


Остановите войну!
for scientists:


default search action
Journal of Cheminformatics, Volume 15
Volume 15, Number 1, December 2023
- Felix Bänsch
, Jonas Schaub
, Betül Sevindik
, Samuel Behr
, Julian Zander
, Christoph Steinbeck
, Achim Zielesny
:
MORTAR: a rich client application for in silico molecule fragmentation. 1 - Henry Heberle, Linlin Zhao, Sebastian Schmidt
, Thomas Wolf, Julian Heinrich:
XSMILES: interactive visualization for molecules, SMILES and XAI attribution scores. 2 - Olivier J. M. Béquignon
, Brandon J. Bongers
, Willem Jespers
, Adriaan P. IJzerman, B. van der Water, Gerard J. P. van Westen
:
Papyrus: a large-scale curated dataset aimed at bioactivity predictions. 3 - Shunsuke Tamura, Tomoyuki Miyao, Jürgen Bajorath:
Large-scale prediction of activity cliffs using machine and deep learning methods of increasing complexity. 4 - Dane R. Letourneau
, Dennis D. August, Dietrich A. Volmer:
New algorithms demonstrate untargeted detection of chemically meaningful changing units and formula assignment for HRMS data of polymeric mixtures in the open-source constellation web application. 7 - Jonghwan Choi, Sangmin Seo, Sanghyun Park:
COMA: efficient structure-constrained molecular generation using contractive and margin losses. 8 - David H. Kenney, Randy C. Paffenroth, Michael T. Timko, Andrew R. Teixeira:
Dimensionally reduced machine learning model for predicting single component octanol-water partition coefficients. 9 - Salomé Rieder
, Marina P. Oliveira, Sereina Riniker, Philippe H. Hünenberger:
Development of an open-source software for isomer enumeration. 10 - Vladimir Kondratyev, Marian Dryzhakov, Timur Gimadiev, Dmitriy Slutskiy:
Generative model based on junction tree variational autoencoder for HOMO value prediction and molecular optimization. 11 - Mingchen Li, Liqi Kang, Yi Xiong, Yu Guang Wang, Guisheng Fan, Pan Tan
, Liang Hong:
SESNet: sequence-structure feature-integrated deep learning method for data-efficient protein engineering. 12 - Chu-I Yang, Yi-Pei Li
:
Explainable uncertainty quantifications for deep learning-based molecular property prediction. 13 - Egon L. Willighagen
:
Two years of explicit CiTO annotations. 14 - Rajarshi Guha, Barbara Zdrazil
, Nina Jeliazkova, Karina Martínez-Mayorga:
A look back at a pilot of the citation typing ontology. 15 - Heval Atas Güvenilir, Tunca Dogan
:
How to approach machine learning-based prediction of drug/compound-target interactions. 16 - Gao-Peng Ren, Yi-Jian Yin, Ke-Jun Wu
, Yuchen He:
Force field-inspired molecular representation learning for property prediction. 17 - Manuel S. Sellner, Amr H. Mahmoud, Markus A. Lill
:
Efficient virtual high-content screening using a distance-aware transformer model. 18 - Samuel Tovey, Fabian Zills
, Francisco Torres-Herrador, Christoph Lohrmann, Marco Brückner, Christian Holm:
MDSuite: comprehensive post-processing tool for particle simulations. 19 - Paulo Neves
, Kelly McClure, Jonas Verhoeven, Natalia Dyubankova, Ramil I. Nugmanov, Andrey Gedich, Sairam Menon, Zhicai Shi, Jörg K. Wegner
:
Global reactivity models are impactful in industrial synthesis applications. 20 - Phyo Phyo Kyaw Zin:
Paths to cheminformatics: Q&A with Phyo Phyo Kyaw Zin. 21 - Linde Schoenmaker
, Olivier J. M. Béquignon
, Willem Jespers
, Gerard J. P. van Westen
:
UnCorrupt SMILES: a novel approach to de novo design. 22 - Felix Bänsch
, Christoph Steinbeck
, Achim Zielesny:
Notes on molecular fragmentation and parameter settings for a dissipative particle dynamics study of a C10E4/water mixture with lamellar bilayer formation. 23 - Xuhan Liu, Kai Ye, Herman W. T. van Vlijmen, Adriaan P. IJzerman, Gerard J. P. van Westen
:
DrugEx v3: scaffold-constrained drug design with graph transformer-based reinforcement learning. 24 - Andrius Merkys
, Antanas Vaitkus
, Algirdas Grybauskas
, Aleksandras Konovalovas, Miguel Quirós
, Saulius Grazulis
:
Graph isomorphism-based algorithm for cross-checking chemical and crystallographic descriptions. 25 - Umit V. Ucak, Islambek Ashyrmamatov
, Juyong Lee:
Reconstruction of lossless molecular representations from fingerprints. 26 - Yuanbing Song, Jinghua Chen, Wenju Wang
, Gang Chen, Zhichong Ma:
Double-head transformer neural network for molecular property prediction. 27 - Jim Boelrijk
, Denice van Herwerden
, Bernd Ensing
, Patrick Forré
, Saer Samanipour
:
Predicting RP-LC retention indices of structurally unknown chemicals from mass spectrometry data. 28 - Chengyou Liu, Yan Sun, Rebecca L. Davis, Silvia T. Cardona, Pingzhao Hu:
ABT-MPNN: an atom-bond transformer-based message-passing neural network for molecular property prediction. 29 - Paulo Neves, Kelly McClure, Jonas Verhoeven, Natalia Dyubankova, Ramil I. Nugmanov, Andrey Gedich, Sairam Menon, Zhicai Shi, Jörg K. Wegner:
Correction: Global reactivity models are impactful in industrial synthesis applications. 30 - Ammar Ammar
, Rachel Cavill
, Chris T. A. Evelo, Egon L. Willighagen
:
PSnpBind-ML: predicting the effect of binding site mutations on protein-ligand binding affinity. 31 - Mahnoor Zulfiqar, Luiz M. R. Gadelha Jr.
, Christoph Steinbeck
, Maria Sorokina, Kristian Peters:
MAW: the reproducible Metabolome Annotation Workflow for untargeted tandem mass spectrometry. 32 - Mengdie Xu, Xinwei Zhao, Jingyu Wang, Wei Feng, Naifeng Wen, Chunyu Wang, Junjie Wang, Yun Liu, Lingling Zhao:
DFFNDDS: prediction of synergistic drug combinations with dual feature fusion networks. 33 - Aileen Bahl, Celine Ibrahim, Kristina Plate
, Andrea Haase, Jörn Dengjel, Penny Nymark
, Verónica I. Dumit
:
PROTEOMAS: a workflow enabling harmonized proteomic meta-analysis and proteomic signature mapping. 34 - Chaofeng Lou, Hongbin Yang, Hua Deng, Mengting Huang, Weihua Li, Guixia Liu, Philip W. Lee, Yun Tang:
Chemical rules for optimization of chemical mutagenicity via matched molecular pairs analysis and machine learning methods. 35 - Jonathan Lam, Richard J. Lewis
, Jonathan M. Goodman
:
Interpreting vibrational circular dichroism spectra: the Cai•factor for absolute configuration with confidence. 36 - Roman Joeres
, Daniel Bojar, Olga V. Kalinina:
GlyLES: Grammar-based Parsing of Glycans from IUPAC-condensed to SMILES. 37 - Yangyang Chen
, Zixu Wang, Lei Wang, Jianmin Wang
, Pengyong Li, Dongsheng Cao, Xiangxiang Zeng, Xiucai Ye, Tetsuya Sakurai:
Deep generative model for drug design from protein target sequence. 38 - Bryan Queme
, John C. Braisted
, Patricia Dranchak
, James Inglese
:
qHTSWaterfall: 3-dimensional visualization software for quantitative high-throughput screening (qHTS) data. 39 - Sascha Jung, Helge Vatheuer, Paul Czodrowski:
VSFlow: an open-source ligand-based virtual screening tool. 40 - Marta Pasquini, Marco Stenta:
LinChemIn: SynGraph - a data model and a toolkit to analyze and compare synthetic routes. 41 - Xiaohong Liu, Wei Zhang, Xiaochu Tong, Feisheng Zhong, Zhaojun Li, Zhaoping Xiong, Jiacheng Xiong, Xiaolong Wu, Zunyun Fu, Xiaoqin Tan, Zhiguo Liu, Sulin Zhang, Hualiang Jiang, Xutong Li, Mingyue Zheng:
MolFilterGAN: a progressively augmented generative adversarial network for triaging AI-designed molecules. 42 - Kexin Chen, Guangyong Chen, Junyou Li, Yuansheng Huang, Ercheng Wang, Tingjun Hou, Pheng-Ann Heng:
MetaRF: attention-based random forest for reaction yield prediction with a few trails. 43 - Kostas Blekos, Kostas Chairetakis, Iseult Lynch
, Effie Marcoulaki:
Principles and requirements for nanomaterial representations to facilitate machine processing and cooperation with nanoinformatics tools. 44 - Shumpei Nemoto, Tadahaya Mizuno, Hiroyuki Kusuhara:
Investigation of chemical structure recognition by encoder-decoder models in learning progress. 45 - Eva Nittinger, Alex Clark, Anna Gaulton
, Barbara Zdrazil
:
Biomedical data analyses facilitated by open cheminformatics workflows. 46 - Markus Dablander, Thierry Hanser, Renaud Lambiotte, Garrett M. Morris:
Exploring QSAR models for activity-cliff prediction. 47 - Su-Qing Yang, Liu-Xia Zhang, You-Jin Ge, Jin-Wei Zhang, Jian-Xin Hu, Cheng-Ying Shen, Ai-Ping Lu, Tingjun Hou, Dong-Sheng Cao:
In-silico target prediction by ensemble chemogenomic model based on multi-scale information of chemical structures and protein sequences. 48 - Thomas-Martin Dutschmann, Lennart Kinzel, Antonius ter Laak, Knut Baumann:
Large-scale evaluation of k-fold cross-validation ensembles for uncertainty estimation. 49 - Nalini Schaduangrat, Nuttapat Anuwongcharoen, Phasit Charoenkwan, Watshara Shoombuatong:
DeepAR: a novel deep learning-based hybrid framework for the interpretable prediction of androgen receptor antagonists. 50 - Doris Schicker
, Satnam Singh, Jessica Freiherr, Andreas Grasskamp:
OWSum: algorithmic odor prediction and insight into structure-odor relationships. 51 - Eleftheria Kontou, Axel Walter, Oliver Alka, Julianus Pfeuffer, Timo Sachsenberg, Omkar S. Mohite
, Matin Nuhamunada, Oliver Kohlbacher, Tilmann Weber
:
UmetaFlow: an untargeted metabolomics workflow for high-throughput data processing and analysis. 52 - Katharina Dost
, Zac Pullar-Strecker, Liam Brydon, Kunyang Zhang, Jasmin Hafner, Patricia J. Riddle, Jörg S. Wicker
:
Combatting over-specialization bias in growing chemical databases. 53 - Rajarshi Guha, Darrell Velegol:
Harnessing Shannon entropy-based descriptors in machine learning models to enhance the prediction accuracy of molecular properties. 54 - Umit V. Ucak, Islambek Ashyrmamatov
, Juyong Lee:
Improving the quality of chemical language model outcomes with atom-in-SMILES tokenization. 55 - Srijit Seal
, Hongbin Yang, Maria-Anna Trapotsi, Satvik Singh, Jordi Carreras Puigvert, Ola Spjuth, Andreas Bender:
Merging bioactivity predictions from cell morphology and chemical fingerprint models using similarity to training data. 56 - Zimei Zhang, Gang Wang, Rui Li, Lin Ni, Runze Zhang, Kaiyang Cheng, Qun Ren, Xiangtai Kong, Shengkun Ni, Xiaochu Tong, Li Luo, Dingyan Wang, Xiaojie Lu, Mingyue Zheng, Xutong Li:
Tora3D: an autoregressive torsion angle prediction model for molecular 3D conformation generation. 57 - Junren Li
, Lei Fang, Jian-Guang Lou:
RetroRanker: leveraging reaction changes to improve retrosynthesis prediction through re-ranking. 58 - Andrew E. Blanchard, Debsindhu Bhowmik, Zachary R. Fox, John Gounley, Jens Glaser, Belinda S. Akpa
, Stephan Irle:
Adaptive language model training for molecular design. 59 - Filippo Lunghini, Anna Fava, Vincenzo Pisapia, Francesco Sacco, Daniela Iaconis, Andrea Rosario Beccari:
ProfhEX: AI-based platform for small molecules liability profiling. 60 - Jakub Galgonek, Jirí Vondrásek:
A comparison of approaches to accessing existing biological and chemical relational databases via SPARQL. 61 - Charles Tapley Hoyt
, Barbara Zdrazil
, Rajarshi Guha
, Nina Jeliazkova
, Karina Martínez-Mayorga
, Eva Nittinger
:
Improving reproducibility and reusability in the Journal of Cheminformatics. 62 - Xujun Zhang, Chao Shen, Dejun Jiang, Jintu Zhang, Qing Ye, Lei Xu, Tingjun Hou, Peichen Pan, Yu Kang:
TB-IECS: an accurate machine learning-based scoring function for virtual screening. 63 - Michael A. Cunningham, Danielle Pins, Zoltán Dezso, Maricel Torrent, Aparna Vasanthakumar, Abhishek Pandey:
PINNED: identifying characteristics of druggable human proteins using an interpretable neural network. 64 - Jun-Xuan Jin, Gao-Peng Ren, Jianjian Hu, Yingzhe Liu, Yunhu Gao, Ke-Jun Wu, Yuchen He:
Force field-inspired transformer network assisted crystal density prediction for energetic materials. 65 - Parker Ladd Bremer, Gert Wohlgemuth, Oliver Fiehn:
The BinDiscover database: a biology-focused meta-analysis tool for 156,000 GC-TOF MS metabolome samples. 66 - Kenza Amara, Raquel Rodríguez-Pérez, José Jiménez-Luna:
Explaining compound activity predictions with a substructure-aware loss for graph neural networks. 67 - Umit V. Ucak, Islambek Ashyrmamatov, Juyong Lee:
Correction: Reconstruction of lossless molecular representations from fingerprints. 68 - Pawan Panwar
, Quanpeng Yang
, Ashlie Martini
:
PyL3dMD: Python LAMMPS 3D molecular descriptors package. 69 - Umit V. Ucak, Islambek Ashyrmamatov, Juyong Lee:
Correction: Improving the quality of chemical language model outcomes with atom-in-SMILES tokenization. 70 - Hyun Woo Kim, Chen Zhang, Raphael Reher, Mingxun Wang, Kelsey L. Alexander, Louis-Félix Nothias, Yoo Kyong Han, Hyeji Shin, Ki Yong Lee, Kyu Hyeong Lee, Myeong Ji Kim, Pieter C. Dorrestein, William H. Gerwick, Garrison W. Cottrell:
DeepSAT: Learning Molecular Structures from Nuclear Magnetic Resonance Data. 71 - Baiqing Li
, Shimin Su, Chan Zhu, Jie Lin, Xinyue Hu, Lebin Su, Zhunzhun Yu, Kuangbiao Liao, Hongming Chen:
A deep learning framework for accurate reaction prediction and its application on high-throughput experimentation data. 72 - Davide Boldini, Francesca Grisoni, Daniel Kuhn, Lukas Friedrich, Stephan A. Sieber:
Practical guidelines for the use of gradient boosting for molecular property prediction. 73 - Marina Gorostiola González, Remco L. van den Broek, Thomas G. M. Braun, Magdalini Chatzopoulou, Willem Jespers, Adriaan P. IJzerman, Laura H. Heitman, Gerard J. P. van Westen:
3DDPDs: describing protein dynamics for proteochemometric bioactivity prediction. A case for (mutant) G protein-coupled receptors. 74 - Yumeng Zhang, Janosch Menke, Jiazhen He, Eva Nittinger, Christian Tyrchan, Oliver Koch, Hongtao Zhao
:
Similarity-based pairing improves efficiency of siamese neural networks for regression tasks and uncertainty quantification. 75 - Yitian Wang, Jiacheng Xiong, Fu Xiao, Wei Zhang, Kaiyang Cheng, Jingxin Rao, Buying Niu, Xiaochu Tong, Ning Qu, Runze Zhang, Dingyan Wang, Kaixian Chen, Xutong Li, Mingyue Zheng:
LogD7.4 prediction enhanced by transferring knowledge from chromatographic retention time, microscopic pKa and logP. 76 - Bongsung Bae, Haelee Bae, Hojung Nam:
LOGICS: Learning optimal generative distribution for designing de novo chemical structures. 77 - Rita Lasfar, Gergely Tóth:
Patch seriation to visualize data and model parameters. 78 - Rodrigo Ochoa, J. B. Brown, Thomas Fox:
pyPept: a python library to generate atomistic 2D and 3D representations of peptides. 79 - Gerard Baquer, Lluc Sementé, Pere Ràfols, Lucía Martín-Saiz, Christoph Bookmeyer, José A. Fernández, Xavier Correig, María García-Altares:
rMSIfragment: improving MALDI-MSI lipidomics through automated in-source fragment annotation. 80 - Agnieszka Wojtuch, Tomasz Danel, Sabina Podlewska, Lukasz Maziarka:
Extended study on atomic featurization in graph neural networks for molecular property prediction. 81 - Karla Gonzalez-Ponce, Carolina Horta Andrade, Fiona Hunter, Johannes Kirchmair
, Karina Martínez-Mayorga, José L. Medina-Franco, Matthias Rarey, Alexander Tropsha, Alexandre Varnek, Barbara Zdrazil
:
School of cheminformatics in Latin America. 82 - Maud Parrot, Hamza Tajmouati, Vinicius Barros Ribeiro da Silva, Brian Ross Atwood, Robin Fourcade, Yann Gaston-Mathé, Nicolas Do Huu, Quentin Perron:
Integrating synthetic accessibility with AI-based generative drug design. 83 - Thomas E. Hadfield, Jack Scantlebury, Charlotte M. Deane:
Exploring the ability of machine learning-based virtual screening models to identify the functional groups responsible for binding. 84 - Christopher Secker, Konstantin Fackeldey, Marcus Weber, Sourav Ray, Christoph Gorgulla, Christof Schütte:
Novel multi-objective affinity approach allows to identify pH-specific μ-opioid receptor agonists. 85 - Prasannavenkatesh Durai
, Sue Jung Lee, Jae Wook Lee, Cheol-Ho Pan, Keunwan Park:
Iterative machine learning-based chemical similarity search to identify novel chemical inhibitors. 86 - Ximin Hu, Derek Mar, Nozomi Suzuki, Bowei Zhang, Katherine T. Peter, David A. C. Beck, Edward P. Kolodziej:
Mass-Suite: a novel open-source python package for high-resolution mass spectrometry data analysis. 87 - Lai Wei, Nihang Fu, Yuqi Song, Qian Wang, Jianjun Hu:
Probabilistic generative transformer language models for generative design of molecules. 88 - Alan Kerstjens, Hans De Winter
:
A molecule perturbation software library and its application to study the effects of molecular design constraints. 89 - Jackson J. Alcázar, Alessandra C. Misad Saide, Paola R. Campodónico:
Reliable and accurate prediction of basic pKa values in nitrogen compounds: the pKa shift in supramolecular systems as a case study. 90 - Chao Hu, Song Li, Chenxing Yang, Jun Chen, Yi Xiong, Guisheng Fan, Hao Liu, Liang Hong:
ScaffoldGVAE: scaffold generation and hopping of drug molecules via a variational autoencoder based on multi-view graph neural networks. 91 - Nathaniel Charest:
Paths to cheminformatics: Q&A with Nathaniel Charest. 92 - Ann M. Richard:
Paths to cheminformatics: Q&A with Ann M. Richard. 93 - Mehrdad Jalali, A. D. Dinga Wonanke, Christof Wöll:
MOFGalaxyNet: a social network analysis for predicting guest accessibility in metal-organic frameworks utilizing graph convolutional networks. 94 - Jorge Medina, Andrew D. White:
Bloom filters for molecules. 95 - Alberto Gil Pichardo, Andrés Sánchez-Ruiz, Gonzalo Colmenarejo
:
Analysis of metabolites in human gut: illuminating the design of gut-targeted drugs. 96 - Nan Song, Ruihan Dong
, Yuqian Pu, Ercheng Wang, Junhai Xu, Fei Guo:
Pmf-cpi: assessing drug selectivity with a pretrained multi-functional model for compound-protein interactions. 97 - Venkata Chandrasekhar, Nisha Sharma, Jonas Schaub, Christoph Steinbeck, Kohulan Rajan
:
Cheminformatics Microservice: unifying access to open cheminformatics toolkits. 98 - Arash Tayyebi, Ali S. Alshami, Zeinab Rabiei, Xue Yu, Nadhem Ismail, Musabbir Jahan Talukder, Jason Power:
Prediction of organic compound aqueous solubility using machine learning: a comparison study of descriptor-based and fingerprints-based models. 99 - Daniela Gaytán-Hernández, Ana L. Chávez-Hernández, Edgar López-López, Jazmín Miranda-Salas, Fernanda I. Saldívar-González, José L. Medina-Franco:
Art driven by visual representations of chemical space. 100 - Zachary Fralish, Ashley Chen, Paul Skaluba, Daniel Reker:
DeepDelta: predicting ADMET improvements of molecular derivatives with deep learning. 101 - Guzel Minibaeva, Aleksandra Ivanova, Pavel G. Polishchuk:
EasyDock: customizable and scalable docking tool. 102 - Shihang Wang, Lin Wang, Fenglei Li, Fang Bai:
DeepSA: a deep-learning driven predictor of compound synthesis accessibility. 103 - Sean Li, Björn Bohman, Gavin R. Flematti, Dylan Jayatilaka:
Determining the parent and associated fragment formulae in mass spectrometry via the parent subformula graph. 104 - Tianzhixi Yin, Gihan Panapitiya, Elizabeth D. Coda, Emily Saldanha:
Evaluating uncertainty-based active learning for accelerating the generalization of molecular property prediction. 105 - Gil Alon
, Yuval Ben-Haim, Inbal Tuvi-Arad
:
Continuous symmetry and chirality measures: approximate algorithms for large molecular structures. 106 - Daniel Domingo-Fernández, Yojana Gadiya, Sarah Mubeen, David Healey, Bryan H. Norman, Viswa Teja S. S. Colluru:
Exploring the known chemical space of the plant kingdom: insights into taxonomic patterns, knowledge gaps, and bioactive regions. 107 - Mehrdad Jalali, A. D. Dinga Wonanke, Christof Wöll:
Correction: MOFGalaxyNet: a social network analysis for predicting guest accessibility in metal-organic frameworks utilizing graph convolutional networks. 108

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.