default search action
Leman Akoglu
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [c102]Xueying Ding, Yue Zhao, Leman Akoglu:
Fast Unsupervised Deep Outlier Model Selection with Hypernetworks. KDD 2024: 585-596 - [c101]Leman Akoglu, Nitesh V. Chawla, Josep Domingo-Ferrer, Eren Kurshan, Senthil Kumar, Vidyut M. Naware, José A. Rodríguez-Serrano, Isha Chaturvedi, Saurabh Nagrecha, Mahashweta Das, Tanveer A. Faruquie:
Machine Learning in Finance. KDD 2024: 6703 - [c100]Meng-Chieh Lee, Lingxiao Zhao, Leman Akoglu:
Descriptive Kernel Convolution Network with Improved Random Walk Kernel. WWW 2024: 457-468 - [e3]Luz Angelica Caudillo-Mata, Silvio Lattanzi, Andrés Muñoz Medina, Leman Akoglu, Aristides Gionis, Sergei Vassilvitskii:
Proceedings of the 17th ACM International Conference on Web Search and Data Mining, WSDM 2024, Merida, Mexico, March 4-8, 2024. ACM 2024 [contents] - [i61]Lingxiao Zhao, Xueying Ding, Leman Akoglu:
Pard: Permutation-Invariant Autoregressive Diffusion for Graph Generation. CoRR abs/2402.03687 (2024) - [i60]Lingxiao Zhao, Xueying Ding, Lijun Yu, Leman Akoglu:
Improving and Unifying Discrete&Continuous-time Discrete Denoising Diffusion. CoRR abs/2402.03701 (2024) - [i59]Meng-Chieh Lee, Lingxiao Zhao, Leman Akoglu:
Descriptive Kernel Convolution Network with Improved Random Walk Kernel. CoRR abs/2402.06087 (2024) - [i58]Steven Jecmen, Nihar B. Shah, Fei Fang, Leman Akoglu:
On the Detection of Reviewer-Author Collusion Rings From Paper Bidding. CoRR abs/2402.07860 (2024) - [i57]Boje Deforce, Meng-Chieh Lee, Bart Baesens, Estefanía Serral Asensio, Jaemin Yoo, Leman Akoglu:
End-To-End Self-tuning Self-supervised Time Series Anomaly Detection. CoRR abs/2404.02865 (2024) - [i56]Xueying Ding, Rui Xi, Leman Akoglu:
Outlier Detection Bias Busted: Understanding Sources of Algorithmic Bias through Data-centric Factors. CoRR abs/2408.13667 (2024) - [i55]Yuchen Shen, Haomin Wen, Leman Akoglu:
Zero-shot Outlier Detection via Prior-data Fitted Networks: Model Selection Bygone! CoRR abs/2409.05672 (2024) - [i54]Haomin Wen, Shurui Cao, Leman Akoglu:
Uncertainty-aware Human Mobility Modeling and Anomaly Detection. CoRR abs/2410.01281 (2024) - 2023
- [j23]Lingxiao Zhao, Leman Akoglu:
On Using Classification Datasets to Evaluate Graph Outlier Detection: Peculiar Observations and New Insights. Big Data 11(3): 151-180 (2023) - [j22]Jiong Zhu, Yujun Yan, Mark Heimann, Lingxiao Zhao, Leman Akoglu, Danai Koutra:
Heterophily and Graph Neural Networks: Past, Present and Future. IEEE Data Eng. Bull. 46(2): 12-34 (2023) - [j21]Feng Xia, Leman Akoglu, Charu Aggarwal, Huan Liu:
Deep Anomaly Analytics: Advancing the Frontier of Anomaly Detection. IEEE Intell. Syst. 38(2): 32-35 (2023) - [j20]Shubhranshu Shekhar, Dhivya Eswaran, Bryan Hooi, Jonathan Elmer, Christos Faloutsos, Leman Akoglu:
Benefit-aware early prediction of health outcomes on multivariate EEG time series. J. Biomed. Informatics 139: 104296 (2023) - [j19]Lingxiao Zhao, Saurabh Sawlani, Leman Akoglu:
Density of states for fast embedding node-attributed graphs. Knowl. Inf. Syst. 65(6): 2455-2483 (2023) - [j18]Martin Q. Ma, Yue Zhao, Xiaorong Zhang, Leman Akoglu:
The Need for Unsupervised Outlier Model Selection: A Review and Evaluation of Internal Evaluation Strategies. SIGKDD Explor. 25(1): 19-35 (2023) - [j17]Hung T. Nguyen, Pierre J. Liang, Leman Akoglu:
Detecting Anomalous Graphs in Labeled Multi-Graph Databases. ACM Trans. Knowl. Discov. Data 17(2): 16:1-16:25 (2023) - [j16]Xiaoxiao Ma, Jia Wu, Shan Xue, Jian Yang, Chuan Zhou, Quan Z. Sheng, Hui Xiong, Leman Akoglu:
A Comprehensive Survey on Graph Anomaly Detection With Deep Learning. IEEE Trans. Knowl. Data Eng. 35(12): 12012-12038 (2023) - [j15]Jaemin Yoo, Tiancheng Zhao, Leman Akoglu:
Data Augmentation is a Hyperparameter: Cherry-picked Self-Supervision for Unsupervised Anomaly Detection is Creating the Illusion of Success. Trans. Mach. Learn. Res. 2023 (2023) - [c99]Konstantinos Sotiropoulos, Lingxiao Zhao, Pierre Jinghong Liang, Leman Akoglu:
ADAMM: Anomaly Detection of Attributed Multi-graphs with Metadata: A Unified Neural Network Approach. IEEE Big Data 2023: 865-874 - [c98]Leman Akoglu, Jaemin Yoo:
Self-Supervision for Tackling Unsupervised Anomaly Detection: Pitfalls and Opportunities. IEEE Big Data 2023: 1047-1051 - [c97]Xueying Ding, Nikita Seleznev, Senthil Kumar, C. Bayan Bruss, Leman Akoglu:
From Detection to Action: a Human-in-the-loop Toolkit for Anomaly Reasoning and Management. ICAIF 2023: 279-287 - [c96]Leman Akoglu, Nitesh V. Chawla, Senthil Kumar, Saurabh Nagrecha, Mahashweta Das, Vidyut M. Naware, Tanveer A. Faruquie:
KDD Workshop on Machine Learning in Finance. KDD 2023: 5863-5864 - [c95]Neil Shah, Shobeir Fakhraei, Da Zheng, Bahare Fatemi, Leman Akoglu:
19th International Workshop on Mining and Learning with Graphs (MLG). KDD 2023: 5882-5883 - [c94]Jaemin Yoo, Yue Zhao, Lingxiao Zhao, Leman Akoglu:
DSV: An Alignment Validation Loss for Self-supervised Outlier Model Selection. ECML/PKDD (1) 2023: 254-269 - [e2]Ambuj K. Singh, Yizhou Sun, Leman Akoglu, Dimitrios Gunopulos, Xifeng Yan, Ravi Kumar, Fatma Ozcan, Jieping Ye:
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023, Long Beach, CA, USA, August 6-10, 2023. ACM 2023 [contents] - [i53]Xueying Ding, Nikita Seleznev, Senthil Kumar, C. Bayan Bruss, Leman Akoglu:
From Explanation to Action: An End-to-End Human-in-the-loop Framework for Anomaly Reasoning and Management. CoRR abs/2304.03368 (2023) - [i52]Jaemin Yoo, Lingxiao Zhao, Leman Akoglu:
End-to-End Augmentation Hyperparameter Tuning for Self-Supervised Anomaly Detection. CoRR abs/2306.12033 (2023) - [i51]Jaemin Yoo, Yue Zhao, Lingxiao Zhao, Leman Akoglu:
DSV: An Alignment Validation Loss for Self-supervised Outlier Model Selection. CoRR abs/2307.06534 (2023) - [i50]Xueying Ding, Yue Zhao, Leman Akoglu:
Fast Unsupervised Deep Outlier Model Selection with Hypernetworks. CoRR abs/2307.10529 (2023) - [i49]Leman Akoglu, Jaemin Yoo:
Self-Supervision for Tackling Unsupervised Anomaly Detection: Pitfalls and Opportunities. CoRR abs/2308.14380 (2023) - [i48]Konstantinos Sotiropoulos, Lingxiao Zhao, Pierre Jinghong Liang, Leman Akoglu:
ADAMM: Anomaly Detection of Attributed Multi-graphs with Metadata: A Unified Neural Network Approach. CoRR abs/2311.07355 (2023) - 2022
- [j14]K. Selçuk Candan, Huan Liu, Leman Akoglu, Xin Luna Dong, Jiliang Tang, Andrew Tomkins:
ACM WSDM 2022 report. SIGWEB Newsl. 2022(Summer): 1:1-1:6 (2022) - [c93]Yue Zhao, Sean Zhang, Leman Akoglu:
Toward Unsupervised Outlier Model Selection. ICDM 2022: 773-782 - [c92]Shuli Jiang, Robson L. F. Cordeiro, Leman Akoglu:
D.MCA: Outlier Detection with Explicit Micro-Cluster Assignments. ICDM 2022: 987-992 - [c91]Lingxiao Zhao, Wei Jin, Leman Akoglu, Neil Shah:
From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness. ICLR 2022 - [c90]Sean Zhang, Varun Ursekar, Leman Akoglu:
Sparx: Distributed Outlier Detection at Scale. KDD 2022: 4530-4540 - [c89]Senthil Kumar, Leman Akoglu, Nitesh V. Chawla, Saurabh Nagrecha, Vidyut M. Naware, Tanveer A. Faruquie, Hays McCormick:
KDD Workshop on Machine Learning in Finance. KDD 2022: 4882-4883 - [c88]Xueying Ding, Lingxiao Zhao, Leman Akoglu:
Hyperparameter Sensitivity in Deep Outlier Detection: Analysis and a Scalable Hyper-Ensemble Solution. NeurIPS 2022 - [c87]Ge Zhang, Zhenyu Yang, Jia Wu, Jian Yang, Shan Xue, Hao Peng, Jianlin Su, Chuan Zhou, Quan Z. Sheng, Leman Akoglu, Charu C. Aggarwal:
Dual-discriminative Graph Neural Network for Imbalanced Graph-level Anomaly Detection. NeurIPS 2022 - [c86]Lingxiao Zhao, Neil Shah, Leman Akoglu:
A Practical, Progressively-Expressive GNN. NeurIPS 2022 - [c85]Dimitris Berberidis, Pierre J. Liang, Leman Akoglu:
Summarizing Labeled Multi-graphs. ECML/PKDD (2) 2022: 53-68 - [e1]K. Selcuk Candan, Huan Liu, Leman Akoglu, Xin Luna Dong, Jiliang Tang:
WSDM '22: The Fifteenth ACM International Conference on Web Search and Data Mining, Virtual Event / Tempe, AZ, USA, February 21 - 25, 2022. ACM 2022, ISBN 978-1-4503-9132-0 [contents] - [i47]Sean Zhang, Varun Ursekar, Leman Akoglu:
Sparx: Distributed Outlier Detection at Scale. CoRR abs/2206.01281 (2022) - [i46]Xueying Ding, Lingxiao Zhao, Leman Akoglu:
Hyperparameter Sensitivity in Deep Outlier Detection: Analysis and a Scalable Hyper-Ensemble Solution. CoRR abs/2206.07647 (2022) - [i45]Dimitris Berberidis, Pierre J. Liang, Leman Akoglu:
Summarizing Labeled Multi-Graphs. CoRR abs/2206.07674 (2022) - [i44]Jaemin Yoo, Tiancheng Zhao, Leman Akoglu:
Understanding the Effect of Data Augmentation in Self-supervised Anomaly Detection. CoRR abs/2208.07734 (2022) - [i43]Yue Zhao, Leman Akoglu:
Towards Unsupervised HPO for Outlier Detection. CoRR abs/2208.11727 (2022) - [i42]Shuli Jiang, Robson Leonardo Ferreira Cordeiro, Leman Akoglu:
D.MCA: Outlier Detection with Explicit Micro-Cluster Assignments. CoRR abs/2210.08212 (2022) - [i41]Lingxiao Zhao, Louis Härtel, Neil Shah, Leman Akoglu:
A Practical, Progressively-Expressive GNN. CoRR abs/2210.09521 (2022) - [i40]Lingxiao Zhao, Saurabh Sawlani, Arvind Srinivasan, Leman Akoglu:
Graph Anomaly Detection with Unsupervised GNNs. CoRR abs/2210.09535 (2022) - [i39]Yue Zhao, Sean Zhang, Leman Akoglu:
Toward Unsupervised Outlier Model Selection. CoRR abs/2211.01834 (2022) - [i38]Shubhranshu Shekhar, Jetson Leder-Luis, Leman Akoglu:
Unsupervised Machine Learning for Explainable Medicare Fraud Detection. CoRR abs/2211.02927 (2022) - 2021
- [c84]Shubhranshu Shekhar, Neil Shah, Leman Akoglu:
FairOD: Fairness-aware Outlier Detection. AIES 2021: 210-220 - [c83]Meng-Chieh Lee, Hung T. Nguyen, Dimitris Berberidis, Vincent S. Tseng, Leman Akoglu:
GAWD: graph anomaly detection in weighted directed graph databases. ASONAM 2021: 143-150 - [c82]Leman Akoglu:
Anomaly Mining: Past, Present and Future. CIKM 2021: 1-2 - [c81]Saurabh Sawlani, Lingxiao Zhao, Leman Akoglu:
Fast Attributed Graph Embedding via Density of States. ICDM 2021: 559-568 - [c80]Leman Akoglu:
Anomaly Mining - Past, Present and Future. IJCAI 2021: 4932-4936 - [c79]Siddharth Bhatia, Bryan Hooi, Leman Akoglu, Sourav Chatterjee, Xiaodong Jiang, Manish Gupta:
ODD: Outlier Detection and Description. KDD 2021: 4108-4109 - [c78]Senthil Kumar, Leman Akoglu, Nitesh V. Chawla, José A. Rodríguez-Serrano, Tanveer A. Faruquie, Saurabh Nagrecha:
Machine Learning in Finance. KDD 2021: 4139-4140 - [c77]Yue Zhao, Xiyang Hu, Cheng Cheng, Cong Wang, Changlin Wan, Wen Wang, Jianing Yang, Haoping Bai, Zheng Li, Cao Xiao, Yunlong Wang, Zhi Qiao, Jimeng Sun, Leman Akoglu:
SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier Detection. MLSys 2021 - [c76]Yue Zhao, Ryan A. Rossi, Leman Akoglu:
Automatic Unsupervised Outlier Model Selection. NeurIPS 2021: 4489-4502 - [i37]Martin Q. Ma, Yue Zhao, Xiaorong Zhang, Leman Akoglu:
A Large-scale Study on Unsupervised Outlier Model Selection: Do Internal Strategies Suffice? CoRR abs/2104.01422 (2021) - [i36]Leman Akoglu:
Anomaly Mining - Past, Present and Future. CoRR abs/2105.10077 (2021) - [i35]Geli Fei, Shuai Wang, Bing Liu, Leman Akoglu:
Detecting Changed-Hands Online Review Accounts. CoRR abs/2106.15352 (2021) - [i34]Lingxiao Zhao, Wei Jin, Leman Akoglu, Neil Shah:
From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness. CoRR abs/2110.03753 (2021) - [i33]Saurabh Sawlani, Lingxiao Zhao, Leman Akoglu:
Fast Attributed Graph Embedding via Density of States. CoRR abs/2110.05228 (2021) - [i32]Guilherme D. F. Silva, Leman Akoglu, Robson L. F. Cordeiro:
C-AllOut: Catching & Calling Outliers by Type. CoRR abs/2110.08257 (2021) - [i31]Shubhranshu Shekhar, Dhivya Eswaran, Bryan Hooi, Jonathan Elmer, Christos Faloutsos, Leman Akoglu:
Benefit-aware Early Prediction of Health Outcomes on Multivariate EEG Time Series. CoRR abs/2111.06032 (2021) - 2020
- [j13]Hung T. Nguyen, Xuejian Wang, Leman Akoglu:
End-to-End Continual Rare-Class Recognition with Emerging Novel Subclasses. ACM Trans. Knowl. Discov. Data 14(5): 61:1-61:28 (2020) - [c75]Meng-Chieh Lee, Yue Zhao, Aluna Wang, Pierre Jinghong Liang, Leman Akoglu, Vincent S. Tseng, Christos Faloutsos:
AutoAudit: Mining Accounting and Time-Evolving Graphs. IEEE BigData 2020: 950-956 - [c74]Lingxiao Zhao, Leman Akoglu:
PairNorm: Tackling Oversmoothing in GNNs. ICLR 2020 - [c73]Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, Danai Koutra:
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs. NeurIPS 2020 - [i30]Yue Zhao, Xiyang Hu, Cheng Cheng, Cong Wang, Cao Xiao, Yunlong Wang, Jimeng Sun, Leman Akoglu:
SUOD: A Scalable Unsupervised Outlier Detection Framework. CoRR abs/2003.05731 (2020) - [i29]Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, Danai Koutra:
Generalizing Graph Neural Networks Beyond Homophily. CoRR abs/2006.11468 (2020) - [i28]Lingxiao Zhao, Leman Akoglu:
Connecting Graph Convolutional Networks and Graph-Regularized PCA. CoRR abs/2006.12294 (2020) - [i27]Yue Zhao, Ryan A. Rossi, Leman Akoglu:
Automating Outlier Detection via Meta-Learning. CoRR abs/2009.10606 (2020) - [i26]Hung T. Nguyen, Pierre J. Liang, Leman Akoglu:
Anomaly Detection in Large Labeled Multi-Graph Databases. CoRR abs/2010.03600 (2020) - [i25]Meng-Chieh Lee, Yue Zhao, Aluna Wang, Pierre Jinghong Liang, Leman Akoglu, Vincent S. Tseng, Christos Faloutsos:
AutoAudit: Mining Accounting and Time-Evolving Graphs. CoRR abs/2011.00447 (2020) - [i24]Shubhranshu Shekhar, Neil Shah, Leman Akoglu:
FAIROD: Fairness-aware Outlier Detection. CoRR abs/2012.03063 (2020) - [i23]Lingxiao Zhao, Leman Akoglu:
On Using Classification Datasets to Evaluate Graph Outlier Detection: Peculiar Observations and New Insights. CoRR abs/2012.12931 (2020)
2010 – 2019
- 2019
- [c72]Lakmal Meegahapola, Thivya Kandappu, Kasthuri Jayarajah, Leman Akoglu, Shili Xiang, Archan Misra:
BuScope: Fusing Individual & Aggregated Mobility Behavior for. MobiSys 2019: 41-53 - [c71]Xiaoyi Gu, Leman Akoglu, Alessandro Rinaldo:
Statistical Analysis of Nearest Neighbor Methods for Anomaly Detection. NeurIPS 2019: 10921-10931 - [c70]Hung T. Nguyen, Xuejian Wang, Leman Akoglu:
Continual Rare-Class Recognition with Emerging Novel Subclasses. ECML/PKDD (2) 2019: 20-36 - [c69]Tahora H. Nazer, Matthew Davis, Mansooreh Karami, Leman Akoglu, David Koelle, Huan Liu:
Bot Detection: Will Focusing on Recall Cause Overall Performance Deterioration? SBP-BRiMS 2019: 39-49 - [c68]Hemank Lamba, Leman Akoglu:
Learning On-the-Job to Re-rank Anomalies from Top-1 Feedback. SDM 2019: 612-620 - [c67]Tuan M. V. Le, Leman Akoglu:
ContraVis: Contrastive and Visual Topic Modeling for Comparing Document Collections. WWW 2019: 928-938 - [i22]Hung T. Nguyen, Xuejian Wang, Leman Akoglu:
Continual Rare-Class Recognition with Emerging Novel Subclasses. CoRR abs/1906.12218 (2019) - [i21]Xiaoyi Gu, Leman Akoglu, Alessandro Rinaldo:
Statistical Analysis of Nearest Neighbor Methods for Anomaly Detection. CoRR abs/1907.03813 (2019) - [i20]Lingxiao Zhao, Leman Akoglu:
PairNorm: Tackling Oversmoothing in GNNs. CoRR abs/1909.12223 (2019) - [i19]Xuan Wu, Lingxiao Zhao, Leman Akoglu:
A Quest for Structure: Jointly Learning the Graph Structure and Semi-Supervised Classification. CoRR abs/1909.12385 (2019) - [i18]Yue Wu, Leman Akoglu, Ian Davidson:
Coverage-based Outlier Explanation. CoRR abs/1911.02617 (2019) - 2018
- [j12]Meghanath Macha, Leman Akoglu:
Explaining anomalies in groups with characterizing subspace rules. Data Min. Knowl. Discov. 32(5): 1444-1480 (2018) - [j11]Bryan Perozzi, Leman Akoglu:
Discovering Communities and Anomalies in Attributed Graphs: Interactive Visual Exploration and Summarization. ACM Trans. Knowl. Discov. Data 12(2): 24:1-24:40 (2018) - [c66]Abhinav Maurya, Leman Akoglu, Ramayya Krishnan, Daniel Bay:
A Lens into Employee Peer Reviews Via Sentiment-Aspect Modeling. ASONAM 2018: 670-677 - [c65]Xuan Wu, Lingxiao Zhao, Leman Akoglu:
A Quest for Structure: Jointly Learning the Graph Structure and Semi-Supervised Classification. CIKM 2018: 87-96 - [c64]Bryan Hooi, Leman Akoglu, Dhivya Eswaran, Amritanshu Pandey, Marko Jereminov, Larry T. Pileggi, Christos Faloutsos:
ChangeDAR: Online Localized Change Detection for Sensor Data on a Graph. CIKM 2018: 507-516 - [c63]Emaad A. Manzoor, Hemank Lamba, Leman Akoglu:
xStream: Outlier Detection in Feature-Evolving Data Streams. KDD 2018: 1963-1972 - [c62]Junting Ye, Leman Akoglu:
Robust Semi-Supervised Learning on Multiple Networks with Noise. PAKDD (1) 2018: 196-208 - [c61]Shubhranshu Shekhar, Leman Akoglu:
Incorporating Privileged Information to Unsupervised Anomaly Detection. ECML/PKDD (1) 2018: 87-104 - [c60]Nikhil Gupta, Dhivya Eswaran, Neil Shah, Leman Akoglu, Christos Faloutsos:
Beyond Outlier Detection: LookOut for Pictorial Explanation. ECML/PKDD (1) 2018: 122-138 - [c59]Meghanath Macha Yadagiri, Deepak Pai, Leman Akoglu:
ConOut: Contextual Outlier Detection with Multiple Contexts: Application to Ad Fraud. ECML/PKDD (1) 2018: 139-156 - [i17]Shubhranshu Shekhar, Leman Akoglu:
Incorporating Privileged Information to Unsupervised Anomaly Detection. CoRR abs/1805.02269 (2018) - 2017
- [j10]Sokratis Vidros, Constantinos Kolias, Georgios Kambourakis, Leman Akoglu:
Automatic Detection of Online Recruitment Frauds: Characteristics, Methods, and a Public Dataset. Future Internet 9(1): 6 (2017) - [j9]Véronique Van Vlasselaer, Tina Eliassi-Rad, Leman Akoglu, Monique Snoeck, Bart Baesens:
GOTCHA! Network-Based Fraud Detection for Social Security Fraud. Manag. Sci. 63(9): 3090-3110 (2017) - [c58]Leman Akoglu:
Online Detection of Anomalous Heterogeneous Graphs with Streaming Edges. ICDM Workshops 2017: 968 - [c57]Emaad A. Manzoor, Leman Akoglu:
RUSH!: Targeted Time-limited Coupons via Purchase Forecasts. KDD 2017: 1923-1931 - [c56]Heeyoung Kwon, Mirza Basim Baig, Leman Akoglu:
A Domain-Agnostic Approach to Spam-URL Detection via Redirects. PAKDD (2) 2017: 220-232 - [c55]Abhinav Mishra, Leman Akoglu:
Ranking in Heterogeneous Networks with Geo-Location Information. SDM 2017: 408-416 - [c54]Aria Rezaei, Bryan Perozzi, Leman Akoglu:
Ties That Bind: Characterizing Classes by Attributes and Social Ties. WWW (Companion Volume) 2017: 973-981 - [i16]Aria Rezaei, Bryan Perozzi, Leman Akoglu:
Ties That Bind - Characterizing Classes by Attributes and Social Ties. CoRR abs/1701.09039 (2017) - [i15]Siheng Chen, Sufeng Niu, Leman Akoglu, Jelena Kovacevic, Christos Faloutsos:
Fast, Warped Graph Embedding: Unifying Framework and One-Click Algorithm. CoRR abs/1702.05764 (2017) - [i14]Meghanath Macha, Leman Akoglu:
X-PACS: eXPlaining Anomalies by Characterizing Subspaces. CoRR abs/1708.05929 (2017) - [i13]Nikhil Gupta, Dhivya Eswaran, Neil Shah, Leman Akoglu, Christos Faloutsos:
LookOut on Time-Evolving Graphs: Succinctly Explaining Anomalies from Any Detector. CoRR abs/1710.05333 (2017) - 2016
- [j8]Hau Chan, Leman Akoglu:
Optimizing network robustness by edge rewiring: a general framework. Data Min. Knowl. Discov. 30(5): 1395-1425 (2016) - [j7]Shebuti Rayana, Leman Akoglu:
Less is More: Building Selective Anomaly Ensembles. ACM Trans. Knowl. Discov. Data 10(4): 42:1-42:33 (2016) - [j6]