default search action
ICMLA 2008: San Diego, California, USA
- M. Arif Wani, Xue-wen Chen, David P. Casasent, Lukasz A. Kurgan, Tony Hu, Khalid Hafeez:
Seventh International Conference on Machine Learning and Applications, ICMLA 2008, San Diego, California, USA, 11-13 December 2008. IEEE Computer Society 2008, ISBN 978-0-7695-3495-4
Bayesian Learning
- Silvia Chiappa:
A Bayesian Approach to Switching Linear Gaussian State-Space Models for Unsupervised Time-Series Segmentation. 3-9 - Ken Ueno, Toshio Hayashi, Koichiro Iwata, Nobuyoshi Honda, Youichi Kitahara, Topon Kumar Paul:
Prioritizing Health Promotion Plans with k-Bayesian Network Classifier. 10-15 - Lifeng Shang, Kwok-Ping Chan:
Temporal Exemplar-Based Bayesian Networks for Facial Expression Recognition. 16-22 - Ole-Christoffer Granmo:
A Bayesian Learning Automaton for Solving Two-Armed Bernoulli Bandit Problems. 23-30
Support Vector Machines
- Ángela Blanco, Manuel Martín-Merino, Javier De Las Rivas:
Combining Dissimilarities in a Hyper Reproducing Kernel Hilbert Space for Complex Human Cancer Prediction. 33-39 - André Stuhlsatz, Hans-Günter Meier, Andreas Wendemuth:
Making the Lipschitz Classifier Practical via Semi-infinite Programming. 40-47 - Nisrine Jrad, Edith Grall-Maës, Pierre Beauseroy:
A Supervised Decision Rule for Multiclass Problems Minimizing a Loss Function. 48-53 - Catarina Silva, Bernardete Ribeiro:
Selecting Examples in Manifold Reduced Feature Space for Active Learning. 54-59 - Li Chen, Jianhua Xuan, Yue Joseph Wang, Rebecca B. Riggins, Robert Clarke:
Network-Constrained Support Vector Machine for Classification. 60-65 - Jared Dinerstein, Sabra Dinerstein, Parris K. Egbert, Stephen W. Clyde:
Learning-Based Fusion for Data Deduplication. 66-71
Reinforcement Learning and Markov Processes
- Sertan Girgin, Philippe Preux:
Basis Function Construction in Reinforcement Learning Using Cascade-Correlation Learning Architecture. 75-82 - Abdeslam Boularias:
A Predictive Model for Imitation Learning in Partially Observable Environments. 83-90 - Ioannis Rexakis, Michail G. Lagoudakis:
Classifier-Based Policy Representation. 91-98 - Abdeslam Boularias, Masoumeh T. Izadi, Brahim Chaib-draa:
Prediction-Directed Compression of POMDPs. 99-105 - K. Nunez, Jianhua Chen, Peter P. Chen, Guoli Ding, Robert F. Lax, Brian D. Marx:
Empirical Comparison of Greedy Strategies for Learning Markov Networks of Treewidth k. 106-111
Ensemble-Based Methods
- Sherif Abdelazeem:
A Greedy Approach for Building Classification Cascades. 115-120 - Henrik Boström:
Calibrating Random Forests. 121-126 - Tuve Löfström, Ulf Johansson, Henrik Boström:
On the Use of Accuracy and Diversity Measures for Evaluating and Selecting Ensembles of Classifiers. 127-132
Inductive Learning
- Jun Won Lee, Christophe G. Giraud-Carrier:
New Insights into Learning Algorithms and Datasets. 135-140 - Petr Hoffmann:
Learning Analysis by Reduction from Positive Data Using Reverible Languages. 141-146 - Boseon Byeon, Khaled Rasheed:
Simultaneously Removing Noise and Selecting Relevant Features for High Dimensional Noisy Data. 147-152 - Andres Folleco, Taghi M. Khoshgoftaar, Amri Napolitano:
Comparison of Four Performance Metrics for Evaluating Sampling Techniques for Low Quality Class-Imbalanced Data. 153-158
Statistical Learning
- Dwi Sianto Mansjur, Biing-Hwang Juang:
Improving Kernel Density Classifier Using Corrective Bandwidth Learning with Smooth Error Loss Function. 161-167 - Qiang Fu, Biing-Hwang Juang:
An Investigation of Non-Uniform Error Cost Function Design in Automatic Speech Recognition. 168-173 - Bo Liu, Hongbin Zhang, WenAn Chen:
Boundary Constrained Manifold Unfolding. 174-181 - Johannes Mohr, Sambu Seo, Imke Puls, Andreas Heinz, Klaus Obermayer:
Target Selection: A New Learning Paradigm and Its Application to Genetic Association Studies. 182-187 - Karim T. Abou-Moustafa, Frank P. Ferrie:
Regularized Minimum Volume Ellipsoid Metric for Query-Based Learning. 188-193 - Sophia Sakellaridi, Haw-ren Fang, Yousef Saad:
Graph-Based Multilevel Dimensionality Reduction with Applications to Eigenfaces and Latent Semantic Indexing. 194-200
Unsupervised Methods
- Rami N. Mahdi, Eric C. Rouchka:
Model Based Unsupervised Learning Guided by Abundant Background Samples. 203-210 - Gilles Bisson, Syed Fawad Hussain:
Chi-Sim: A New Similarity Measure for the Co-clustering Task. 211-217 - Mustapha Lebbah, Younès Bennani, Hamid Benhadda:
Relational Analysis for Consensus Clustering from Multiple Partitions. 218-223 - Nicoleta Rogovschi, Mustapha Lebbah, Younès Bennani:
Probabilistic Mixed Topological Map for Categorical and Continuous Data. 224-231 - Haw-ren Fang, Yousef Saad:
Farthest Centroids Divisive Clustering. 232-238 - Lucian Alecu, Hervé Frezza-Buet:
Are Neural Fields Suitable for Vector Quantization? 239-244
Image Processing
- Lei Ding, Alper Yilmaz:
Image Segmentation as Learning on Hypergraphs. 247-252 - Sungmoon Jeong, Sang-Woo Ban, Minho Lee:
Autonomous Detector Using Saliency Map Model and Modified Mean-Shift Tracking for a Blind Spot Monitor in a Car. 253-258 - Volker Willert, Julian Eggert, Marc Toussaint, Edgar Körner:
Probabilistic Exploitation of the Lucas and Kanade Smoothness Constraint. 259-266 - C. Krishna Mohan, N. Dhananjaya, B. Yegnanarayana:
Video Shot Segmentation Using Late Fusion Technique. 267-270 - Wooyoung Kim, James M. Rehg:
Detection of Unnatural Movement Using Epitomic Analysis. 271-276
Evolutionary Algorithms and Genetic Programming
- Manoel Fernando Alonso Gadi, Xidi Wang, Alair Pereira do Lago:
Comparison with Parametric Optimization in Credit Card Fraud Detection. 279-285 - Matej Sprogar:
A Study of GP's Division Operators for Symbolic Regression. 286-291 - Fatemeh Vafaee, Weimin Xiao, Peter C. Nelson, Chi Zhou:
Adaptively Evolving Probabilities of Genetic Operators. 292-299 - Melissa Danforth:
Scalable Patch Management Using Evolutionary Analysis of Attack Graphs. 300-307
Applications
- Hang T. Nguyen, Ian T. Nabney:
Combining the Wavelet Transform and Forecasting Models to Predict Gas Forward Prices. 311-317 - Caio Soares, Christin Hamilton, Lacey Montgomery, Juan E. Gilbert:
Improving Accuracy in the Montgomery County Corrections Program Using Case-Based Reasoning. 318-323 - Martin Schierle, Daniel Trabold:
Extraction of Failure Graphs from Structured and Unstructured Data. 324-330 - Zhuo Sun, Yiqiang Chen, Juan Qi, Junfa Liu:
Adaptive Localization through Transfer Learning in Indoor Wi-Fi Environment. 331-336 - John D. Lees-Miller, Fraser Anderson, Bret Hoehn, Russell Greiner:
Does Wikipedia Information Help Netflix Predictions? 337-343 - Cristina Picus, Luigi Cambrini, Wolfgang Herzner:
Boltzmann Machine Topology Learning for Distributed Sensor Networks Using Loopy Belief Propagation Inference. 344-349 - Haimonti Dutta, Ananda Matthur:
Distributed Optimization Strategies for Mining on Peer-to-Peer Networks. 350-355 - Erdal Kayacan, Yesim Oniz, Okyay Kaynak, Andon V. Topalov:
Adaptive Control of Antilock Braking System Using Grey Multilayer Feedforward Neural Networks. 356-361 - Leonardo Rigutini, Michelangelo Diligenti, Marco Maggini, Marco Gori:
A Fully Automatic Crossword Generator. 362-367 - Alexander Brodsky, Juan Luo, Hadon Nash:
CoReJava: Learning Functions Expressed as Object-Oriented Programs. 368-375 - Jun Nishimura, Nobuo Sato, Tadahiro Kuroda:
Speaker Siglet Detection for Business Microscope. 376-381 - Daniela Mayumi Ushizima, Oliver Rübel, Prabhat, Gunther H. Weber, E. Wes Bethel, Cecilia R. Aragon, Cameron G. R. Geddes, Estelle Cormier-Michel, Bernd Hamann, Peter Messmer, Hans Hagen:
Automated Analysis for Detecting Beams in Laser Wakefield Simulations. 382-387 - Joshua M. Lewis, Pincelli M. Hull, Kilian Q. Weinberger, Lawrence K. Saul:
Mapping Uncharted Waters: Exploratory Analysis, Visualization, and Clustering of Oceanographic Data. 388-395 - Andriy Burkov, Brahim Chaib-draa:
Distributed Planning in Stochastic Games with Communication. 396-401 - Victor Eijkhout, Erika Fuentes:
Multi-stage Learning of Linear Algebra Algorithms. 402-407 - Mir Shahriar Emami:
Optimization on a Novel Quantum Greedy Approach Based on Learning Strategy for Zero and One Knapsack Problem and Evaluation. 408-414 - Etienne Côme, Zohra Leila Cherfi, Latifa Oukhellou, Patrice Aknin:
Semi-supervised IFA with Prior Knowledge on the Mixing Process: An Application to a Railway Device Diagnosis. 415-420 - John Byrnes:
Estimation of Gaussian Mixtures from Moments. 421-425 - Dragana Veljkovic, Kay A. Robbins:
Force Feature Spaces for Visualization and Classification. 426-433
From Biological Intelligence to Machine Intelligence: Algorithm Abstraction, Evaluation, and Validation
- Thomas Lochmatter, Alcherio Martinoli:
Simulation Experiments with Bio-inspired Algorithms for Odor Source Localization in Laminar Wind Flow. 437-443 - Wei Li, Joseph E. Sutton, Y. Li:
Integration of Chemical and Visual Sensors for Identifying an Odor Source in Near Shore Ocean Conditions. 444-449 - Sang C. Suh, Sam I. Saffer, Naveen Kumar Adla:
Extraction of Meaningful Rules in a Medical Database. 450-456 - Bobbie-Jo M. Webb-Robertson, Melissa M. Matzke, Christopher S. Oehmen:
Dimension Reduction via Unsupervised Learning Yields Significant Computational Improvements for Support Vector Machine Based Protein Family Classification. 457-462 - Matthew D. Eyster, Michael J. Mendenhall, Steven K. Rogers:
A Qualia Framework for Ladar 3D Object Classification. 463-469 - Joseph E. Sutton, Wei Li:
Development of CPT_M3D for Multiple Chemical Plume Tracing and Source Identification. 470-475 - Atsushi Kohnotoh, Hiroshi Ishida:
Active Stereo Olfactory Sensing System for Localization of Gas/Odor Source. 476-481 - Mari Ohashi, Yuichi Minagawa, Yuki Myoren, Hiroshi Ishida:
Crayfish Robot Employing Flow Induced by Waving to Locate a Chemical Source. 482-488 - Pedro Angelo Morais de Sousa, Lino Marques, Anibal T. de Almeida:
Toward Chemical-Trail Following Robots. 489-494
Applications of Machine Learning in Medicine and Biology
- Philip Igwe, Mahdieh Emrani, Samer Adeeb, Doug Hill:
Assessing Torso Deformity in Scoliosis Using Self-Organizing Neural Networks (SNN). 497-502 - Johannes Mohr, Sambu Seo, Klaus Obermayer:
Automated Microarray Classification Based on P-SVM Gene Selection. 503-507 - Caio Soares, Lacey Montgomery, Kenneth Rouse, Juan E. Gilbert:
Automating Microarray Classification Using General Regression Neural Networks. 508-513 - M. Arif Wani:
Incremental Hybrid Approach for Microarray Classification. 514-520
Machine Learning Applications in Radiotherapy
- Kenji Suzuki:
Segmentation of Lesions with Improved Specificity in Computer-Aided Diagnosis Using a Massive-Training Artificial Neural Network (MTANN). 523-527 - Martin J. Murphy:
Using Neural Networks to Predict Breathing Motion. 528-532 - Tong Lin, Laura I. Cervino, Xiaoli Tang, Nuno Vasconcelos, Steve B. Jiang:
Tumor Targeting for Lung Cancer Radiotherapy Using Machine Learning Techniques. 533-538 - Issam El-Naqa, Jeffrey D. Bradley, Joseph Deasy:
Nonlinear Kernel-Based Approaches for Predicting Normal Tissue Toxicities. 539-544 - Shiva K. Das, Shifeng Chen, Joseph O. Deasy, Sumin Zhou, Fang-Fang Yin, Lawrence B. Marks:
Decision Fusion of Machine Learning Models to Predict Radiotherapy-Induced Lung Pneumonitis. 545-550 - Xiaoli Tang, Tong Lin, Steve B. Jiang:
Towards On-line Treatment Verification Using cine EPID for Hypofractionated Lung Radiotherapy. 551-555
Machine Learning and Data Mining Methods in Bioinformatics
- Cecilia Sönströd, Ulf Johansson, Ulf Norinder, Henrik Boström:
Comprehensible Models for Predicting Molecular Interaction with Heart-Regulating Genes. 559-564 - Scott F. Smith:
RNA Search Acceleration with Genetic Algorithm Generated Decision Trees. 565-570 - Cécile Low-Kam, Anne Laurent, Maguelonne Teisseire:
Detection of Sequential Outliers Using a Variable Length Markov Model. 571-576 - Theodoros Damoulas, Yiming Ying, Mark A. Girolami, Colin Campbell:
Inferring Sparse Kernel Combinations and Relevance Vectors: An Application to Subcellular Localization of Proteins. 577-582 - Donald Geman, Bahman Afsari, Aik Choon Tan, Daniel Q. Naiman:
Microarray Classification from Several Two-Gene Expression Comparisons. 583-585
Statistical Data Mining and Machine Learning in Cancer Epidemiology and Cancer
- Dechang Chen, Kai Xing, Donald Henson, Li Sheng:
Group Testing in the Development of an Expanded Cancer Staging System. 589-594 - Jia Song, Chunmei Liu, Yinglei Song, Junfeng Qu:
Clustering for DNA Microarray Data Analysis with a Graph Cut Based Algorithm. 595-598 - Zhenqiu Liu:
Detecting Disease Associated Genes and Gene-Gene Interactions with Penalized AUC Maximization. 599-603
Application of Machine Learning in Constructing Biopatterns and Analyzing Bioprofiles
- Azzam F. Taktak, Antonio Eleuteri, M. S. Hane Aung, Paulo J. G. Lisboa, Laurence Desjardins, Bertil E. Damato:
External Validation of a Bayesian Neural Network Model in Survival Analysis. 607-612 - Paulo J. G. Lisboa, Enrique Romero, Alfredo Vellido, Margarida Julià-Sapé, Carles Arús:
Classification, Dimensionality Reduction, and Maximally Discriminatory Visualization of a Multicentre 1H-MRS Database of Brain Tumors. 613-618 - Daniele Soria, Jonathan M. Garibaldi, Elia Biganzoli, Ian O. Ellis:
A Comparison of Three Different Methods for Classification of Breast Cancer Data. 619-624 - Ioannis N. Dimou, Michalis E. Zervakis:
Support Vector Machines versus Decision Templates in Biomedical Decision Fusion. 625-630 - Qingzhong Liu, Mengyu Qiao, Andrew H. Sung:
Distance Metric Learning and Support Vector Machines for Classification of Mass Spectrometry Proteomics Data. 631-636 - Leif E. Peterson, Kirill V. Larin:
Hermite/Laguerre Neural Networks for Classification of Artificial Fingerprints from Optical Coherence Tomography. 637-643 - Ana S. Fernandes, Ian H. Jarman, Terence A. Etchells, José Manuel Fonseca, Elia Biganzoli, Chris Bajdik, Paulo J. G. Lisboa:
Missing Data Imputation in Longitudinal Cohort Studies: Application of PLANN-ARD in Breast Cancer Survival. 644-649 - Federico Ambrogi, Elena Raimondi, Daniele Soria, Patrizia Boracchi, Elia Biganzoli:
Cancer Profiles by Affinity Propagation. 650-655
Machine Learning in Information and System Security Issues
- Yuchun Tang, Yuanchen He, Sven Krasser:
Highly Scalable SVM Modeling with Random Granulation for Spam Sender Detection. 659-664 - Karim Tabia, Salem Benferhat:
On the Use of Decision Trees as Behavioral Approaches in Intrusion Detection. 665-670 - Qingzhong Liu, Andrew H. Sung, Mengyu Qiao:
Video Steganalysis Based on the Expanded Markov and Joint Distribution on the Transform Domains Detecting MSU StegoVideo. 671-674
Machine Learning Applications
- Lan Huang, Chunguang Zhou, Yu-qin Zhou, Zhe Wang:
Research on Data Mining Algorithms for Automotive Customers' Behavior Prediction Problem. 677-681 - Chingwei Chang, Kwoting Fang, Chiungyu Huang:
Dynamic Knowledge Management Procedure Using Fuzzy Clustering. 682-687 - Cyril Laurier, Jens Grivolla, Perfecto Herrera:
Multimodal Music Mood Classification Using Audio and Lyrics. 688-693 - Ilhami Colak, Seref Sagiroglu, Hamdi Tolga Kahraman:
A User Modeling Approach to Web Based Adaptive Educational Hypermedia Systems. 694-699
Workshop: Machine Learning in Biomedicine and Bioinformatics
- Peng Chen, Chunmei Liu, Legand L. Burge III, Mahmood Mohammad, William M. Southerland, Clay Gloster:
Prediction of Inter-residue Contact Clusters from Hydrophobic Cores. 703-708 - Yue Fan, Mark A. Kon, Charles DeLisi:
Ensemble Machine Methods for DNA Binding. 709-716 - Xiaotong Lin, Xue-wen Chen:
Gene Network Learning Using Regulated Dynamic Bayesian Network Methods. 717-722 - Dechang Chen, Kai Xing, Donald Henson, Li Sheng, Arnold M. Schwartz, Xiuzhen Cheng:
A Clustering Approach in Developing Prognostic Systems of Cancer Patients. 723-728 - Sang-Chul Lee, William McFadden, Peter Bajcsy:
Text, Image and Vector Graphics Based Appraisal of Contemporary Documents. 729-734
Posters
- Shyue-Liang Wang, Ting-Zheng Lai, Tzung-Pei Hong, Yu-Lung Wu:
Efficient Hiding of Collaborative Recommendation Association Rules with Updates. 737-740 - Thanh Minh Nguyen, Q. M. Jonathan Wu:
A Combination of Positive and Negative Fuzzy Rules for Image Classification Problem. 741-746 - Seiichi Ozawa, Asim Roy:
Incremental Learning for Multitask Pattern Recognition Problems. 747-751 - Jaisheel Mistry, Fulufhelo V. Nelwamondo, Tshilidzi Marwala:
Estimating Missing Data and Determining the Confidence of the Estimate Data. 752-755 - Mary M. Randolph-Gips:
A New Neural Network to Process Missing Data without Imputation. 756-762 - Teresa Gonçalves, Paulo Quaresma:
Text Classification Using Tree Kernels and Linguistic Information. 763-768 - Weiya Shi, Yue-Fei Guo, Cheng Jin, Xiangyang Xue:
An Improved Generalized Discriminant Analysis for Large-Scale Data Set. 769-772