


default search action
NIPS 1993: Denver, CO, USA
- Jack D. Cowan, Gerald Tesauro, Joshua Alspector:

Advances in Neural Information Processing Systems 6, [7th NIPS Conference, Denver, Colorado, USA, 1993]. Morgan Kaufmann 1994, ISBN 1-55860-322-0
Learning Algorithms
- Geoffrey E. Hinton, Richard S. Zemel:

Autoencoders, Minimum Description Length and Helmholtz Free Energy. 3-10 - Richard S. Zemel, Geoffrey E. Hinton:

Developing Population Codes by Minimizing Description Length. 11-18 - Sreerupa Das, Michael Mozer:

A Unified Gradient-Descent/Clustering Architecture for Finite State Machine Induction. 19-26 - Eric Saund:

Unsupervised Learning of Mixtures of Multiple Causes in Binary Data. 27-34 - Asriel U. Levin, Todd K. Leen, John E. Moody:

Fast Pruning Using Principal Components. 35-42 - Christoph Bregler, Stephen M. Omohundro:

Surface Learning with Applications to Lipreading. 43-50 - Melanie Mitchell, John H. Holland, Stephanie Forrest:

When will a Genetic Algorithm Outperform Hill Climbing. 51-58 - Oded Maron, Andrew W. Moore:

Hoeffding Races: Accelerating Model Selection Search for Classification and Function Approximation. 59-66 - Bill Baird, Todd Troyer, Frank H. Eeckman:

Grammatical Inference by Attentional Control of Synchronization in an Oscillating Elman Network. 67-74 - Yoshua Bengio, Paolo Frasconi:

Credit Assignment through Time: Alternatives to Backpropagation. 75-82 - Javier R. Movellan:

A Local Algorithm to Learn Trajectories with Stochastic Neural Networks. 83-87 - Gregory M. Saunders, Peter J. Angeline, Jordan B. Pollack:

Structural and Behavioral Evolution of Recurrent Networks. 88-95 - Steven Gold, Eric Mjolsness, Anand Rangarajan:

Clustering with a Domain-Specific Distance Measure. 96-103 - Joachim M. Buhmann, Thomas Hofmann:

Central and Pairwise Data Clustering by Competitive Neural Networks. 104-111 - Virginia R. de Sa:

Learning Classification with Unlabeled Data. 112-119 - Zoubin Ghahramani, Michael I. Jordan:

Supervised learning from incomplete data via an EM approach. 120-127 - Volker Tresp, Subutai Ahmad, Ralph Neuneier:

Training Neural Networks with Deficient Data. 128-135 - Mats Österberg, Reiner Lenz:

Unsupervised Parallel Feature Extraction from First Principles. 136-143 - Terence D. Sanger:

Two Iterative Algorithms for Computing the Singular Value Decomposition from Input/Output Samples. 144-151 - Nanda Kambhatla, Todd K. Leen:

Fast Non-Linear Dimension Reduction. 152-159 - Stefan Schaal, Christopher G. Atkeson:

Assessing the Quality of Learned Local Models. 160-167 - Patrice Y. Simard:

Efficient Computation of Complex Distance Metrics Using Hierarchical Filtering. 168-175 - Dana Ron, Yoram Singer, Naftali Tishby:

The Power of Amnesia. 176-183 - Dietrich Wettschereck, Thomas G. Dietterich:

Locally Adaptive Nearest Neighbor Algorithms. 184-191 - Yong Liu:

Robust Parameter Estimation and Model Selection for Neural Network Regression. 192-199 - David H. Wolpert:

Bayesian Backpropagation Over I-O Functions Rather Than Weights. 200-207 - Hans Henrik Thodberg:

Bayesian Backprop in Action: Pruning, Committees, Error Bars and an Application to Spectroscopy. 208-215 - Thomas G. Dietterich, Ajay N. Jain, Richard H. Lathrop, Tomás Lozano-Pérez:

A Comparison of Dynamic Reposing and Tangent Distance for Drug Activity Prediction. 216-223 - Iris Ginzburg, David Horn:

Combined Neural Networks for Time Series Analysis. 224-231 - Patrice Y. Simard, Hans Peter Graf:

Backpropagation without Multiplication. 232-239 - Richard T. J. Bostock, Alan J. Harget:

A Comparative Study of a Modified Bumptree Neural Network with Radial Basis Function Networks and the Standard Multi Layer Perceptron. 240-246 - Hossein Lari-Najafi, Vladimir Cherkassky:

Adaptive knot Placement for Nonparametric Regression. 247-254 - Bernd Fritzke:

Supervised Learning with Growing Cell Structures. 255-262 - Babak Hassibi, David G. Stork, Gregory J. Wolff:

Optimal Brain Surgeon: Extensions and performance comparison. 263-270 - Ryotaro Kamimura:

Generation of Internal Representation by alpha. 271-278 - Laurens R. Leerink, Marwan A. Jabri:

Constructive Learning Using Internal Representation Conflicts. 279-284 - Joachim Utans:

Learning in Compositional Hierarchies: Inducing the Structure of Objects from Data. 285-292
Learning Theory, Generalization, and Complexity
- Sumio Watanabe:

An Optimization Method of Layered Neural Networks based on the Modified Information Criterion. 293-302 - Changfeng Wang, Santosh S. Venkatesh, J. Stephen Judd:

Optimal Stopping and Effective Machine Complexity in Learning. 303-310 - Wolfgang Maass:

Agnostic PAC-Learning of Functions on Analog Neural Nets. 311-318 - Hrushikesh Narhar Mhaskar, Charles A. Micchelli:

How to Choose an Activation Function. 319-326 - Corinna Cortes, Lawrence D. Jackel, Sara A. Solla, Vladimir Vapnik, John S. Denker:

Learning Curves: Asymptotic Values and Rate of Convergence. 327-334 - Charles Fefferman, Scott Markel:

Recovering a Feed-Forward Net From Its Output. 335-342 - Tal Grossman, Alan S. Lapedes:

Use of Bad Training Data for Better Predictions. 343-350 - Babak Hassibi, Ali H. Sayed, Thomas Kailath:

Optimality Criteria for LMS and Backpropagation. 351-358 - Bill G. Horne, Don R. Hush:

Bounds on the Complexity of Recurrent Neural Network Implementations of Finite State Machines. 359-366 - Chuanyi Ji:

Generalization Error and the Expected Network Complexity. 367-374 - Adam Kowalczyk:

Counting Function Theorem for Multi-Layer Networks. 375-382 - Olvi L. Mangasarian, Mikhail V. Solodov:

Backpropagation Convergence via Deterministic Nonmonotone Perturbed Minimization. 383-390 - Mark Plutowski, Shinichi Sakata, Halbert White:

Cross-Validation Estimates ISME. 391-398 - Holm Schwarze, John A. Hertz:

Discontinuous Generalization in Large Committee Machines. 399-406 - Jonathan L. Shapiro, Adam Prügel-Bennett:

Non-Linear Statistical Analysis and Self-Organizing Hebbian Networks. 407-414 - Grace Wahba, Yuedong Wang, Chong Gu, Ronald Klein, Barbara E. Klein:

Structured Machine Learning for Soft Classification with Smoothing Spline ANOVA and Stacked Tuning, Testing, and Evaluation. 415-422 - Sumio Watanabe:

Solvable Models of Artificial Neural Networks. 423-430
Theoretical Analysis: Dynamics and Statistics
- Herbert Wiklicky:

On the Non-Existence of a Universal Learning Algorithm for Recurrent Neural Networks. 431-436 - Scott Kirkpatrick, Géza Györgyi, Naftali Tishby, Lidror Troyansky:

The Statistical Mechanics of k-Satisfaction. 439-446 - Anthony C. C. Coolen, R. W. Penney, D. Sherrington:

Coupled Dynamics of Fast Neurons and Slow Interactions. 447-454 - Max H. Garzon, Fernanda Botelho:

Observability of Neural Network Behavior. 455-462 - Wulfram Gerstner, J. Leo van Hemmen:

How to Describe Neuronal Activity: Spikes, Rates, or Assemblies? 463-470 - Iris Ginzburg, Haim Sompolinsky:

Correlation Functions in a Large Stochastic Network. 471-476 - Todd K. Leen, Genevieve B. Orr:

Optimal Stochastic Search and Adaptive Momentum. 477-484 - Isaac Meilijson, Eytan Ruppin:

Optimal Signalling in Attractor Neural Networks. 485-492 - Xin Wang, Qingnan Li, Edward K. Blum:

Asynchronous Dynamics of Continuous Time Neural Networks. 493-500
Neuroscience
- John F. Kolen:

Fool's Gold: Extracting Finite State Machines from Recurrent Network Dynamics. 501-508 - Eve Marder:

Dynamic Modulation of Neurons and Networks. 511-518 - Öjvind Bernander, Christof Koch, Rodney J. Douglas:

Amplifying and Linearizing Apical Synaptic Inputs to Cortical Pyramidal Cells. 519-526 - Christiane Linster, David Marsan, Claudine Masson, Michel Kerszberg:

Odor Processing in the Bee: A Preliminary Study of the Role of Central Input to the Antennal Lobe. 527-534 - Mitchell Gil Maltenfort, Robert E. Druzinsky, Charles J. Heckman, W. Zev Rymer:

Lower Boundaries of Motoneuron Desynchronization via Renshaw Interneurons. 535-542 - Klaus Obermayer, Lynne Kiorpes, Gary G. Blasdel:

Development of Orientation and Ocular Dominance Columns in Infant Macaques. 543-550 - Daniel L. Ruderman, William Bialek:

Statistics of Natural Images: Scaling in the Woods. 551-558 - Eric Boussard, Jean-François Vibert:

Dopaminergic Neuromodulation Brings a Dynamical Plasticity to the Retina. 559-565 - Kenji Doya, Allen I. Selverston, Peter F. Rowat:

A Hodgkin-Huxley Type Neuron Model That Learns Slow Non-Spike Oscillations. 566-573 - Audrey L. Guzik, Robert C. Eaton:

Directional Hearing by the Mauthner System. 574-581 - Timothy K. Horiuchi, Brooks Bishofberger, Christof Koch:

An Analog VLSI Saccadic Eye Movement System. 582-589 - Michael S. Lewicki:

Bayesian Modeling and Classification of Neural Signals. 590-597 - P. Read Montague, Peter Dayan, Terrence J. Sejnowski:

Foraging in an Uncertain Environment Using Predictive Hebbian Learning. 598-605 - Daniel J. Rosen, David E. Rumelhart, Eric I. Knudsen:

A Connectionist Model of the Owl's Sound Localization System. 606-613 - Terence D. Sanger:

Optimal Unsupervised Motor Learning Predicts the Internal Representation of Barn Owl Head Movements. 614-621 - Micah S. Siegel:

An Analog VLSI Model of Central Pattern Generation in the Leech. 622-628
Control, Navigation, and Planning
- Martin Stemmler, Marius Usher, Christof Koch, Zeev Olami:

Synchronization, Oscillations and 1/f Noise in Networks of Spiking Neurons. 629-636 - Kenneth M. Buckland, Peter D. Lawrence:

Transition Point Dynamic Programming. 639-646 - Gary William Flake, Guo-Zheng Sun, Yee-Chun Lee, Hsing-Hen Chen:

Exploiting Chaos to Control the Future. 647-654 - Satinder Singh, Andrew G. Barto, Roderic A. Grupen, Christopher I. Connolly:

Robust Reinforcement Learning in Motion Planning. 655-662 - Christopher G. Atkeson:

Using Local Trajectory Optimizers to Speed Up Global Optimization in Dynamic Programming. 663-670 - Justin A. Boyan, Michael L. Littman:

Packet Routing in Dynamically Changing Networks: A Reinforcement Learning Approach. 671-678 - David A. Cohn:

Neural Network Exploration Using Optimal Experiment Design. 679-686 - Andrew G. Barto, Michael O. Duff:

Monte Carlo Matrix Inversion and Reinforcement Learning. 687-694 - Vijaykumar Gullapalli, Andrew G. Barto:

Convergence of Indirect Adaptive Asynchronous Value Iteration Algorithms. 695-702 - Tommi S. Jaakkola, Michael I. Jordan, Satinder Singh:

Convergence of Stochastic Iterative Dynamic Programming Algorithms. 703-710 - Andrew W. Moore:

The Parti-Game Algorithm for Variable Resolution Reinforcement Learning in Multidimensional State-Spaces. 711-718 - Timothy W. Cacciatore, Steven J. Nowlan:

Mixtures of Controllers for Jump Linear and Non-Linear Plants. 719-726
Applications
- Yasuhiro Wada, Yasuharu Koike, Eric Vatikiotis-Bateson, Mitsuo Kawato:

A Computational Model for Cursive Handwriting Based on the Minimization Principle. 727-734 - Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, Roopak Shah:

Signature Verification Using a Siamese Time Delay Neural Network. 737-744 - Ralph Wolf, John C. Platt:

Postal Address Block Location Using a Convolutional Locator Network. 745-752 - Shumeet Baluja, Dean Pomerleau:

Non-Intrusive Gaze Tracking Using Artificial Neural Networks. 753-760 - Pierre Baldi, Søren Brunak, Yves Chauvin, Jacob Engelbrecht, Anders Krogh:

Hidden Markov Models for Human Genes. 761-768 - Joachim M. Buhmann, Martin Lades, Frank H. Eeckman:

Illumination-Invariant Face Recognition with a Contrast Sensitive Silicon Retina. 769-776 - Nicholas S. Flann:

Recognition-Based Segmentation of On-Line Cursive Handwriting. 777-784 - Hans Peter Graf, Eric Cosatto:

Address Block Location with a Neural Net System. 785-792 - Nachimuthu Karunanithi:

Identifying Fault-Prone Software Modules Using Feed-Forward Networks: A Case Study. 793-800 - Didier Keymeulen, Martine de Gerlache:

Comparison Training for a Rescheduling Problem in Neural Networks. 801-808 - Alan S. Lapedes, Evan W. Steeg, Robert M. Farber:

Neural Network Definition of Highly Predictable Protein Secondary Structure Classes. 809-816 - Nicol N. Schraudolph, Peter Dayan, Terrence J. Sejnowski:

Temporal Difference Learning of Position Evaluation in the Game of Go. 817-824 - Padhraic Smyth:

Probabilistic Anomaly Detection in Dynamic Systems. 825-832
Implementations
- Yoram Singer, Naftali Tishby:

Decoding Cursive Scripts. 833-840 - Michael A. Glover, W. Thomas Miller III:

A Massively-Parallel {SIMD} Processor for Neural Network and Machine Vision Applications. 843-849 - Steven S. Watkins, Paul M. Chau, Raoul Tawel, Bjorn Lambrigtsen, Mark Plutowski:

A Hybrid Radial Basis Function Neurocomputer and Its Applications. 850-857 - Gert Cauwenberghs:

A Learning Analog Neural Network Chip with Continuous-Time Recurrent Dynamics. 858-865 - Andreas G. Andreou, Thomas G. Edwards:

VLSI Phase Locking Architectures for Feature Linking in Multiple Target Tracking Systems. 866-873 - Richard Coggins, Marwan A. Jabri:

WATTLE: A Trainable Gain Analogue VLSI Neural Network. 874-881 - Ibrahim M. Elfadel, John L. Wyatt Jr.:

The Softmax Nonlinearity: Derivation Using Statistical Mechanics and Useful Properties as a Multiterminal Analog Circuit Element. 882-887 - Urs A. Müller, Michael Kocheisen, Anton Gunzinger:

High Performance Neural Net Simulation on a Multiprocessor System with Intelligent Communication. 888-895 - Michael Murray, Ming-Tak Leung, Kan Boonyanit, Kong Kritayakirana, James B. Burr, Gregory J. Wolff, Tokahiro Watanabe, Edward L. Schwartz, David G. Stork, Allen M. Peterson:

Digital Boltzmann VLSI for Constraint Satisfaction and Learning. 896-903 - Ernst Niebur, Dean Brettle:

Efficient Simulation of Biological Neural Networks on Massively Parallel Supercomputers with Hypercube Architecture. 904-910 - Arlindo L. Oliveira, Alberto L. Sangiovanni-Vincentelli:

Learning Complex Boolean Functions: Algorithms and Applications. 911-918 - Tadashi Shibata, Koji Kotani, Takeo Yamashita, Hiroshi Ishii, Hideo Kosaka, Tadahiro Ohmi:

Implementing Intelligence on Silicon Using Neuron-Like Functional MOS Transistors. 919-926
Visual Processing
- Lloyd Watts:

Event-Driven Simulation of Networks of Spiking Neurons. 927-934 - Yoshua Bengio, Yann LeCun, Donnie Henderson:

Globally Trained Handwritten Word Recognizer Using Spatial Representation, Convolutional Neural Networks, and Hidden Markov Models. 937-944 - Trevor Darrell, Alex Pentland:

Classifying Hand Gestures with a View-Based Distributed Representation. 945-952 - Kô Sakai, Leif H. Finkel:

A Network Mechanism for the Determination of Shape-from-Texture. 953-960 - Subutai Ahmad:

Feature Densities Are Required for Computing Feature Correspondences. 961-968 - G. T. Buracas, Thomas D. Albright:

The Role of MT Neuron Receptive Field Surrounds in Computing Object Shape from Velocity Fields. 969-976 - Kostas I. Diamantaras, Davi Geiger:

Resolving Motion Ambiguities. 977-984 - Chien-Ping Lu, Eric Mjolsness:

Two-Dimensional Object Localization by Coarse-to-Fine Correlation Matching. 985-992 - Paul Sajda, Leif H. Finkel:

Dual Mechanisms for Neural Binding and Segmentation. 993-1000
Speech and Signal Processing
- Alan L. Yuille, Stelios M. Smirnakis, Lei Xu:

Bayesian Self-Organization. 1001-1008 - José Carlos Príncipe, Hui-Huang Hsu, Jyh-Ming Kuo:

Analysis of Short Term Memories for Neural Networks. 1011-1018 - Eric I. Chang, Richard Lippmann:

Figure of Merit Training for Detection and Spotting. 1019-1026 - Gregory J. Wolff, K. Venkatesh Prasad, David G. Stork, Marcus E. Hennecke:

Lipreading by Neural Networks: Visual Preprocessing, Learning, and Sensory Integration. 1027-1034 - Kevin R. Farrell, Richard J. Mammone:

Speaker Recognition Using Neural Tree Networks. 1035-1042 - Makoto Hirayama, Eric Vatikiotis-Bateson, Mitsuo Kawato:

Inverse Dynamics of Speech Motor Control. 1043-1050 - Steve Renals, Mike Hochberg, Anthony J. Robinson:

Learning Temporal Dependencies in Connectionist Speech Recognition. 1051-1058
Cognitive Science
- Ying Zhao, Richard M. Schwartz, John Makhoul, George Zavaliagkos:

Segmental Neural Net Optimization for Continuous Speech Recognition. 1059-1066 - Richard O. Duda:

Connectionist Models for Auditory Scene Analysis. 1069-1076 - Reza Shadmehr, Ferdinando A. Mussa-Ivaldi:

Computational Elements of the Adaptive Controller of the Human Arm. 1077-1084 - Catherine J. Stevens, Janet Wiles:

Tonal Music as a Componential Code: Learning Temporal Relationships between and within Pitch and Timing Components. 1085-1092 - Reinhard Blasig:

GDS: Gradient Descent Generation of Symbolic Classification Rules. 1093-1100 - Thea B. Ghiselli-Crippa, Paul W. Munro:

Emergence of Global Structure from Local Associations. 1101-1108 - Tony Plate:

Estimating Analogical Similarity by Dot-Products of Holographic Reduced Representations. 1109-1116 - Thomas R. Shultz, Jeffrey L. Elman:

Analyzing Cross-Connected Networks. 1117-1124
Addenda to NIPS 5
- Alessandro Sperduti:

Encoding Labeled Graphs by Labeling RAAM. 1125-1132 - Mark Plutowski, Garrison W. Cottrell, Halbert White:

Learning Mackey-Glass from 25 Examples, Plus or Minus 2. 1135-1142 - Yehuda Salu:

Classification of Multi-Spectral Pixels by the Binary Diamond Neural Network. 1143-1150
Workshops
- Ah Chung Tsoi, D. S. C. So, Alex A. Sergejew:

Classification of Electroencephalogram Using Artificial Neural Networks. 1151-1158 - Vwani P. Roychowdhury, Kai-Yeung Siu:

Complexity Issues in Neural Computation and Learning. 1161-1162 - Andreas S. Weigend:

Connectionism for Music and Audition. 1163-1164 - Thomas G. Dietterich, Dietrich Wettschereck, Christopher G. Atkeson, Andrew W. Moore:

Memory-Based Methods for Regression and Classification. 1165-1166 - Ernst Niebur, Bruno A. Olshausen:

Neurobiology, Psychophysics, and Computational Models of Visual Attention. 1167-1168 - David A. Cohn:

Robot Learning: Exploration and Continuous Domains. 1169-1170 - Max H. Garzon, Fernanda Botelho:

Stability and Observability. 1171-1172 - Mark A. Gluck:

What Does the Hippocampus Compute?: A Precis of the 1993 NIPS Workshop. 1173-1175 - Robert M. French:

Catastrophic Interference in Connectionist Networks: Can It Be Predicted, Can It Be Prevented? 1176-1177 - Joachim Diederich, Ah Chung Tsoi:

Connectionist Modeling and Parallel Architectures. 1178-1179 - Thomas H. Hildebrandt:

Functional Models of Selective Attention and Context Dependency. 1180-1181 - Hayit Greenspan:

Learning in Computer Vision and Image Understanding. 1182-1183 - Arun K. Jagota:

Neural Network Models for Optimization Problems. 1184-1185 - Josef P. Rauschecker, Terrence J. Sejnowski:

Processing of Visual and Auditory Space and Its Modification by Experience. 1186-1187 - Michael P. Perrone:

Putting It All Together: Methods for Combining Neural Networks. 1188-1189

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














