default search action
Trevor Campbell
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c29]Gian Carlo Diluvi, Benjamin Bloem-Reddy, Trevor Campbell:
Mixed variational flows for discrete variables. AISTATS 2024: 2431-2439 - [c28]Naitong Chen, Trevor Campbell:
Coreset Markov chain Monte Carlo. AISTATS 2024: 4438-4446 - [c27]Miguel Biron-Lattes, Nikola Surjanovic, Saifuddin Syed, Trevor Campbell, Alexandre Bouchard-Côté:
autoMALA: Locally adaptive Metropolis-adjusted Langevin algorithm. AISTATS 2024: 4600-4608 - [i27]Alexandre Bouchard-Côté, Trevor Campbell, Geoff Pleiss, Nikola Surjanovic:
MCMC-driven learning. CoRR abs/2402.09598 (2024) - [i26]Trevor Campbell:
General bounds on the quality of Bayesian coresets. CoRR abs/2405.11780 (2024) - 2023
- [j5]Miguel Biron-Lattes, Alexandre Bouchard-Côté, Trevor Campbell:
Pseudo-Marginal Inference for CTMCs on Infinite Spaces via Monotonic Likelihood Approximations. J. Comput. Graph. Stat. 32(2): 513-527 (2023) - [j4]Berend Zwartsenberg, Adam Scibior, Matthew Niedoba, Vasileios Lioutas, Justice Sefas, Yunpeng Liu, Setareh Dabiri, Jonathan Wilder Lavington, Trevor Campbell, Frank Wood:
Conditional Permutation Invariant Flows. Trans. Mach. Learn. Res. 2023 (2023) - [c26]Zuheng Xu, Naitong Chen, Trevor Campbell:
MixFlows: principled variational inference via mixed flows. ICML 2023: 38342-38376 - [c25]Zuheng Xu, Trevor Campbell:
Embracing the chaos: analysis and diagnosis of numerical instability in variational flows. NeurIPS 2023 - [i25]Steven Winter, Trevor Campbell, Lizhen Lin, Sanvesh Srivastava, David B. Dunson:
Machine Learning and the Future of Bayesian Computation. CoRR abs/2304.11251 (2023) - [i24]Zuheng Xu, Trevor Campbell:
Embracing the chaos: analysis and diagnosis of numerical instability in variational flows. CoRR abs/2307.06957 (2023) - [i23]Nikola Surjanovic, Miguel Biron-Lattes, Paul Tiede, Saifuddin Syed, Trevor Campbell, Alexandre Bouchard-Côté:
Pigeons.jl: Distributed Sampling From Intractable Distributions. CoRR abs/2308.09769 (2023) - [i22]Gian Carlo Diluvi, Benjamin Bloem-Reddy, Trevor Campbell:
Mixed Variational Flows for Discrete Variables. CoRR abs/2308.15613 (2023) - 2022
- [j3]Zuheng Xu, Trevor Campbell:
The computational asymptotics of Gaussian variational inference and the Laplace approximation. Stat. Comput. 32(4): 63 (2022) - [c24]Naitong Chen, Zuheng Xu, Trevor Campbell:
Bayesian inference via sparse Hamiltonian flows. NeurIPS 2022 - [c23]Cian Naik, Judith Rousseau, Trevor Campbell:
Fast Bayesian Coresets via Subsampling and Quasi-Newton Refinement. NeurIPS 2022 - [c22]Nikola Surjanovic, Saifuddin Syed, Alexandre Bouchard-Côté, Trevor Campbell:
Parallel Tempering With a Variational Reference. NeurIPS 2022 - [i21]Naitong Chen, Zuheng Xu, Trevor Campbell:
Bayesian inference via sparse Hamiltonian flows. CoRR abs/2203.05723 (2022) - [i20]Cian Naik, Judith Rousseau, Trevor Campbell:
Fast Bayesian Coresets via Subsampling and Quasi-Newton Refinement. CoRR abs/2203.09675 (2022) - [i19]Zuheng Xu, Naitong Chen, Trevor Campbell:
Ergodic variational flows. CoRR abs/2205.07475 (2022) - [i18]Berend Zwartsenberg, Adam Scibior, Matthew Niedoba, Vasileios Lioutas, Yunpeng Liu, Justice Sefas, Setareh Dabiri, Jonathan Wilder Lavington, Trevor Campbell, Frank Wood:
Conditional Permutation Invariant Flows. CoRR abs/2206.09021 (2022) - 2021
- [c21]Diana Cai, Trevor Campbell, Tamara Broderick:
Finite mixture models do not reliably learn the number of components. ICML 2021: 1158-1169 - [c20]Saifuddin Syed, Vittorio Romaniello, Trevor Campbell, Alexandre Bouchard-Côté:
Parallel tempering on optimized paths. ICML 2021: 10033-10042 - [c19]Thibaut Horel, Lorenzo Masoero, Raj Agrawal, Daria Roithmayr, Trevor Campbell:
The CPD Data Set: Personnel, Use of Force, and Complaints in the Chicago Police Department. NeurIPS Datasets and Benchmarks 2021 - [c18]Boyan Beronov, Christian Weilbach, Frank Wood, Trevor Campbell:
Sequential core-set Monte Carlo. UAI 2021: 2165-2175 - 2020
- [c17]Jonathan H. Huggins, Mikolaj Kasprzak, Trevor Campbell, Tamara Broderick:
Validated Variational Inference via Practical Posterior Error Bounds. AISTATS 2020: 1792-1802 - [c16]Dionysis Manousakas, Zuheng Xu, Cecilia Mascolo, Trevor Campbell:
Bayesian Pseudocoresets. NeurIPS 2020 - [c15]Peiyuan Zhu, Alexandre Bouchard-Côté, Trevor Campbell:
Slice Sampling for General Completely Random Measures. UAI 2020: 699-708 - [i17]Peiyuan Zhu, Alexandre Bouchard-Côté, Trevor Campbell:
Slice Sampling for General Completely Random Measures. CoRR abs/2006.13925 (2020) - [i16]Sina Amini Niaki, Ehsan Haghighat, Xinglong Li, Trevor Campbell, Reza Vaziri:
Physics-Informed Neural Network for Modelling the Thermochemical Curing Process of Composite-Tool Systems During Manufacture. CoRR abs/2011.13511 (2020)
2010 – 2019
- 2019
- [j2]Trevor Campbell, Tamara Broderick:
Automated Scalable Bayesian Inference via Hilbert Coresets. J. Mach. Learn. Res. 20: 15:1-15:38 (2019) - [j1]Trevor Campbell, Brian Kulis, Jonathan P. How:
Dynamic Clustering Algorithms via Small-Variance Analysis of Markov Chain Mixture Models. IEEE Trans. Pattern Anal. Mach. Intell. 41(6): 1338-1352 (2019) - [c14]Jonathan H. Huggins, Trevor Campbell, Mikolaj Kasprzak, Tamara Broderick:
Scalable Gaussian Process Inference with Finite-data Mean and Variance Guarantees. AISTATS 2019: 796-805 - [c13]Raj Agrawal, Trevor Campbell, Jonathan H. Huggins, Tamara Broderick:
Data-dependent compression of random features for large-scale kernel approximation. AISTATS 2019: 1822-1831 - [c12]Trevor Campbell, Xinglong Li:
Universal Boosting Variational Inference. NeurIPS 2019: 3479-3490 - [c11]Trevor Campbell, Boyan Beronov:
Sparse Variational Inference: Bayesian Coresets from Scratch. NeurIPS 2019: 11457-11468 - [i15]Trevor Campbell, Xinglong Li:
Universal Boosting Variational Inference. CoRR abs/1906.01235 (2019) - [i14]Trevor Campbell, Boyan Beronov:
Sparse Variational Inference: Bayesian Coresets from Scratch. CoRR abs/1906.03329 (2019) - [i13]Jonathan H. Huggins, Mikolaj Kasprzak, Trevor Campbell, Tamara Broderick:
Practical Posterior Error Bounds from Variational Objectives. CoRR abs/1910.04102 (2019) - 2018
- [c10]Trevor Campbell, Tamara Broderick:
Bayesian Coreset Construction via Greedy Iterative Geodesic Ascent. ICML 2018: 697-705 - [i12]Trevor Campbell, Tamara Broderick:
Bayesian Coreset Construction via Greedy Iterative Geodesic Ascent. CoRR abs/1802.01737 (2018) - [i11]Jonathan H. Huggins, Trevor Campbell, Mikolaj Kasprzak, Tamara Broderick:
Scalable Gaussian Process Inference with Finite-data Mean and Variance Guarantees. CoRR abs/1806.10234 (2018) - [i10]Jonathan H. Huggins, Trevor Campbell, Mikolaj Kasprzak, Tamara Broderick:
Practical bounds on the error of Bayesian posterior approximations: A nonasymptotic approach. CoRR abs/1809.09505 (2018) - [i9]Raj Agrawal, Trevor Campbell, Jonathan H. Huggins, Tamara Broderick:
Data-dependent compression of random features for large-scale kernel approximation. CoRR abs/1810.04249 (2018) - [i8]Miriam Shiffman, William T. Stephenson, Geoffrey Schiebinger, Jonathan H. Huggins, Trevor Campbell, Aviv Regev, Tamara Broderick:
Reconstructing probabilistic trees of cellular differentiation from single-cell RNA-seq data. CoRR abs/1811.11790 (2018) - 2017
- [c9]Julian Straub, Trevor Campbell, Jonathan P. How, John W. Fisher III:
Efficient Global Point Cloud Alignment Using Bayesian Nonparametric Mixtures. CVPR 2017: 2403-2412 - [i7]Trevor Campbell, Tamara Broderick:
Automated Scalable Bayesian Inference via Hilbert Coresets. CoRR abs/1710.05053 (2017) - 2016
- [c8]Jonathan H. Huggins, Trevor Campbell, Tamara Broderick:
Coresets for Scalable Bayesian Logistic Regression. NIPS 2016: 4080-4088 - [c7]Diana Cai, Trevor Campbell, Tamara Broderick:
Edge-exchangeable graphs and sparsity. NIPS 2016: 4242-4250 - [i6]Julian Straub, Trevor Campbell, Jonathan P. How, John W. Fisher III:
Efficient Globally Optimal Point Cloud Alignment using Bayesian Nonparametric Mixtures. CoRR abs/1603.04868 (2016) - [i5]Jonathan H. Huggins, Trevor Campbell, Tamara Broderick:
Coresets for Scalable Bayesian Logistic Regression. CoRR abs/1605.06423 (2016) - [i4]Julian Straub, Trevor Campbell, Jonathan P. How, John W. Fisher III:
Small-Variance Nonparametric Clustering on the Hypersphere. CoRR abs/1607.06407 (2016) - 2015
- [c6]Trevor Campbell, Jonathan P. How:
Bayesian nonparametric set construction for robust optimization. ACC 2015: 4216-4221 - [c5]Julian Straub, Trevor Campbell, Jonathan P. How, John W. Fisher III:
Small-variance nonparametric clustering on the hypersphere. CVPR 2015: 334-342 - [c4]Trevor Campbell, Julian Straub, John W. Fisher III, Jonathan P. How:
Streaming, Distributed Variational Inference for Bayesian Nonparametrics. NIPS 2015: 280-288 - [i3]Trevor Campbell, Julian Straub, John W. Fisher III, Jonathan P. How:
Streaming, Distributed Variational Inference for Bayesian Nonparametrics. CoRR abs/1510.09161 (2015) - 2014
- [c3]Trevor Campbell, Jonathan P. How:
Approximate Decentralized Bayesian Inference. UAI 2014: 102-111 - [i2]Trevor Campbell, Jonathan P. How:
Decentralized Variational Bayesian Inference. CoRR abs/1403.7471 (2014) - 2013
- [c2]Trevor Campbell, Luke B. Johnson, Jonathan P. How:
Multiagent allocation of Markov decision process tasks. ACC 2013: 2356-2361 - [c1]Trevor Campbell, Miao Liu, Brian Kulis, Jonathan P. How, Lawrence Carin:
Dynamic Clustering via Asymptotics of the Dependent Dirichlet Process Mixture. NIPS 2013: 449-457 - [i1]Trevor Campbell, Miao Liu, Brian Kulis, Jonathan P. How:
Dynamic Clustering via Asymptotics of the Dependent Dirichlet Process Mixture. CoRR abs/1305.6659 (2013)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 21:21 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint