


default search action
6th ML 1989: Cornell University, Ithaca, New York, USA
- Alberto Maria Segre:

Proceedings of the Sixth International Workshop on Machine Learning (ML 1989), Cornell University, Ithaca, New York, USA, June 26-27, 1989. Morgan Kaufmann 1989, ISBN 1-55860-036-1
Combining Empirical and Explanation-Based Learning
- Pat Langley:

Unifying Themes in Empirical and Explanation-Based Learning. ML 1989: 2-4 - Raymond J. Mooney, Dirk Ourston:

Induction Over the Unexplained: Integrated Learning of Concepts with Both Explainable and Conventional Aspects. ML 1989: 5-7 - Jungsoon P. Yoo, Douglas H. Fisher:

Conceptual Clustering of Explanations. ML 1989: 8-10 - Gerhard Widmer:

A Tight Integration of Deductive Learning. ML 1989: 11-13 - Gheorghe Tecuci, Yves Kodratoff:

Multi-Strategy Learning in Nonhomongeneous Domain Theories. ML 1989: 14-16 - Jianping Zhang, Ryszard S. Michalski:

A Description of Preference Criterion in Constructive Learning: A Discussion of Basis Issues. ML 1989: 17-19 - Michael Redmond:

Combining Case-Based Reasoning, Explanation-Based Learning, and Learning form Instruction. ML 1989: 20-22 - Francesco Bergadano, Attilio Giordana, S. Ponsero:

Deduction in Top-Down Inductive Learning. ML 1989: 23-25 - Wendy Sarrett, Michael J. Pazzani:

One-Sided Algorithms for Integrating Empirical and Explanation-Based Learning. ML 1989: 26-28 - Haym Hirsh:

Combining Empirical and Analytical Learning with Version Spaces. ML 1989: 29-33 - Andrea Pohoreckyj Danyluk:

Finding New Rules for Incomplete Theories: Explicit Biases for Induction with Contextual Information. ML 1989: 34-36 - Tom Fawcett:

Learning from Plausible Explanations. ML 1989: 37-39 - Kamal M. Ali:

Augmenting Domain Theory for Explanation-Based Generalization. ML 1989: 40-42 - David Haines:

Explanation Based Learning as Constrained Search. ML 1989: 43-45 - Steven Morris:

Reducing Search and Learning Goal Preferences. ML 1989: 46-48 - Alex Kass:

Adaptation-Based Explanation: Explanations as Cases. ML 1989: 49-51 - Colleen M. Seifert:

A Retrieval Model Using Feature Selection. ML 1989: 52-54 - Bruce Krulwich, Gregg Collins, Lawrence Birnbaum:

Improving Decision-Making on the Basis of Experience. ML 1989: 55-57 - Masayuki Numao, Masamichi Shimura:

Explanation-Based Acceleration of Similarity-Based Learning. ML 1989: 58-60 - Lawrence Hunter:

Knowledge Acquisition Planning: Results and Prospects. ML 1989: 61-65 - Joachim Diederich:

"Learning by Instruction" in connectionist Systems. ML 1989: 66-68 - Bruce F. Katz:

Integrating Learning in a Neural Network. ML 1989: 69-71 - Michael J. Pazzani:

Explanation-Based Learning with Week Domain Theories. ML 1989: 72-74 - Gerhard Friedrich, Wolfgang Nejdl:

Using Domain Knowledge to Improve Inductive Learning Algorithms for Diagnosis. ML 1989: 75-77 - James Wogulis:

A Framework for Improving Efficiency and Accuracy. ML 1989: 78-80 - George Drastal, Regine Meunier, Stan Raatz:

Error Correction in Constructive Induction. ML 1989: 81-83 - Ralph Barletta, Randy Kerber:

Improving Explanation-Based Indexing with Empirical Learning. ML 1989: 84-86 - Michael Wollowski:

A Schema for an Integrated Learning System. ML 1989: 87-89 - Jude W. Shavlik, Geoffrey G. Towell:

Combining Explanation-Based Learning and Artificial Neural Networks. ML 1989: 90-93
Empirical Learning: Theory and Application
- Wray L. Buntine:

Learning Classification Rules Using Bayes. ML 1989: 94-98 - Matjaz Gams, Aram Karalic:

New Empirical Learning Mechanisms Perform Significantly Better in Real Life Domains. ML 1989: 99-103 - Philip K. Chan:

Inductive Learning with BCT. ML 1989: 104-108 - Ritchey A. Ruff, Thomas G. Dietterich:

What Good Are Experiments?. ML 1989: 109-112 - Stephen H. Muggleton, Michael Bain, Jean Hayes Michie, Donald Michie:

An Experimental Comparison of Human and Machine Learning Formalisms. ML 1989: 113-118 - Giulia Pagallo, David Haussler:

Two Algorithms That Learn DNF by Discovering Relevant Features. ML 1989: 119-123 - Thomas G. Dietterich:

Limitations on Inductive Learning. ML 1989: 124-128 - Rodney M. Goodman, Padhraic Smyth:

The Induction of Probabilistic Rule Sets - The Itrule Algorithm. ML 1989: 129-132 - Lawrence B. Holder:

Empirical Substructure Discovery. ML 1989: 133-136 - Jan Paredis:

Learning the Behavior of Dynamical Systems form Examples. ML 1989: 137-140 - Matthew T. Mason, Alan D. Christiansen, Tom M. Mitchell:

Experiments in Robot Learning. ML 1989: 141-145 - W. Scott Spangler, Usama M. Fayyad, Ramasamy Uthurusamy:

Induction of Decision Trees from Inconclusive Data. ML 1989: 146-150 - Michel Manago:

Knowledge Intensive Induction. ML 1989: 151-155 - Brian R. Gaines:

An Ounce of Knowledge is Worth a Ton of Data: Quantitative studies of the Trade-Off between Expertise and Data Based On Statistically Well-Founded Empirical Induction. ML 1989: 156-159 - Kent A. Spackman:

Signal Detection Theory: Valuable Tools for Evaluating Inductive Learning. ML 1989: 160-163 - J. Ross Quinlan:

Unknown Attribute Values in Induction. ML 1989: 164-168 - Douglas H. Fisher, Kathleen B. McKusick, Raymond J. Mooney, Jude W. Shavlik, Geoffrey G. Towell:

Processing Issues in Comparisons of Symbolic and Connectionist Learning Systems. ML 1989: 169-173 - Cullen Schaffer:

Bacon, Data Analysis and Artificial Intelligence. ML 1989: 174-179
Learning Plan Knowledge
- David Rudy, Dennis F. Kibler:

Learning to Plan in Complex Domains. ML 1989: 180-182 - Jude W. Shavlik:

An Empirical Analysis of EBL Approaches for Learning Plan Schemata. ML 1989: 183-187 - Mike R. Hilliard, Gunar E. Liepins, Gita Rangarajan, Mark R. Palmer:

Learning Decision Rules for scheduling Problems: A Classifier Hybrid Approach. ML 1989: 188-190 - Keith R. Levi, David L. Perschbacher, Valerie L. Shalin:

Learning Tactical Plans for Pilot Aiding. ML 1989: 191-193 - Lawrence Birnbaum, Gregg Collins, Bruce Krulwich:

Issues in the Justification-Based Diagnosis of Planning Failures. ML 1989: 194-196 - Stan Matwin, Johanne Morin:

Learning Procedural Knowledge in the EBG Context. ML 1989: 197-199 - Jean-Francois Puget:

Learning Invariants from Explanations. ML 1989: 200-204 - Ralph P. Sobek, Jean-Paul Laumond:

Using Learning to Recover Side-Effects of Operators in Robotics. ML 1989: 205-208 - Paul O'Rorke, Timothy Cain, Andrew Ortony:

Learning to Recognize Plans Involving Affect. ML 1989: 209-211 - Randolph M. Jones:

Learning to Retrieve Useful Information for Problem Solving. ML 1989: 212-214 - Kurt VanLehn:

Discovering Problem Solving Strategies: What Humans Do and Machines Don't (Yet). ML 1989: 215-217 - Melissa P. Chase, Monte Zweben, Richard L. Piazza, John D. Burger, Paul P. Maglio, Haym Hirsh:

Approximating Learned Search Control Knowledge. ML 1989: 218-220 - Prasad Tadepalli:

Planning Approximate Plans for Use in the Real World. ML 1989: 224-228 - John A. Allen, Pat Langley:

Using Concept Hierarchies to Organize Plan Knowledge. ML 1989: 229-231 - Hua Yang, Douglas H. Fisher:

Conceptual Clustering of Mean-Ends Plans. ML 1989: 232-234 - Nicholas S. Flann:

Learning Appropriate Abstractions for Planning in Formation Problems. ML 1989: 235-239 - Jack Mostow, Armand Prieditis:

Discovering Admissible Search Heuristics by Abstracting and Optimizing. ML 1989: 240-240 - Craig A. Knoblock:

Learning Hierarchies of Abstraction Spaces. ML 1989: 241-245 - Timothy M. Converse, Kristian J. Hammond, Mitchell Marks:

Learning from Opportunity. ML 1989: 246-248 - Steve A. Chien:

Learning by Analyzing Fortuitous Occurrences. ML 1989: 249-251 - Melinda T. Gervasio, Gerald DeJong:

Explanation-Based Learning of Reactive Operations. ML 1989: 252-254 - Jim Blythe, Tom M. Mitchell:

On Becoming Reactive. ML 1989: 255-259
Knowledge-Based Refinement and Theory Revision
- Allen Ginsberg:

Knowledge Base Refinement and Theory Revision. ML 1989: 260-265 - Paul O'Rorke, Steven Morris, David Schulenburg:

Theory Formation by Abduction: Initial Results of a Case Study Based on the Chemical Revolution. ML 1989: 266-271 - Donald Rose:

Using Domain Knowledge to Aid Scientific Theory Revision. ML 1989: 272-277 - Deepak Kulkarni, Herbert A. Simon:

The Role of Experimentation in Scientific Theory Revision. ML 1989: 278-283 - Shankar A. Rajamoney:

Exemplar-Based Theory Rejection: An Approach to the Experience Consistency Problem. ML 1989: 284-289 - Kenneth S. Murray, Bruce W. Porter:

Controlling Search for the Consequences of New Information During Knowledge Integration. ML 1989: 290-295 - Keith R. Levi, Valerie L. Shalin, David L. Perschbacher:

Identifying Knowledge Base Deficiencies by Observing User Behavior. ML 1989: 296-301 - Chris Tong, Phil Franklin:

Toward Automated Rational Reconstruction: A Case Study. ML 1989: 302-307 - Michael H. Sims, John L. Bresina:

Discovering Mathematical Operation Definitions. ML 1989: 308-313 - Zbigniew W. Ras, Maria Zemankova:

Imprecise Concept Learning within a Growing Language. ML 1989: 314-319 - Sridhar Mahadevan:

Using Determinations in EBL: A Solution to the incomplete Theory Problem. ML 1989: 320-325 - Marco Valtorta:

Some Results on the Complexity of Knowledge-Based Refinement. ML 1989: 326-331 - David C. Wilkins, Kok-Wah Tan:

Knowledge Base Refinement as Improving an Incorrect, Inconsistent and Incomplete Domain Theory. ML 1989: 332-339
Incremental Learning
- John J. Grefenstette:

Incremental Learning of Control Strategies with Genetic algorithms. ML 1989: 340-344 - Charles W. Anderson:

Tower of Hanoi with Connectionist Networks: Learning New Features. ML 1989: 345-349 - Leslie Pack Kaelbling:

A Formal Framework for Learning in Embedded Systems. ML 1989: 350-353 - Steven D. Whitehead, Dana H. Ballard:

A Role for Anticipation in Reactive Systems that Learn. ML 1989: 354-357 - Paul D. Scott, Shaul Markovitch:

Uncertainty Based Selection of Learning Experiences. ML 1989: 358-361 - Paul E. Utgoff:

Improved Training Via Incremental Learning. ML 1989: 362-365 - Scott H. Clearwater, Tze-Pin Chen, Haym Hirsh, Bruce G. Buchanan:

Incremental Batch Learning. ML 1989: 366-370 - Kevin Thompson, Pat Langley:

Incremental Concept Formation with Composite Objects. ML 1989: 371-374 - Rich Caruana, J. David Schaffer, Larry J. Eshelman:

Using Multiple Representations to Improve Inductive Bias: Gray and Binary Coding for Genetic Algorithms. ML 1989: 375-378 - John H. Gennari:

Focused Concept Formation. ML 1989: 379-382 - Antoine Cornuéjols:

An Exploration Into Incremental Learning: the INFLUENCE System. ML 1989: 383-386 - David W. Aha:

Incremental, Instance-Based Learning of Independent and Graded Concept Descriptions. ML 1989: 387-391 - Ming Tan, Jeffrey C. Schlimmer:

Cost-Sensitive Concept Learning of Sensor Use in Approach ad Recognition. ML 1989: 392-395 - Joel D. Martin:

Reducing Redundant Learning. ML 1989: 396-399 - Jakub Segen:

Incremental Clustering by Minimizing Representation Length. ML 1989: 400-403 - Shaul Markovitch, Paul D. Scott:

Information Filters and Their Implementation in the SYLLOG System. ML 1989: 404-407 - Eric Wefald, Stuart J. Russell:

Adaptive Learning of Decision-Theoretic Search Control Knowledge. ML 1989: 408-411 - Oliver G. Selfridge:

Atoms of Learning II: Adaptive Strategies A Study of Two-Person Zero-Sum Competition. ML 1989: 412-415 - Terence C. Fogarty:

An Incremental Genetic Algorithm for Real-Time Learning. ML 1989: 416-419 - Ronald R. Yager, Kenneth M. Ford:

Participatory Learning: A Constructivist Model. ML 1989: 420-425
Representational Issues in Machine Learning
- Devika Subramanian:

Representational Issues in Machine Learning. ML 1989: 426-429 - John Woodfill:

Labor Saving New Distinctions. ML 1989: 430-433 - Devika Subramanian:

A Theory of Justified Reformulations. ML 1989: 434-438 - Patricia J. Riddle:

Reformation from State Space to Reduction Space. ML 1989: 439-440 - James P. Callan:

Knowledge-Based Feature Generation. ML 1989: 441-443 - Richard Maclin, Jude W. Shavlik:

Enriching Vocabularies by Generalizing Explanation Structures. ML 1989: 444-446 - Scott Dietzen, Frank Pfenning:

Higher-Order and Modal Logic as a Framework for Explanation-Based Generalization. ML 1989: 447-449 - Russell Greiner:

Towards a Formal Analysis of EBL. ML 1989: 450-453 - Robert C. Holte, Robert M. Zimmer:

A Mathematical Framework for Studying Representation. ML 1989: 454-456 - Jeffrey C. Schlimmer:

Refining Representations to Improve Problem Solving Quality. ML 1989: 457-460 - Larry A. Rendell:

Comparing Systems and analyzing Functions to Improve Constructive Induction. ML 1989: 461-464 - Sharad Saxena:

Evaluating alternative Instance Representations. ML 1989: 465-468 - Lonnie Chrisman:

Evaluating Bias During Pac-Learning. ML 1989: 469-471 - Pankaj Mehra:

Constructive Induction Framework. ML 1989: 474-475 - Luc De Raedt, Maurice Bruynooghe:

Constructive Induction by Analogy. ML 1989: 476-477 - Mieczyslaw M. Kokar:

Concept Discovery Through Utilization of Invariance Embedded in the Description Language. ML 1989: 478-479 - Benjamin N. Grosof, Stuart J. Russell:

Declarative Bias for Structural Domains. ML 1989: 480-482 - Sunil Mohan, Chris Tong:

Automatic Construction of a Hierarchical Generate-and-Test Algorithm. ML 1989: 483-484 - Jane Yung-jen Hsu:

A Knowledge-Level Analysis of Informing. ML 1989: 485-488 - Jack Mostow:

An Object-Oriented Representation for Search algorithms. ML 1989: 489-491 - Richard M. Keller:

Compiling Learning Vocabulary from a Performance System Description. ML 1989: 482-495 - Bruce L. Lambert, David K. Tcheng, Stephen C. Y. Lu:

Generalized Recursive Splitting Algorithms for Learning Hybrid Concepts. ML 1989: 496-498 - Diana F. Gordon:

Screening Hypotheses with Explicit Bias. ML 1989: 499-500 - Christian de Sainte Marie:

Building A Learning Bias from Perceived Dependencies. ML 1989: 501-502 - Katharina Morik, Jörg-Uwe Kietz:

A Bootstrapping Approach to Concept Clustering. ML 1989: 503-504 - Hans Tallis:

Overcoming Feature Space Bias in a Reactive Environment. ML 1989: 505-508

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














