


default search action
MLCAD 2025: Santa Cruz, CA, USA
- 7th ACM/IEEE Symposium on Machine Learning for CAD, MLCAD 2025, Santa Cruz, CA, USA, September 8-10, 2025. IEEE 2025, ISBN 979-8-3315-3762-3

- Handong Cho, Taewhan Kim:

Machine-Learning Driven Cell Library Compaction. 1-7 - Minseung Shin, Shilong Zhang, Geuna Chang, Youngsoo Shin:

On-Chip Decoupling Capacitor Placement with Impedance Constraint for DRAM Design. 1-7 - Qijing Wang, Wing Ho Lau, Tsung-Yi Ho, Evangeline F. Y. Young, Martin D. F. Wong:

Dr. Guide: AI-Guided Detailed Routing. 1-7 - Jooyeon Jeong, Taewhan Kim:

Machine Learning Driven Early Clustering for Multi-bit Flip-Flop Allocation. 1-7 - Mohammadamin Hajikhodaverdian, Sherief Reda, Ayse K. Coskun:

Fast Chip Transient Temperature Simulation via Machine Learning. 1-8 - Yanxing Guo, Ling Liang, Zihao Zheng, Zezhi Cheng, Yuhang Yang, Linbo Shan, Zongwei Wang, Yimao Cai:

PROMPT: Prediction Model for RRAM Programming Optimized by Adaptive Mechanism and Progressive Continuous Transformation. 1-7 - Kevin Immanuel Gubbi, Marcus Halm, Sarbani Kumar, Arvind Sudarshan, Pavan Dheeraj Kota, Mohammadnavid Tarighat, Avesta Sasan, Houman Homayoun:

Prompting for Power: Benchmarking Large Language Models for Low-Power RTL Design Generation. 1-7 - Weihua Xiao, Derek Ekberg, Siddharth Garg, Ramesh Karri:

Hybrid-NL2SVA: Integrating RAG and Finetuning for LLM-based NL2SVA. 1-10 - Arash Ardakani, Kevin He, John Wawrzynek:

Recurrent CircuitSAT Sampling for Sequential Circuits. 1-7 - Vikram Gopalakrishnan, Atmadip Dey, Rongjian Liang, Yanqing Zhang, Haoxing Ren, Vidya A. Chhabria:

Invited Paper: MLCAD 2025 Contest on ReSynthAI: Physical-aware Logic Resynthesis using AI. 1-7 - Cheng-Hsiang Chiu, Chedi Morchdi, Chih-Chun Chang, Cunxi Yu, Yi Zhou, Tsung-Wei Huang:

Optimizing CUDA Graph Scheduling with Reinforcement Learning - A Case Study in SSTA Propagation. 1-8 - Hang Yang, Yusheng Hu, Yong Liu, Cong Hao:

Pieceformer: Similarity-Driven Knowledge Transfer via Scalable Graph Transformer in VLSI. 1-7 - Hyunmin Jo, Heechun Park:

Priority-Aware Routing Optimization with Full-Path Delay Prediction Using Machine Learning. 1-7 - Zelin Lu, Akhilesh Kumar, Norman Chang, Haiyang He, Lang Lin, Wenbo Xia, Jie Yang, Gang Qu:

Multimodal Learning-Based Thermal Solver for 3DICs with Arbitrary Chip Dimensions and Power Distributions. 1-7 - Dinesh Reddy Ankireddy, Sudipta Paria, Aritra Dasgupta, Sandip Ray, Swarup Bhunia:

LASSO: LLM-Aided Security Property Generation for Assertion-based SoC Verification. 1-10 - Zahin Ibnat, Paul E. Calzada, Dipayan Saha, Hasan Al Shaikh, Sujan Kumar Saha, Jingbo Zhou, Farimah Farahmandi, Mark Tehranipoor:

Trusting the Machine: How Secure is LLM-Generated RTL Code? 1-8 - Md Rubel Ahmed, Sadiba Nusrat Nur, Rickard Ewetz:

Context-Enhanced Architectural Specification Generation for SoC Designs. 1-7 - Niansong Zhang, Chenhui Deng, Johannes Maximilian Kühn, Chia-Tung Ho, Cunxi Yu, Zhiru Zhang, Haoxing Ren:

ASPEN: LLM-Guided E-Graph Rewriting for RTL Datapath Optimization. 1-9 - Phuoc Pham, Arun Venkitaraman, Chia-Yu Hsieh, Andrea Bonetti, Stefan Uhlich, Markus Leibl, Simon Hofmann, Eisaku Ohbuchi, Lorenzo Servadei, Ulf Schlichtmann, Robert Wille:

GENIE-ASI: Generative Instruction and Executable Code for Analog Subcircuit Identification. 1-21 - Doyeon Won, Taewhan Kim:

EDA Tool Parameter Optimization Through Fast and Reliable Machine-Learning based Rank Prediction Model. 1-7 - Suresh Purini, Siddhant Garg, Mudit Gaur, Sankalp Bhat, Sohan Mupparapu, Arun Ravindran:

ArchXBench: A Complex Digital Systems Benchmark Suite for LLM Driven RTL Synthesis. 1-10 - Chenhui Deng, Yun-Da Tsai, Guan-Ting Liu, Zhongzhi Yu, Haoxing Ren:

ScaleRTL: Scaling LLMs with Reasoning Data and Test-Time Compute for Accurate RTL Code Generation. 1-9 - Tianchi Liu, Sriram Madhavan, Dastagiri Dudekula, Luke Thomas, Ivo van Zandvoort, Maarten Berkens:

Industry Track: MAMBO: ML Accelerated Multi-Agent Black-Box Optimization for Enhancing Standard Cell Synthesis Quality. 1-7 - Ziyu Deng, Rada Chirkova, Leigh Anne Clevenger, W. Rhett Davis:

Privacy-Preserving Data and Model Sharing for EDA via Inference Control and DP-SGD. 1-7 - Cunxi Yu:

Mapping Fusion: Improving FPGA Technology Mapping with ASIC Mapper. 1-7 - Charles Hong, Brendan Roberts, Huijae An, Alex Um, Advay Ratan, Yakun Sophia Shao:

hdl2v: A Code Translation Dataset for Enhanced LLM Verilog Generation. 1-8 - Yan Tan, Xiangchen Meng, Yangdi Lyu:

LLM-assisted Path Exploration for RTL Verification. 1-7 - Kiran Thorat, Jiahui Zhao, Yaotian Liu, Amit Hasan, Hongwu Peng, Xi Xie, Bin Lei, Caiwen Ding:

LLM-VeriPPA: Power, Performance, and Area Optimization aware Verilog Code Generation with Large Language Models. 1-7 - Wei Zeng, Sudipto Kundu, Jerry Wu:

Industry Track: Trajectory.AI: An Automated P&R Flow Trajectory Agent. 1-6 - Yukio Miyasaka, Walter Lau Neto, Eleonora Testa, Anika Prasad, Michael Shuster, Reto Zimmermann, Patrick Vuillod, Alan Mishchenko, John Wawrzynek, Luca G. Amarù:

ML-Inspired Logic Synthesis: Improving Multiplier Circuits. 1-7 - Chun-Yen Huang, Hsuan-I Chen, Hao-Wen Ho, Pei-Hsin Kang, Mark Po-Hung Lin, Wen-Hao Liu, Haoxing Ren:

Netlistify: Transforming Circuit Schematics into Netlists with Deep Learning. 1-8 - Weimin Fu, Yiting Wang, Zelin Lu, Xiaolong Guo, Gang Qu:

HADA: Leveraging Multi-Source Data to Train Large Language Models for Hardware Security Assertion Generation. 1-7 - Ryoga Matsuo, Stefan Uhlich, Arun Venkitaraman, Andrea Bonetti, Chia-Yu Hsieh, Ali Momeni, Lukas Mauch, Augusto Capone, Eisaku Ohbuchi, Lorenzo Servadei:

Schemato - An LLM for Netlist-to-Schematic Conversion. 1-7 - Amur Ghose, Andrew B. Kahng, Sayak Kundu, Zhiang Wang:

ORFS-agent: Tool-Using Agents for Chip Design Optimization. 1-13 - Yuntao Lu, Dehua Liang, Siting Liu, Yuhao Ji, Yu Zhang, Xuanqi Chen, Xia Lin, Jinlei Lu, Weihua Sheng, Bei Yu:

A Hybrid Optimization Framework for Power-Efficient Pulsed Latch Utilization in Clock Networks. 1-7 - Zeng Wang, Minghao Shao, Rupesh Raj Karn, Likhitha Mankali, Jitendra Bhandari, Ramesh Karri, Ozgur Sinanoglu, Muhammad Shafique, Johann Knechtel:

SALAD: Systematic Assessment of Machine Unlearning on LLM-Aided Hardware Design. 1-10 - Jaeheon Jung, Dongwoo Lew, Jangseok Yu, Jongsun Park:

HR2: A PVT Aware Hierarchical RL Based Sizing Framework for Robust Analog Circuit Design. 1-7 - Geuna Chang, Shilong Zhang, Seohyun Kim, Woojin Kim, Youngsoo Shin:

Verilog Code Generation of Hierarchical Design Using LLMs. 1-7 - Minh Luu, Surya Jasper, Khoi Le, Evan Pan, Michael Quinn, Aakash Tyagi, Jiang Hu:

VCDiag: Classifying Erroneous Waveforms for Failure Triage Acceleration. 1-8 - Ming-Yen Lee, Shimeng Yu:

NeuroSim Agent: Automated Compute-In-Memory Accelerator Deployment with Transferable Reinforcement Learning and Dynamic Design Space Pruning. 1-7 - Ishraq Tashdid, Valentina Terry, Jordan Merkel, Tasnuva Farheen, Sazadur Rahman:

BeyondPPA: Human-Inspired Reinforcement Learning for Post-Route Reliability-Aware Macro Placement. 1-12 - Chengjia Liu, Jnana Preeti Parlapalli, David Kebo Houngninou, Michael Quinn, Aakash Tyagi, Jiang Hu:

Improving Last-Mile Coverage in Functional Verification. 1-7 - Surya Selvam, Jacob R. Stevens, Sujit Dey, Anand Raghunathan:

ML-Enhanced Performance and Power Estimation for DNNs on Heterogenous SoCs. 1-7 - Jason Ho, James A. Boyle, Linshen Liu, Andreas Gerstlauer:

LASANA: Large-Scale Surrogate Modeling for Analog Neuromorphic Architecture Exploration. 1-8 - Bekzat Skakov, Sanzhar Abduraimov, Olzhas Nurman, Nursultan Kabylkas:

Firefly: Shedding Light on Verification Gaps using LLM-Powered Mutation Testing. 1-10 - Andrew B. Kahng, Yiting Liu, Zhiang Wang:

Recursive Learning-Based Virtual Buffering for Analytical Global Placement. 1-11 - Surya Jasper, Minh Luu, Evan Pan, Aakash Tyagi, Michael Quinn, Jiang Hu, David Kebo Houngninou:

BugGen: A Self-Correcting Multi-Agent LLM Pipeline for Realistic RTL Bug Synthesis. 1-9 - Dario Garcia-Gasulla, Gokcen Kestor, Emanuele Parisi, Miquel Albert'i-Binimelis, Cristian Gutierrez, Razine Moundir Ghorab, Orlando Montenegro, Bernat Homs, Miquel Moretó:

TuRTLe: A Unified Evaluation of LLMs for RTL Generation. 1-12 - Ting-Hsun Chi, Charles Mackin, Luyao Shi, Prashanth Vijayaraghavan, Hsinyu Tsai, Ehsan Degan:

RTLExplain: A Structured Approach to RTL Code Summarization and Question Answering for Medium-to-Large Designs Using LLMs. 1-7 - Jingjing Guo, Xuejie Ning, Suohang Yang, Jun Yang, Zhikuang Cai:

Post-Routing Path Statistical Delay Estimation Based on SGAT-GRU Prediction Framework. 1-7

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














