default search action
Avishek Anand
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j13]Simone Piaggesi, Megha Khosla, André Panisson, Avishek Anand:
DINE: Dimensional Interpretability of Node Embeddings. IEEE Trans. Knowl. Data Eng. 36(12): 7986-7997 (2024) - [j12]Jurek Leonhardt, Henrik Müller, Koustav Rudra, Megha Khosla, Abhijit Anand, Avishek Anand:
Efficient Neural Ranking Using Forward Indexes and Lightweight Encoders. ACM Trans. Inf. Syst. 42(5): 117:1-117:34 (2024) - [j11]Abhijit Anand, Jurek Leonhardt, Jaspreet Singh, Koustav Rudra, Avishek Anand:
Data Augmentation for Sample Efficient and Robust Document Ranking. ACM Trans. Inf. Syst. 42(5): 119:1-119:29 (2024) - [c73]Jonas Wallat, Hauke Hinrichs, Avishek Anand:
Causal Probing for Dual Encoders. CIKM 2024: 2292-2303 - [c72]Abhijit Anand, Jurek Leonhardt, Venktesh V, Avishek Anand:
Understanding the User: An Intent-Based Ranking Dataset. CIKM 2024: 5323-5327 - [c71]Lijun Lyu, Nirmal Roy, Harrie Oosterhuis, Avishek Anand:
Is Interpretable Machine Learning Effective at Feature Selection for Neural Learning-to-Rank? ECIR (4) 2024: 384-402 - [c70]Kiran Purohit, Venktesh V, Raghuram Devalla, Krishna Yerragorla, Sourangshu Bhattacharya, Avishek Anand:
EXPLORA: Efficient Exemplar Subset Selection for Complex Reasoning. EMNLP 2024: 5367-5388 - [c69]Harrie Oosterhuis, Lijun Lyu, Avishek Anand:
Local Feature Selection without Label or Feature Leakage for Interpretable Machine Learning Predictions. ICML 2024 - [c68]Zijian Zhang, Vinay Setty, Yumeng Wang, Avishek Anand:
DISCO: DISCovering Overfittings as Causal Rules for Text Classification Models. MAI-XAI@ECAI 2024: 33-48 - [c67]Venktesh V, Abhijit Anand, Avishek Anand, Vinay Setty:
QuanTemp: A real-world open-domain benchmark for fact-checking numerical claims. SIGIR 2024: 650-660 - [c66]Abhijit Anand, Venktesh V, Vinay Setty, Avishek Anand:
The Surprising Effectiveness of Rankers trained on Expanded Queries. SIGIR 2024: 2652-2656 - [c65]Jonas Wallat, Adam Jatowt, Avishek Anand:
Temporal Blind Spots in Large Language Models. WSDM 2024: 683-692 - [i68]Jonas Wallat, Adam Jatowt, Avishek Anand:
Temporal Blind Spots in Large Language Models. CoRR abs/2401.12078 (2024) - [i67]Maria Heuss, Maarten de Rijke, Avishek Anand:
RankingSHAP - Listwise Feature Attribution Explanations for Ranking Models. CoRR abs/2403.16085 (2024) - [i66]Venktesh V, Abhijit Anand, Avishek Anand, Vinay Setty:
NUMTEMP: A real-world benchmark to verify claims with statistical and temporal expressions. CoRR abs/2403.17169 (2024) - [i65]Abhijit Anand, Venktesh V, Vinay Setty, Avishek Anand:
The Surprising Effectiveness of Rankers Trained on Expanded Queries. CoRR abs/2404.02587 (2024) - [i64]Lijun Lyu, Nirmal Roy, Harrie Oosterhuis, Avishek Anand:
Is Interpretable Machine Learning Effective at Feature Selection for Neural Learning-to-Rank? CoRR abs/2405.07782 (2024) - [i63]Lea Richtmann, Viktoria-S. Schmiesing, Dennis Wilken, Jan Heine, Aaron Tranter, Avishek Anand, Tobias J. Osborne, Michèle Heurs:
Model-free reinforcement learning with noisy actions for automated experimental control in optics. CoRR abs/2405.15421 (2024) - [i62]Venktesh V, Deepali Prabhu, Avishek Anand:
DEXTER: A Benchmark for open-domain Complex Question Answering using LLMs. CoRR abs/2406.17158 (2024) - [i61]Harrie Oosterhuis, Lijun Lyu, Avishek Anand:
Local Feature Selection without Label or Feature Leakage for Interpretable Machine Learning Predictions. CoRR abs/2407.11778 (2024) - [i60]Abhijit Anand, Jurek Leonhardt, Venktesh V, Avishek Anand:
Understanding the User: An Intent-Based Ranking Dataset. CoRR abs/2408.17103 (2024) - [i59]Mandeep Rathee, Sean MacAvaney, Avishek Anand:
Quam: Adaptive Retrieval through Query Affinity Modelling. CoRR abs/2410.20286 (2024) - 2023
- [j10]Koustav Rudra, Zeon Trevor Fernando, Avishek Anand:
An in-depth analysis of passage-level label transfer for contextual document ranking. Inf. Retr. J. 26(1): 13 (2023) - [j9]Avishek Anand, Maria Soledad Pera, Maria Heuss, Venktesh V, Matteo Corsi:
Report on the 21st Dutch-Belgian Information Retrieval Workshop (DIR 2023). SIGIR Forum 57(2): 22:1-22:5 (2023) - [j8]Thorben Funke, Megha Khosla, Mandeep Rathee, Avishek Anand:
Zorro: Valid, Sparse, and Stable Explanations in Graph Neural Networks. IEEE Trans. Knowl. Data Eng. 35(8): 8687-8698 (2023) - [j7]Jurek Leonhardt, Koustav Rudra, Avishek Anand:
Extractive Explanations for Interpretable Text Ranking. ACM Trans. Inf. Syst. 41(4): 88:1-88:31 (2023) - [c64]Jonas Wallat, Fabian Beringer, Abhijit Anand, Avishek Anand:
Probing BERT for Ranking Abilities. ECIR (2) 2023: 255-273 - [c63]Lijun Lyu, Avishek Anand:
Listwise Explanations for Ranking Models Using Multiple Explainers. ECIR (1) 2023: 653-668 - [c62]Avishek Anand, Sourav Saha, Procheta Sen, Mandar Mitra:
Explainability of Text Processing and Retrieval Methods. FIRE 2023: 153-157 - [c61]Amir Abolfazli, Jakob Spiegelberg, Gregory Palmer, Avishek Anand:
A Deep Reinforcement Learning Approach to Configuration Sampling Problem. ICDM 2023: 1-10 - [c60]Avishek Anand, Procheta Sen, Sourav Saha, Manisha Verma, Mandar Mitra:
Explainable Information Retrieval. SIGIR 2023: 3448-3451 - [i58]Jonas Wallat, Tianyi Zhang, Avishek Anand:
The Effect of Masking Strategies on Knowledge Retention by Language Models. CoRR abs/2306.07185 (2023) - [i57]Avishek Anand, Venktesh V, Abhijit Anand, Vinay Setty:
Query Understanding in the Age of Large Language Models. CoRR abs/2306.16004 (2023) - [i56]Abhijit Anand, Venktesh V, Vinay Setty, Avishek Anand:
Context Aware Query Rewriting for Text Rankers using LLM. CoRR abs/2308.16753 (2023) - [i55]Simone Piaggesi, Megha Khosla, André Panisson, Avishek Anand:
DINE: Dimensional Interpretability of Node Embeddings. CoRR abs/2310.01162 (2023) - [i54]Venktesh V, Sourangshu Bhattacharya, Avishek Anand:
In-Context Ability Transfer for Question Decomposition in Complex QA. CoRR abs/2310.18371 (2023) - [i53]Jurek Leonhardt, Henrik Müller, Koustav Rudra, Megha Khosla, Abhijit Anand, Avishek Anand:
Efficient Neural Ranking using Forward Indexes and Lightweight Encoders. CoRR abs/2311.01263 (2023) - [i52]Abhijit Anand, Jurek Leonhardt, Jaspreet Singh, Koustav Rudra, Avishek Anand:
Data Augmentation for Sample Efficient and Robust Document Ranking. CoRR abs/2311.15426 (2023) - 2022
- [c59]Alexander Erlei, Richeek Das, Lukas Meub, Avishek Anand, Ujwal Gadiraju:
For What It's Worth: Humans Overwrite Their Economic Self-interest to Avoid Bargaining With AI Systems. CHI 2022: 113:1-113:18 - [c58]Peide Zhu, Zhen Wang, Claudia Hauff, Jie Yang, Avishek Anand:
Answer Quality Aware Aggregation for Extractive QA Crowdsourcing. EMNLP (Findings) 2022: 6147-6159 - [c57]Abhijit Anand, Jurek Leonhardt, Koustav Rudra, Avishek Anand:
Supervised Contrastive Learning Approach for Contextual Ranking. ICTIR 2022: 61-71 - [c56]Yumeng Wang, Lijun Lyu, Avishek Anand:
BERT Rankers are Brittle: A Study using Adversarial Document Perturbations. ICTIR 2022: 115-120 - [c55]Zijian Zhang, Vinay Setty, Avishek Anand:
SparCAssist: A Model Risk Assessment Assistant Based on Sparse Generated Counterfactuals. SIGIR 2022: 3219-3223 - [c54]Jurek Leonhardt, Koustav Rudra, Megha Khosla, Abhijit Anand, Avishek Anand:
Efficient Neural Ranking using Forward Indexes. WWW 2022: 266-276 - [i51]Zijian Zhang, Vinay Setty, Avishek Anand:
SparCAssist: A Model Risk Assessment Assistant Based on Sparse Generated Counterfactuals. CoRR abs/2205.01588 (2022) - [i50]Yumeng Wang, Lijun Lyu, Avishek Anand:
BERT Rankers are Brittle: a Study using Adversarial Document Perturbations. CoRR abs/2206.11724 (2022) - [i49]Mandeep Rathee, Thorben Funke, Avishek Anand, Megha Khosla:
BAGEL: A Benchmark for Assessing Graph Neural Network Explanations. CoRR abs/2206.13983 (2022) - [i48]Abhijit Anand, Jurek Leonhardt, Koustav Rudra, Avishek Anand:
Supervised Contrastive Learning Approach for Contextual Ranking. CoRR abs/2207.03153 (2022) - [i47]Avishek Anand, Lijun Lyu, Maximilian Idahl, Yumeng Wang, Jonas Wallat, Zijian Zhang:
Explainable Information Retrieval: A Survey. CoRR abs/2211.02405 (2022) - [i46]Jurek Leonhardt, Marcel Jahnke, Avishek Anand:
Distribution-Aligned Fine-Tuning for Efficient Neural Retrieval. CoRR abs/2211.04942 (2022) - 2021
- [b2]Rishiraj Saha Roy, Avishek Anand:
Question Answering for the Curated Web: Tasks and Methods in QA over Knowledge Bases and Text Collections. Synthesis Lectures on Information Concepts, Retrieval, and Services, Morgan & Claypool Publishers 2021, ISBN 978-3-031-79511-4, pp. 1-194 - [j6]Megha Khosla, Vinay Setty, Avishek Anand:
A Comparative Study for Unsupervised Network Representation Learning. IEEE Trans. Knowl. Data Eng. 33(5): 1807-1818 (2021) - [c53]Zijian Zhang, Koustav Rudra, Avishek Anand:
FaxPlainAC: A Fact-Checking Tool Based on EXPLAINable Models with HumAn Correction in the Loop. CIKM 2021: 4823-4827 - [c52]Michael Völske, Alexander Bondarenko, Maik Fröbe, Benno Stein, Jaspreet Singh, Matthias Hagen, Avishek Anand:
Towards Axiomatic Explanations for Neural Ranking Models. ICTIR 2021: 13-22 - [c51]Jaspreet Singh, Megha Khosla, Zhenye Wang, Avishek Anand:
Extracting per Query Valid Explanations for Blackbox Learning-to-Rank Models. ICTIR 2021: 203-210 - [c50]Jurek Leonhardt, Fabian Beringer, Avishek Anand:
Exploiting Sentence-Level Representations for Passage Ranking. LWDA 2021: 287-302 - [c49]Jurek Leonhardt, Avishek Anand, Koustav Rudra:
L3S at the TREC 2021 Deep Learning Track. TREC 2021 - [c48]Zijian Zhang, Koustav Rudra, Avishek Anand:
Explain and Predict, and then Predict Again. WSDM 2021: 418-426 - [i45]Zijian Zhang, Koustav Rudra, Avishek Anand:
Explain and Predict, and then Predict again. CoRR abs/2101.04109 (2021) - [i44]Megha Khosla, Avishek Anand:
Revisiting the Auction Algorithm for Weighted Bipartite Perfect Matchings. CoRR abs/2101.07155 (2021) - [i43]Zijian Zhang, Jaspreet Singh, Ujwal Gadiraju, Avishek Anand:
Dissonance Between Human and Machine Understanding. CoRR abs/2101.07337 (2021) - [i42]Koustav Rudra, Zeon Trevor Fernando, Avishek Anand:
An In-depth Analysis of Passage-Level Label Transfer for Contextual Document Ranking. CoRR abs/2103.16669 (2021) - [i41]Maximilian Idahl, Lijun Lyu, Ujwal Gadiraju, Avishek Anand:
Towards Benchmarking the Utility of Explanations for Model Debugging. CoRR abs/2105.04505 (2021) - [i40]Thorben Funke, Megha Khosla, Avishek Anand:
Zorro: Valid, Sparse, and Stable Explanations in Graph Neural Networks. CoRR abs/2105.08621 (2021) - [i39]Jonas Wallat, Jaspreet Singh, Avishek Anand:
BERTnesia: Investigating the capture and forgetting of knowledge in BERT. CoRR abs/2106.02902 (2021) - [i38]Jurek Leonhardt, Fabian Beringer, Avishek Anand:
Exploiting Sentence-Level Representations for Passage Ranking. CoRR abs/2106.07316 (2021) - [i37]Michael Völske, Alexander Bondarenko, Maik Fröbe, Matthias Hagen, Benno Stein, Jaspreet Singh, Avishek Anand:
Towards Axiomatic Explanations for Neural Ranking Models. CoRR abs/2106.08019 (2021) - [i36]Jurek Leonhardt, Koustav Rudra, Avishek Anand:
Learnt Sparsity for Effective and Interpretable Document Ranking. CoRR abs/2106.12460 (2021) - [i35]Mandeep Rathee, Zijian Zhang, Thorben Funke, Megha Khosla, Avishek Anand:
Learnt Sparsification for Interpretable Graph Neural Networks. CoRR abs/2106.12920 (2021) - [i34]Jurek Leonhardt, Koustav Rudra, Megha Khosla, Abhijit Anand, Avishek Anand:
Fast Forward Indexes for Efficient Document Ranking. CoRR abs/2110.06051 (2021) - [i33]Zijian Zhang, Koustav Rudra, Avishek Anand:
FaxPlainAC: A Fact-Checking Tool Based on EXPLAINable Models with HumAn Correction in the Loop. CoRR abs/2110.10144 (2021) - 2020
- [j5]Christian Otto, Matthias Springstein, Avishek Anand, Ralph Ewerth:
Characterization and classification of semantic image-text relations. Int. J. Multim. Inf. Retr. 9(1): 31-45 (2020) - [j4]Avishek Anand, Lawrence Cavedon, Matthias Hagen, Hideo Joho, Mark Sanderson, Benno Stein:
Dagstuhl seminar 19461 on conversational search: seminar goals and working group outcomes. SIGIR Forum 54(1): 3:1-3:11 (2020) - [c47]Jaspreet Singh, Jonas Wallat, Avishek Anand:
BERTnesia: Investigating the capture and forgetting of knowledge in BERT. BlackboxNLP@EMNLP 2020: 174-183 - [c46]Koustav Rudra, Avishek Anand:
Distant Supervision in BERT-based Adhoc Document Retrieval. CIKM 2020: 2197-2200 - [c45]Jaspreet Singh, Avishek Anand:
Model agnostic interpretability of rankers via intent modelling. FAT* 2020: 618-628 - [c44]Alexander Erlei, Franck Awounang Nekdem, Lukas Meub, Avishek Anand, Ujwal Gadiraju:
Impact of Algorithmic Decision Making on Human Behavior: Evidence from Ultimatum Bargaining. HCOMP 2020: 43-52 - [c43]Rishiraj Saha Roy, Avishek Anand:
Question Answering over Curated and Open Web Sources. ICTIR 2020: 193-194 - [c42]Rishiraj Saha Roy, Avishek Anand:
Question Answering over Curated and Open Web Sources. SIGIR 2020: 2432-2435 - [c41]Jurek Leonhardt, Avishek Anand, Megha Khosla:
Boilerplate Removal using a Neural Sequence Labeling Model. WWW (Companion Volume) 2020: 226-229 - [i32]Rishiraj Saha Roy, Avishek Anand:
Question Answering over Curated and Open Web Sources. CoRR abs/2004.11980 (2020) - [i31]Jaspreet Singh, Megha Khosla, Avishek Anand:
Valid Explanations for Learning to Rank Models. CoRR abs/2004.13972 (2020) - [i30]Jurek Leonhardt, Avishek Anand, Megha Khosla:
Boilerplate Removal using a Neural Sequence Labeling Model. CoRR abs/2004.14294 (2020) - [i29]Avishek Anand, Lawrence Cavedon, Matthias Hagen, Hideo Joho, Mark Sanderson, Benno Stein:
Conversational Search - A Report from Dagstuhl Seminar 19461. CoRR abs/2005.08658 (2020) - [i28]Jonas Wallat, Jaspreet Singh, Avishek Anand:
BERTnesia: Investigating the capture and forgetting of knowledge in BERT. CoRR abs/2010.09313 (2020)
2010 – 2019
- 2019
- [j3]Megha Khosla, Avishek Anand:
A Faster Algorithm for Cuckoo Insertion and Bipartite Matching in Large Graphs. Algorithmica 81(9): 3707-3724 (2019) - [j2]Helge Holzmann, Avishek Anand, Megha Khosla:
Estimating PageRank deviations in crawled graphs. Appl. Netw. Sci. 4(1): 86:1-86:22 (2019) - [j1]Zijian Zhang, Jaspreet Singh, Ujwal Gadiraju, Avishek Anand:
Dissonance Between Human and Machine Understanding. Proc. ACM Hum. Comput. Interact. 3(CSCW): 56:1-56:23 (2019) - [c40]Johannes Kiesel, Arefeh Bahrami, Benno Stein, Avishek Anand, Matthias Hagen:
Clarifying False Memories in Voice-based Search. CHIIR 2019: 331-335 - [c39]Christian Otto, Matthias Springstein, Avishek Anand, Ralph Ewerth:
Understanding, Categorizing and Predicting Semantic Image-Text Relations. ICMR 2019: 168-176 - [c38]Maximilian Idahl, Megha Khosla, Avishek Anand:
Finding Interpretable Concept Spaces in Node Embeddings Using Knowledge Bases. PKDD/ECML Workshops (1) 2019: 229-240 - [c37]Megha Khosla, Jurek Leonhardt, Wolfgang Nejdl, Avishek Anand:
Node Representation Learning for Directed Graphs. ECML/PKDD (1) 2019: 395-411 - [c36]Zeon Trevor Fernando, Jaspreet Singh, Avishek Anand:
A study on the Interpretability of Neural Retrieval Models using DeepSHAP. SIGIR 2019: 1005-1008 - [c35]Avishek Anand, Megha Khosla, Jaspreet Singh, Jan-Hendrik Zab, Zijian Zhang:
Asynchronous Training of Word Embeddings for Large Text Corpora. WSDM 2019: 168-176 - [c34]Jaspreet Singh, Avishek Anand:
EXS: Explainable Search Using Local Model Agnostic Interpretability. WSDM 2019: 770-773 - [c33]Besnik Fetahu, Avishek Anand, Maria Koutraki:
TableNet: An Approach for Determining Fine-grained Relations for Wikipedia Tables. WWW 2019: 2736-2742 - [i27]Besnik Fetahu, Avishek Anand, Maria Koutraki:
TableNet: An Approach for Determining Fine-grained Relations for Wikipedia Tables. CoRR abs/1902.01740 (2019) - [i26]Megha Khosla, Avishek Anand, Vinay Setty:
A Comprehensive Comparison of Unsupervised Network Representation Learning Methods. CoRR abs/1903.07902 (2019) - [i25]Christian Otto, Matthias Springstein, Avishek Anand, Ralph Ewerth:
Understanding, Categorizing and Predicting Semantic Image-Text Relations. CoRR abs/1906.08595 (2019) - [i24]Zeon Trevor Fernando, Jaspreet Singh, Avishek Anand:
A study on the Interpretability of Neural Retrieval Models using DeepSHAP. CoRR abs/1907.06484 (2019) - [i23]Maximilian Idahl, Megha Khosla, Avishek Anand:
Finding Interpretable Concept Spaces in Node Embeddings using Knowledge Bases. CoRR abs/1910.05030 (2019) - [i22]Avishek Anand, Lawrence Cavedon, Hideo Joho, Mark Sanderson, Benno Stein:
Conversational Search (Dagstuhl Seminar 19461). Dagstuhl Reports 9(11): 34-83 (2019) - 2018
- [c32]Helge Holzmann, Avishek Anand, Megha Khosla:
Delusive PageRank in Incomplete Graphs. COMPLEX NETWORKS (1) 2018: 104-117 - [c31]Avishek Anand, Kilian Bizer, Alexander Erlei, Ujwal Gadiraju, Christian Heinze, Lukas Meub, Wolfgang Nejdl, Björn Steinrötter:
Effects of Algorithmic Decision-Making and Interpretability on Human Behavior: Experiments using Crowdsourcing. HCOMP (WIP&Demo) 2018 - [c30]Johannes Kiesel, Arefeh Bahrami, Benno Stein, Avishek Anand, Matthias Hagen:
Toward Voice Query Clarification. SIGIR 2018: 1257-1260 - [c29]Jurek Leonhardt, Avishek Anand, Megha Khosla:
User Fairness in Recommender Systems. WWW (Companion Volume) 2018: 101-102 - [i21]Jaspreet Singh, Avishek Anand:
Posthoc Interpretability of Learning to Rank Models using Secondary Training Data. CoRR abs/1806.11330 (2018) - [i20]Jurek Leonhardt, Avishek Anand, Megha Khosla:
User Fairness in Recommender Systems. CoRR abs/1807.06349 (2018) - [i19]Jaspreet Singh, Avishek Anand:
EXS: Explainable Search Using Local Model Agnostic Interpretability. CoRR abs/1809.03857 (2018) - [i18]Jaspreet Singh, Avishek Anand:
Interpreting search result rankings through intent modeling. CoRR abs/1809.05190 (2018) - [i17]Megha Khosla, Jurek Leonhardt, Wolfgang Nejdl, Avishek Anand:
Node Representation Learning for Directed Graphs. CoRR abs/1810.09176 (2018) - [i16]Jaspreet Singh, Wolfgang Nejdl, Avishek Anand:
History by Diversity: Helping Historians search News Archives. CoRR abs/1810.10251 (2018) - [i15]Jaspreet Singh, Johannes Hoffart, Avishek Anand:
Discovering Entities with Just a Little Help from You. CoRR abs/1810.10252 (2018) - [i14]Jaspreet Singh, Avishek Anand:
Designing Search Tasks for Archive Search. CoRR abs/1810.10253 (2018) - [i13]Jaspreet Singh, Wolfgang Nejdl, Avishek Anand:
Expedition: A Time-Aware Exploratory Search System Designed for Scholars. CoRR abs/1810.10769 (2018) - [i12]Avishek Anand, Megha Khosla, Jaspreet Singh, Jan-Hendrik Zab, Zijian Zhang:
Asynchronous Training of Word Embeddings for Large Text Corpora. CoRR abs/1812.03825 (2018) - 2017
- [c28]Jaspreet Singh, Avishek Anand:
Designing Search Tasks for Archive Search. CHIIR 2017: 361-364 - [c27]Besnik Fetahu, Katja Markert, Avishek Anand:
Fine Grained Citation Span for References in Wikipedia. EMNLP 2017: 1990-1999 - [c26]Patrick Ernst, Arunav Mishra, Avishek Anand, Vinay Setty:
BioNex: A System For Biomedical News Event Exploration. SIGIR 2017: 1277-1280 - [c25]Helge Holzmann, Wolfgang Nejdl, Avishek Anand:
Exploring Web Archives Through Temporal Anchor Texts. WebSci 2017: 289-298 - [c24]