcement Learning. NIPS 1998: 968-974 - [c14]Rémi Munos, Andrew W. Moore:
Barycentric Interpolators for Continuous Space and Time Reinforcement Learning. NIPS 1998: 1024-1030 - [i2]Andrew W. Moore, Mary S. Lee:
Cached Sufficient Statistics for Efficient Machine Learning with Large Datasets. CoRR cs.AI/9803102 (1998) - 1997
- [j6]Christopher G. Atkeson, Andrew W. Moore, Stefan Schaal:
Locally Weighted Learning. Artif. Intell. Rev. 11(1-5): 11-73 (1997) - [j5]Christopher G. Atkeson, Andrew W. Moore, Stefan Schaal:
Locally Weighted Learning for Control. Artif. Intell. Rev. 11(1-5): 75-113 (1997) - [j4]Oded Maron, Andrew W. Moore:
The Racing Algorithm: Model Selection for Lazy Learners. Artif. Intell. Rev. 11(1-5): 193-225 (1997) - [c13]Justin A. Boyan, Andrew W. Moore:
Using Prediction to Improve Combinatorial Optimization Search. AISTATS 1997: 55-66 - [c12]Kan Deng, Andrew W. Moore, Michael C. Nechyba:
Learning to recognize time series: combining ARMA models with memory-based learning. CIRA 1997: 246-251 - [c11]Andrew W. Moore, Jeff G. Schneider, Kan Deng:
Efficient Locally Weighted Polynomial Regression Predictions. ICML 1997: 236-244 - 1996
- [j3]Leslie Pack Kaelbling, Michael L. Littman, Andrew W. Moore:
Reinforcement Learning: A Survey. J. Artif. Intell. Res. 4: 237-285 (1996) - [c10]Justin A. Boyan, Andrew W. Moore:
Learning Evaluation Functions for Large Acyclic Domains. ICML 1996: 63-70 - [c9]Andrew W. Moore:
Reinforcement Learning in Factories: The Auton Project (Abstract). ICML 1996: 556 - [i1]Leslie Pack Kaelbling, Michael L. Littman, Andrew W. Moore:
Reinforcement Learning: A Survey. CoRR cs.AI/9605103 (1996) - 1995
- [j2]Andrew W. Moore, Christopher G. Atkeson:
The Parti-game Algorithm for Variable Resolution Reinforcement Learning in Multidimensional State-spaces. Mach. Learn. 21(3): 199-233 (1995) - [c8]Kan Deng, Andrew W. Moore:
Multiresolution Instance-Based Learning. IJCAI 1995: 1233-1242 - [c7]Andrew W. Moore, Jeff G. Schneider:
Memory-based Stochastic Optimization. NIPS 1995: 1066-1072 - 1994
- [c6]Andrew W. Moore, Mary S. Lee:
Efficient Algorithms for Minimizing Cross Validation Error. ICML 1994: 190-198 - [c5]Justin A. Boyan, Andrew W. Moore:
Generalization in Reinforcement Learning: Safely Approximating the Value Function. NIPS 1994: 369-376 - 1993
- [j1]Andrew W. Moore, Christopher G. Atkeson:
Prioritized Sweeping: Reinforcement Learning With Less Data and Less Time. Mach. Learn. 13: 103-130 (1993) - [c4]Oded Maron, Andrew W. Moore:
Hoeffding Races: Accelerating Model Selection Search for Classification and Function Approximation. NIPS 1993: 59-66 - [c3]Andrew W. Moore:
The Parti-Game Algorithm for Variable Resolution Reinforcement Learning in Multidimensional State-Spaces. NIPS 1993: 711-718 - [c2]Thomas G. Dietterich, Dietrich Wettschereck, Christopher G. Atkeson, Andrew W. Moore:
Memory-Based Methods for Regression and Classification. NIPS 1993: 1165-1166 - 1992
- [c1]Andrew W. Moore, Christopher G. Atkeson:
Memory-Based Reinforcement Learning: Efficient Computation with Prioritized Sweeping. NIPS 1992: 263-270
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-19 23:45 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint