


default search action
36th UAI 2020 (virtual online)
- Ryan P. Adams, Vibhav Gogate

:
Proceedings of the Thirty-Sixth Conference on Uncertainty in Artificial Intelligence, UAI 2020, virtual online, August 3-6, 2020. Proceedings of Machine Learning Research 124, AUAI Press 2020 - Julius von Kügelgen, Alexander Mey

, Marco Loog, Bernhard Schölkopf:
Semi-supervised learning, causality, and the conditional cluster assumption. 1-10 - Yue Wang, Shaofeng Zou:

Finite-sample Analysis of Greedy-GQ with Linear Function Approximation under Markovian Noise. 11-20 - Kento Nozawa, Pascal Germain, Benjamin Guedj:

PAC-Bayesian Contrastive Unsupervised Representation Learning. 21-30 - Eren Sezener, Peter Dayan:

Static and Dynamic Values of Computation in MCTS. 31-40 - Krikamol Muandet, Wittawat Jitkrittum, Jonas M. Kübler:

Kernel Conditional Moment Test via Maximum Moment Restriction. 41-50 - Thomas Flynn, Kwangmin Yu, Abid Malik, Nicholas D'Imperio, Shinjae Yoo:

Bounding the expected run-time of nonconvex optimization with early stopping. 51-60 - Ayman Boustati, Sattar Vakili, James Hensman, S. T. John:

Amortized variance reduction for doubly stochastic objective. 61-70 - Baekjin Kim, Ambuj Tewari:

Randomized Exploration for Non-Stationary Stochastic Linear Bandits. 71-80 - Ehsan Amid, Manfred K. Warmuth:

Divergence-Based Motivation for Online EM and Combining Hidden Variable Models. 81-90 - Hongjoon Ahn, Taesup Moon:

Iterative Channel Estimation for Discrete Denoising under Channel Uncertainty. 91-100 - Andrew Holbrook, Shiwei Lan, Jeffrey Streets, Babak Shahbaba:

Nonparametric Fisher Geometry with Application to Density Estimation. 101-110 - Bradly C. Stadie, Lunjun Zhang, Jimmy Ba:

Learning Intrinsic Rewards as a Bi-Level Optimization Problem. 111-120 - Seyed Mohammad Asghari, Yi Ouyang, Ashutosh Nayyar:

Regret Bounds for Decentralized Learning in Cooperative Multi-Agent Dynamical Systems. 121-130 - Xu He, Haipeng Chen, Bo An:

Learning Behaviors with Uncertain Human Feedback. 131-140 - Yangyi Lu, Amirhossein Meisami, Ambuj Tewari, William Yan:

Regret Analysis of Bandit Problems with Causal Background Knowledge. 141-150 - Marco Eigenmann, Sach Mukherjee, Marloes H. Maathuis:

Evaluation of Causal Structure Learning Algorithms via Risk Estimation. 151-160 - Hoda Bidkhori, John Dickerson, Duncan C. McElfresh, Ke Ren:

Kidney Exchange with Inhomogeneous Edge Existence Uncertainty. 161-170 - Behzad Tabibian, Vicenç Gómez

, Abir De, Bernhard Schölkopf, Manuel Gomez Rodriguez:
On the design of consequential ranking algorithms. 171-180 - Yifang Chen, Alex Cuellar, Haipeng Luo, Jignesh Modi, Heramb Nemlekar, Stefanos Nikolaidis:

Fair Contextual Multi-Armed Bandits: Theory and Experiments. 181-190 - Sho Takemori, Masahiro Sato, Takashi Sonoda, Janmajay Singh, Tomoko Ohkuma:

Submodular Bandit Problem Under Multiple Constraints. 191-200 - Jialian Li, Yichi Zhou, Tongzheng Ren, Jun Zhu:

Exploration Analysis in Finite-Horizon Turn-based Stochastic Games. 201-210 - Kaiwen Zhou, Yanghua Jin, Qinghua Ding, James Cheng:

Amortized Nesterov's Momentum: A Robust Momentum and Its Application to Deep Learning. 211-220 - Wittawat Jitkrittum, Heishiro Kanagawa, Bernhard Schölkopf:

Testing Goodness of Fit of Conditional Density Models with Kernels. 221-230 - Or Dinari, Oren Freifeld:

Scalable and Flexible Clustering of Grouped Data via Parallel and Distributed Sampling in Versatile Hierarchical Dirichlet Processes. 231-240 - Max Chickering:

Statistically Efficient Greedy Equivalence Search. 241-249 - Kai Zhou, Yevgeniy Vorobeychik:

Robust Collective Classification against Structural Attacks. 250-259 - Eric Hans Lee, David Eriksson, David Bindel, Bolong Cheng, Mike Mccourt:

Efficient Rollout Strategies for Bayesian Optimization. 260-269 - Zhuangyan Fang, Yangbo He:

IDA with Background Knowledge. 270-279 - Yifei Shen, Ye Xue, Jun Zhang, Khaled B. Letaief, Vincent Lau:

Complete Dictionary Learning via ℓp-norm Maximization. 280-289 - Yue Liu, Zhuangyan Fang, Yangbo He, Zhi Geng:

Collapsible IDA: Collapsing Parental Sets for Locally Estimating Possible Causal Effects. 290-299 - Sorawit Saengkyongam, Ricardo Silva:

Learning Joint Nonlinear Effects from Single-variable Interventions in the Presence of Hidden Confounders. 300-309 - Søren Wengel Mogensen:

Causal screening in dynamical systems. 310-319 - Diego Agudelo-España, Sebastián Gómez-González, Stefan Bauer, Bernhard Schölkopf, Jan Peters:

Bayesian Online Prediction of Change Points. 320-329 - Guohua Cheng, Hongli Ji, Yan Tian:

Walking on Two Legs: Learning Image Segmentation with Noisy Labels. 330-339 - Andrew Estornell, Sanmay Das, Edith Elkind, Yevgeniy Vorobeychik:

Election Control by Manipulating Issue Significance. 340-349 - Saeed Vahidian, Baharan Mirzasoleiman, Alexander Cloninger:

Coresets for Estimating Means and Mean Square Error with Limited Greedy Samples. 350-359 - Ayan Mukhopadhyay, Kai Wang, Andrew Perrault, Mykel J. Kochenderfer, Milind Tambe, Yevgeniy Vorobeychik:

Robust Spatial-Temporal Incident Prediction. 360-369 - Rudy Bunel, Alessandro De Palma, Alban Desmaison, Krishnamurthy Dvijotham, Pushmeet Kohli, Philip H. S. Torr, M. Pawan Kumar:

Lagrangian Decomposition for Neural Network Verification. 370-379 - Hiroaki Sasaki, Tomoya Sakai, Takafumi Kanamori:

Robust modal regression with direct gradient approximation of modal regression risk. 380-389 - Yu-Jie Zhang, Peng Zhao, Zhi-Hua Zhou:

A Simple Online Algorithm for Competing with Dynamic Comparators. 390-399 - Yu-Neng Chuang, Chih-Ming Chen, Chuan-Ju Wang, Ming-Feng Tsai:

Skewness Ranking Optimization for Personalized Recommendation. 400-409 - Raj Kumar Maity, Arya Mazumdar, Soumyabrata Pal:

High Dimensional Discrete Integration over the Hypergrid. 410-419 - Pawel M. Chilinski, Ricardo Silva:

Neural Likelihoods via Cumulative Distribution Functions. 420-429 - Tom Zahavy, Alon Cohen, Haim Kaplan, Yishay Mansour:

Unknown mixing times in apprenticeship and reinforcement learning. 430-439 - Nils Rethmeier, Vageesh Kumar Saxena, Isabelle Augenstein:

TX-Ray: Quantifying and Explaining Model-Knowledge Transfer in (Un-)Supervised NLP. 440-449 - Laura Niss, Ambuj Tewari:

What You See May Not Be What You Get: UCB Bandit Algorithms Robust to ε-Contamination. 450-459 - Sikun Yang, Heinz Koeppl:

The Hawkes Edge Partition Model for Continuous-time Event-based Temporal Networks. 460-469 - Priyank Agrawal, Theja Tulabandhula:

Learning by Repetition: Stochastic Multi-armed Bandits under Priming Effect. 470-479 - Ivan Ustyuzhaninov, Ieva Kazlauskaite, Markus Kaiser, Erik Bodin, Neill D. F. Campbell, Carl Henrik Ek:

Compositional uncertainty in deep Gaussian processes. 480-489 - Zhimeng Pan, Zheng Wang, Shandian Zhe:

Streaming Nonlinear Bayesian Tensor Decomposition. 490-499 - Xi Wang, Junming Yin:

Relaxed Multivariate Bernoulli Distribution and Its Applications to Deep Generative Models. 500-509 - Jie Shen:

One-Bit Compressed Sensing via One-Shot Hard Thresholding. 510-519 - JBrandon Duck-Mayr

, Roman Garnett, Jacob M. Montgomery:
GPIRT: A Gaussian Process Model for Item Response Theory. 520-529 - Emilija Perkovic:

Identifying causal effects in maximally oriented partially directed acyclic graphs. 530-539 - Siamak Zamani Dadaneh, Shahin Boluki, Mingzhang Yin, Mingyuan Zhou

, Xiaoning Qian:
Pairwise Supervised Hashing with Bernoulli Variational Auto-Encoder and Self-Control Gradient Estimator. 540-549 - Tengyang Xie, Nan Jiang:

Q* Approximation Schemes for Batch Reinforcement Learning: A Theoretical Comparison. 550-559 - Mingliang Chen, Min Wu:

Towards Threshold Invariant Fair Classification. 560-569 - Lirong Xia:

Optimal Statistical Hypothesis Testing for Social Choice. 570-579 - Tanner Fiez, Nihar B. Shah, Lillian J. Ratliff:

A SUPER* Algorithm to Optimize Paper Bidding in Peer Review. 580-589 - Alex Markham, Moritz Grosse-Wentrup:

Measurement Dependence Inducing Latent Causal Models. 590-599 - Patrick Dallaire, Luca Ambrogioni, Ludovic Trottier, Umut Güçlü, Max Hinne, Philippe Giguère, Marcel van Gerven, François Laviolette:

The Indian Chefs Process. 600-608 - Lalit Jain, Anna C. Gilbert, Umang Varma:

Spectral Methods for Ranking with Scarce Data. 609-618 - Basil Saeed, Anastasiya Belyaeva, Yuhao Wang, Caroline Uhler:

Anchored Causal Inference in the Presence of Measurement Error. 619-628 - Ao Liu, Yun Lu, Lirong Xia, Vassilis Zikas:

How Private Are Commonly-Used Voting Rules? 629-638 - Lovedeep Gondara, Ke Wang:

Differentially Private Small Dataset Release Using Random Projections. 639-648 - Michael Teng, Tuan Anh Le, Adam Scibior, Frank Wood:

Semi-supervised Sequential Generative Models. 649-658 - Hiroaki Sasaki, Takashi Takenouchi, Ricardo Pio Monti, Aapo Hyvärinen:

Robust contrastive learning and nonlinear ICA in the presence of outliers. 659-668 - Mengxiao Zhang, Fernando Beltrán, Jiamou Liu:

Selling Data at an Auction under Privacy Constraints. 669-678 - Adrien Dulac, Éric Gaussier, Christine Largeron:

Mixed-Membership Stochastic Block Models for Weighted Networks. 679-688 - Arnab Kumar Mondal, Sankalan Pal Chowdhury, Aravind Jayendran, Himanshu Asnani, Parag Singla, Prathosh A. P.:

MaskAAE: Latent space optimization for Adversarial Auto-Encoders. 689-698 - Peiyuan Zhu, Alexandre Bouchard-Côté, Trevor Campbell:

Slice Sampling for General Completely Random Measures. 699-708 - Jingge Zhu:

Semi-Supervised Learning: the Case When Unlabeled Data is Equally Useful. 709-718 - Meet P. Vadera, Brian Jalaian, Benjamin M. Marlin:

Generalized Bayesian Posterior Expectation Distillation for Deep Neural Networks. 719-728 - Ondrej Kuzelka:

Complex Markov Logic Networks: Expressivity and Liftability. 729-738 - Zhongyi Hu, Robin Evans:

Faster algorithms for Markov equivalence. 739-748 - Philips George John, Deepak Vijaykeerthy, Diptikalyan Saha:

Verifying Individual Fairness in Machine Learning Models. 749-758 - Yijue Dai, Tianjian Zhang, Zhidi Lin, Feng Yin, Sergios Theodoridis, Shuguang Cui:

An Interpretable and Sample Efficient Deep Kernel for Gaussian Process. 759-768 - Kevin Swersky, Yulia Rubanova, David Dohan, Kevin Murphy:

Amortized Bayesian Optimization over Discrete Spaces. 769-778 - Marko Järvenpää, Aki Vehtari, Pekka Marttinen:

Batch simulations and uncertainty quantification in Gaussian process surrogate approximate Bayesian computation. 779-788 - Martin Jankowiak, Geoff Pleiss, Jacob R. Gardner:

Deep Sigma Point Processes. 789-798 - Amit Deshpande, Praneeth Kacham, Rameshwar Pratap:

Robust k-means++. 799-808 - Martin Pawelczyk, Klaus Broelemann, Gjergji Kasneci:

On Counterfactual Explanations under Predictive Multiplicity. 809-818 - Zhiqiang Xu, Ping Li:

A Practical Riemannian Algorithm for Computing Dominant Generalized Eigenspace. 819-828 - Aditya Modi, Ambuj Tewari:

No-regret Exploration in Contextual Reinforcement Learning. 829-838 - Jussi Viinikka, Mikko Koivisto:

Layering-MCMC for Structure Learning in Bayesian Networks. 839-848 - Arnab Kumar Mondal, Arnab Bhattacharjee, Sudipto Mukherjee, Himanshu Asnani, Sreeram Kannan, Prathosh A. P.:

C-MI-GAN : Estimation of Conditional Mutual Information using MinMax formulation. 849-858 - Federico Tomasi, Praveen Chandar, Gal Levy-Fix, Mounia Lalmas-Roelleke, Zhenwen Dai:

Stochastic Variational Inference for Dynamic Correlated Topic Models. 859-868 - Wei Xing, Brian D. Ziebart:

Adversarial Learning for 3D Matching. 869-878 - Vincent Derkinderen, Evert Heylen, Pedro Zuidberg Dos Martires, Samuel Kolb, Luc De Raedt:

Ordering Variables for Weighted Model Integration. 879-888 - Giulia Denevi, Massimiliano Pontil, Dimitrios Stamos:

Online Parameter-Free Learning of Multiple Low Variance Tasks. 889-898 - Yichong Xu, Aparna Joshi, Aarti Singh, Artur Dubrawski:

Zeroth Order Non-convex optimization with Dueling-Choice Bandits. 899-908 - Travis Dick, Wesley Pegden, Maria-Florina Balcan:

Semi-bandit Optimization in the Dispersed Setting. 909-918 - Victor Veitch, Dhanya Sridhar, David M. Blei:

Adapting Text Embeddings for Causal Inference. 919-928 - Zhijian Ou, Yunfu Song:

Joint Stochastic Approximation and Its Application to Learning Discrete Latent Variable Models. 929-938 - Hermanni Hälvä, Aapo Hyvärinen:

Hidden Markov Nonlinear ICA: Unsupervised Learning from Nonstationary Time Series. 939-948 - Numair Sani, Jaron J. R. Lee, Ilya Shpitser:

Identification and Estimation of Causal Effects Defined by Shift Interventions. 949-958 - San Gultekin, John W. Paisley:

Risk Bounds for Low Cost Bipartite Ranking. 959-968 - Maximilian Igl, Andrew Gambardella, Jinke He, Nantas Nardelli, N. Siddharth, Wendelin Boehmer, Shimon Whiteson:

Multitask Soft Option Learning. 969-978 - Konstantin Mishchenko, Filip Hanzely, Peter Richtárik:

99% of Worker-Master Communication in Distributed Optimization Is Not Needed. 979-988 - Gherardo Varando, Niels Richard Hansen:

Graphical continuous Lyapunov models. 989-998 - Carlos Améndola, Philipp Dettling, Mathias Drton, Federica Onori, Jun Wu:

Structure Learning for Cyclic Linear Causal Models. 999-1008 - Krista Longi, Chang Rajani, Tom Sillanpää, Joni Mäkinen, Timo Rauhala, Ari Salmi, Edward Hæggström, Arto Klami:

Sensor Placement for Spatial Gaussian Processes with Integral Observations. 1009-1018 - Jean Tarbouriech, Shubhanshu Shekhar, Matteo Pirotta, Mohammad Ghavamzadeh, Alessandro Lazaric:

Active Model Estimation in Markov Decision Processes. 1019-1028 - Ellen R. Novoseller, Yibing Wei, Yanan Sui, Yisong Yue, Joel Burdick:

Dueling Posterior Sampling for Preference-Based Reinforcement Learning. 1029-1038 - Chandler Squires, Yuhao Wang, Caroline Uhler:

Permutation-Based Causal Structure Learning with Unknown Intervention Targets. 1039-1048 - Ioan Gabriel Bucur, Tom Claassen, Tom Heskes:

MASSIVE: Tractable and Robust Bayesian Learning of Many-Dimensional Instrumental Variable Models. 1049-1058 - Aisha Mohamed, Shameem Puthiya Parambath, Zoi Kaoudi, Ashraf Aboulnaga:

Popularity Agnostic Evaluation of Knowledge Graph Embeddings. 1059-1068 - Mohammad Ali Javidian, Marco Valtorta, Pooyan Jamshidi

:
Learning LWF Chain Graphs: A Markov Blanket Discovery Approach. 1069-1078 - Amur Ghose, Abdullah Rashwan, Pascal Poupart:

Batch norm with entropic regularization turns deterministic autoencoders into generative models. 1079-1088 - Marco Morucci, Vittorio Orlandi, Sudeepa Roy, Cynthia Rudin, Alexander Volfovsky:

Adaptive Hyper-box Matching for Interpretable Individualized Treatment Effect Estimation. 1089-1098 - Aurélien Bibaut, Antoine Chambaz, Mark J. van der Laan:

Generalized Policy Elimination: an efficient algorithm for Nonparametric Contextual Bandits. 1099-1108 - Ricardo Silva Carvalho, Ke Wang, Lovedeep Gondara, Chunyan Miao:

Differentially Private Top-k Selection via Stability on Unknown Domain. 1109-1118 - Sayak Ray Chowdhury, Rafael Oliveira, Fabio Ramos:

Active Learning of Conditional Mean Embeddings via Bayesian Optimisation. 1119-1128 - Marcelo Hartmann, Georgi Agiashvili, Paul C. Bürkner, Arto Klami:

Flexible Prior Elicitation via the Prior Predictive Distribution. 1129-1138 - Alan Yang, AmirEmad Ghassami, Maxim Raginsky, Negar Kiyavash, Elyse Rosenbaum:

Model-Augmented Conditional Mutual Information Estimation for Feature Selection. 1139-1148 - Jan Kretínský, Fabian Michel, Lukas Michel, Guillermo A. Pérez:

Finite-Memory Near-Optimal Learning for Markov Decision Processes with Long-Run Average Reward. 1149-1158 - Joris M. Mooij, Tom Claassen:

Constraint-Based Causal Discovery using Partial Ancestral Graphs in the presence of Cycles. 1159-1168 - Jan-Christian Hütter, Philippe Rigollet:

Estimation Rates for Sparse Linear Cyclic Causal Models. 1169-1178 - Tárik S. Salem, Helge Langseth, Heri Ramampiaro:

Prediction Intervals: Split Normal Mixture from Quality-Driven Deep Ensembles. 1179-1187 - Honghua Zhang, Steven Holtzen, Guy Van den Broeck:

On the Relationship Between Probabilistic Circuits and Determinantal Point Processes. 1188-1197 - Matthew Wicker, Luca Laurenti, Andrea Patane, Marta Kwiatkowska:

Probabilistic Safety for Bayesian Neural Networks. 1198-1207 - Hanwen Xing, Geoff Nicholls, Jeong Lee:

Distortion estimates for approximate Bayesian inference. 1208-1217 - Michael Wan, Tanmay Gangwani, Jian Peng:

Mutual Information Based Knowledge Transfer Under State-Action Dimension Mismatch. 1218-1227 - Aaron Zweig, Joan Bruna:

Provably Efficient Third-Person Imitation from Offline Observation. 1228-1237 - David I. Inouye, Liu Leqi, Joon Sik Kim, Bryon Aragam, Pradeep Ravikumar:

Automated Dependence Plots. 1238-1247 - Jun Ho Yoon, Seyoung Kim:

EiGLasso: Scalable Estimation of Cartesian Product of Sparse Inverse Covariance Matrices. 1248-1257 - Eric A. Hansen, Thomas Bowman:

Improved Vector Pruning in Exact Algorithms for Solving POMDPs. 1258-1267 - Tal Friedman, Guy Van den Broeck:

Symbolic Querying of Vector Spaces: Probabilistic Databases Meets Relational Embeddings. 1268-1277 - Luke B. Hewitt, Tuan Anh Le, Joshua B. Tenenbaum:

Learning to learn generative programs with Memoised Wake-Sleep. 1278-1287 - Chris Cundy, Stefano Ermon:

Flexible Approximate Inference via Stratified Normalizing Flows. 1288-1297 - Xinming Liu, Joseph Y. Halpern:

Bounded Rationality in Las Vegas: Probabilistic Finite Automata Play Multi-Armed Bandits. 1298-1307 - Alexander Lyzhov, Yuliya Molchanova, Arsenii Ashukha

, Dmitry Molchanov, Dmitry P. Vetrov:
Greedy Policy Search: A Simple Baseline for Learnable Test-Time Augmentation. 1308-1317 - Soumyasundar Pal, Saber Malekmohammadi, Florence Regol, Yingxue Zhang, Yishi Xu, Mark Coates:

Non Parametric Graph Learning for Bayesian Graph Neural Networks. 1318-1327 - Ahmed Touati, Amy Zhang, Joelle Pineau, Pascal Vincent:

Stable Policy Optimization via Off-Policy Divergence Regularization. 1328-1337 - Beau Coker, Melanie Fernandes Pradier, Finale Doshi-Velez:

PoRB-Nets: Poisson Process Radial Basis Function Networks. 1338-1347 - Noam Finkelstein, Ilya Shpitser:

Deriving Bounds And Inequality Constraints Using Logical Relations Among Counterfactuals. 1348-1357 - Ajay Jain, Pieter Abbeel, Deepak Pathak:

Locally Masked Convolution for Autoregressive Models. 1358-1367 - Rishabh Singh, José C. Príncipe:

Time Series Analysis using a Kernel based Multi-Modal Uncertainty Decomposition Framework. 1368-1377 - Hongyu Ren, Yuke Zhu, Jure Leskovec, Animashree Anandkumar, Animesh Garg:

OCEAN: Online Task Inference for Compositional Tasks with Context Adaptation. 1378-1387 - Jakob Runge:

Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets. 1388-1397

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














