default search action
MOVI@MICCAI 2022: Singapore
- Yuankai Huo, Bryan A. Millis, Yuyin Zhou, Xiangxue Wang, Adam P. Harrison, Ziyue Xu:
Medical Optical Imaging and Virtual Microscopy Image Analysis - First International Workshop, MOVI 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings. Lecture Notes in Computer Science 13578, Springer 2022, ISBN 978-3-031-16960-1 - Yue Guo, David Borland, Carolyn M. McCormick, Jason L. Stein, Guorong Wu, Ashok Kumar Krishnamurthy:
Cell Counting with Inverse Distance Kernel and Self-supervised Learning. 1-10 - Souradeep Chakraborty, Rajarsi Gupta, Ke Ma, Darshana Govind, Pinaki Sarder, Won-Tak Choi, Waqas Mahmud, Eric Yee, Felicia Allard, Beatrice Knudsen, Gregory J. Zelinsky, Joel H. Saltz, Dimitris Samaras:
Predicting the Visual Attention of Pathologists Evaluating Whole Slide Images of Cancer. 11-21 - Youssef Dawoud, Katharina Ernst, Gustavo Carneiro, Vasileios Belagiannis:
Edge-Based Self-supervision for Semi-supervised Few-Shot Microscopy Image Cell Segmentation. 22-31 - Colin S. C. Tsang, Tony C. W. Mok, Albert C. S. Chung:
Joint Denoising and Super-Resolution for Fluorescence Microscopy Using Weakly-Supervised Deep Learning. 32-41 - Shunxing Bao, Jia Li, Can Cui, Yucheng Tang, Ruining Deng, Lucas W. Remedios, Ho Hin Lee, Sophie Chiron, Nathan Heath Patterson, Ken S. Lau, Lori A. Coburn, Keith T. Wilson, Joseph T. Roland, Bennett A. Landman, Qi Liu, Yuankai Huo:
MxIF Q-score: Biology-Informed Quality Assurance for Multiplexed Immunofluorescence Imaging. 42-52 - Alessandro Ferrero, Beatrice Knudsen, Deepika Sirohi, Ross T. Whitaker:
A Pathologist-Informed Workflow for Classification of Prostate Glands in Histopathology. 53-62 - Litao Yang, Deval Mehta, Dwarikanath Mahapatra, Zongyuan Ge:
Leukocyte Classification Using Multimodal Architecture Enhanced by Knowledge Distillation. 63-72 - Maximilian Fischer, Peter Neher, Michael Götz, Shuhan Xiao, Silvia Dias Almeida, Peter J. Schüffler, Alexander Muckenhuber, Rickmer Braren, Jens Kleesiek, Marco Nolden, Klaus H. Maier-Hein:
Deep Learning on Lossily Compressed Pathology Images: Adverse Effects for ImageNet Pre-trained Models. 73-83 - Kristofer E. delas Peñas, Ralf Haeusler, Sally Feng, Valentin Magidson, Mariia Dmitrieva, David Wink, Stephen J. Lockett, Robert J. Kinders, Jens Rittscher:
Profiling DNA Damage in 3D Histology Samples. 84-93 - Surojit Saha, Ouk Choi, Ross T. Whitaker:
Few-Shot Segmentation of Microscopy Images Using Gaussian Process. 94-104 - Huaqian Wu, Nicolas Souedet, Camille Mabillon, Caroline Jan, Cédric Clouchoux, Thierry Delzescaux:
Adversarial Stain Transfer to Study the Effect of Color Variation on Cell Instance Segmentation. 105-114 - Vaanathi Sundaresan, Julia F. Lehman, Sean P. Fitzgibbon, Saâd Jbabdi, Suzanne N. Haber, Anastasia Yendiki:
Constrained Self-supervised Method with Temporal Ensembling for Fiber Bundle Detection on Anatomic Tracing Data. 115-125 - Haleh Akrami, Tosha Shah, Amir Vajdi, Andrew Brown, Radha Krishnan, Razvan Cristescu, Antong Chen:
Sequential Multi-task Learning for Histopathology-Based Prediction of Genetic Mutations with Extremely Imbalanced Labels. 126-135 - Gozde N. Gunesli, Robert Jewsbury, Shan-E-Ahmed Raza, Nasir M. Rajpoot:
Morph-Net: End-to-End Prediction of Nuclear Morphological Features from Histology Images. 136-144 - Yixiao Zhang, Adam Kortylewski, Qing Liu, Seyoun Park, Benjamin Green, Elizabeth Engle, Guillermo Almodovar, Ryan Walk, Sigfredo Soto-Diaz, Janis Taube, Alex Szalay, Alan L. Yuille:
A Light-Weight Interpretable Model for Nuclei Detection and Weakly-Supervised Segmentation. 145-155 - Ziheng Yang, Halim Benhabiles, Féryal Windal, Jérôme Follet, Anne-Charlotte Leniere, Dominique Collard:
A Coarse-to-Fine Segmentation Methodology Based on Deep Networks for Automated Analysis of Cryptosporidium Parasite from Fluorescence Microscopic Images. 156-166 - Chunlun Xiao, Mingzhu Li, Liangge He, Xuegang Song, Tianfu Wang, Baiying Lei:
Swin Faster R-CNN for Senescence Detection of Mesenchymal Stem Cells in Bright-Field Images. 167-176 - Veena Kaustaban, Qinle Ba, Ipshita Bhattacharya, Nahil Sobh, Satarupa Mukherjee, Jim Martin, Mohammad Saleh Miri, Christoph Guetter, Amal Chaturvedi:
Characterizing Continual Learning Scenarios for Tumor Classification in Histopathology Images. 177-187
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.