default search action
Daniel Hernández-Lobato
Person information
- affiliation: Universidad Autónoma de Madrid, Computer Science Department, Spain
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c33]Luis A. Ortega Andrés, Simón Rodríguez Santana, Daniel Hernández-Lobato:
Variational Linearized Laplace Approximation for Bayesian Deep Learning. ICML 2024 - 2023
- [j25]Eduardo C. Garrido-Merchán, Daniel Fernández-Sánchez, Daniel Hernández-Lobato:
Parallel predictive entropy search for multi-objective Bayesian optimization with constraints applied to the tuning of machine learning algorithms. Expert Syst. Appl. 215: 119328 (2023) - [j24]Daniel Fernández-Sánchez, Eduardo C. Garrido-Merchán, Daniel Hernández-Lobato:
Improved max-value entropy search for multi-objective bayesian optimization with constraints. Neurocomputing 546: 126290 (2023) - [j23]Bahram Jafrasteh, Daniel Hernández-Lobato, Simón Pedro Lubián-López, Isabel Benavente-Fernández:
Gaussian processes for missing value imputation. Knowl. Based Syst. 273: 110603 (2023) - [j22]Daniel Heestermans Svendsen, Daniel Hernández-Lobato, Luca Martino, Valero Laparra, Álvaro Moreno-Martínez, Gustau Camps-Valls:
Inference over radiative transfer models using variational and expectation maximization methods. Mach. Learn. 112(3): 921-937 (2023) - [c32]Luis A. Ortega, Simón Rodríguez Santana, Daniel Hernández-Lobato:
Deep Variational Implicit Processes. ICLR 2023 - [c31]Juan Maroñas, Daniel Hernández-Lobato:
Efficient Transformed Gaussian Processes for Non-Stationary Dependent Multi-class Classification. ICML 2023: 24045-24081 - [i17]Luis A. Ortega, Simón Rodríguez Santana, Daniel Hernández-Lobato:
Variational Linearized Laplace Approximation for Bayesian Deep Learning. CoRR abs/2302.12565 (2023) - [i16]Francisco Javier Sáez-Maldonado, Juan Maroñas, Daniel Hernández-Lobato:
Deep Transformed Gaussian Processes. CoRR abs/2310.18230 (2023) - 2022
- [j21]Carlos Villacampa-Calvo, Gonzalo Hernández-Muñoz, Daniel Hernández-Lobato:
Alpha-divergence minimization for deep Gaussian processes. Int. J. Approx. Reason. 150: 139-171 (2022) - [j20]Simón Rodríguez Santana, Daniel Hernández-Lobato:
Adversarial α-divergence minimization for Bayesian approximate inference. Neurocomputing 471: 260-274 (2022) - [c30]Bahram Jafrasteh, Carlos Villacampa-Calvo, Daniel Hernández-Lobato:
Input Dependent Sparse Gaussian Processes. ICML 2022: 9739-9759 - [c29]Simón Rodríguez Santana, Bryan Zaldivar, Daniel Hernández-Lobato:
Function-space Inference with Sparse Implicit Processes. ICML 2022: 18723-18740 - [i15]Daniel Heestermans Svendsen, Daniel Hernández-Lobato, Luca Martino, Valero Laparra, Álvaro Moreno, Gustau Camps-Valls:
Inference over radiative transfer models using variational and expectation maximization methods. CoRR abs/2204.03346 (2022) - [i14]Bahram Jafrasteh, Daniel Hernández-Lobato, Simón Pedro Lubián-López, Isabel Benavente-Fernández:
Gaussian Processes for Missing Value Imputation. CoRR abs/2204.04648 (2022) - [i13]Juan Maroñas, Daniel Hernández-Lobato:
Efficient Transformed Gaussian Processes for Non-Stationary Dependent Multi-class Classification. CoRR abs/2205.15008 (2022) - [i12]Luis A. Ortega, Simón Rodríguez Santana, Daniel Hernández-Lobato:
Deep Variational Implicit Processes. CoRR abs/2206.06720 (2022) - [i11]Simón Rodríguez Santana, Luis A. Ortega Andrés, Daniel Hernández-Lobato, Bryan Zaldivar:
Correcting Model Bias with Sparse Implicit Processes. CoRR abs/2207.10673 (2022) - 2021
- [j19]Carlos Villacampa-Calvo, Bryan Zaldivar, Eduardo C. Garrido-Merchán, Daniel Hernández-Lobato:
Multi-class Gaussian Process Classification with Noisy Inputs. J. Mach. Learn. Res. 22: 36:1-36:52 (2021) - [c28]Pablo Morales-Alvarez, Daniel Hernández-Lobato, Rafael Molina, José Miguel Hernández-Lobato:
Activation-level uncertainty in deep neural networks. ICLR 2021 - [i10]Bahram Jafrasteh, Carlos Villacampa-Calvo, Daniel Hernández-Lobato:
Input Dependent Sparse Gaussian Processes. CoRR abs/2107.07281 (2021) - [i9]Simón Rodríguez Santana, Bryan Zaldivar, Daniel Hernández-Lobato:
Sparse Implicit Processes for Approximate Inference. CoRR abs/2110.07618 (2021) - 2020
- [j18]Carlos Villacampa-Calvo, Daniel Hernández-Lobato:
Alpha divergence minimization in multi-class Gaussian process classification. Neurocomputing 378: 210-227 (2020) - [j17]Eduardo C. Garrido-Merchán, Daniel Hernández-Lobato:
Dealing with categorical and integer-valued variables in Bayesian Optimization with Gaussian processes. Neurocomputing 380: 20-35 (2020) - [c27]Marta Gómez-Sancho, Daniel Hernández-Lobato:
Importance Weighted Adversarial Variational Bayes. HAIS 2020: 374-386 - [c26]Gonzalo Hernández-Muñoz, Carlos Villacampa-Calvo, Daniel Hernández-Lobato:
Deep Gaussian Processes Using Expectation Propagation and Monte Carlo Methods. ECML/PKDD (3) 2020: 479-494 - [i8]Carlos Villacampa-Calvo, Bryan Zaldivar, Eduardo C. Garrido-Merchán, Daniel Hernández-Lobato:
Multi-class Gaussian Process Classification with Noisy Inputs. CoRR abs/2001.10523 (2020) - [i7]Eduardo C. Garrido-Merchán, Daniel Hernández-Lobato:
Parallel Predictive Entropy Search for Multi-objective Bayesian Optimization with Constraints. CoRR abs/2004.00601 (2020) - [i6]Daniel Fernández-Sánchez, Eduardo C. Garrido-Merchán, Daniel Hernández-Lobato:
Max-value Entropy Search for Multi-objective Bayesian Optimization with Constraints. CoRR abs/2011.01150 (2020)
2010 – 2019
- 2019
- [j16]Eduardo C. Garrido-Merchán, Daniel Hernández-Lobato:
Predictive Entropy Search for Multi-objective Bayesian Optimization with Constraints. Neurocomputing 361: 50-68 (2019) - [p1]Daniel Hernández-Lobato, Pablo Morales-Mombiela, David Lopez-Paz, Alberto Suárez:
Non-linear Causal Inference Using Gaussianity Measures. Cause Effect Pairs in Machine Learning 2019: 257-299 - [i5]Simón Rodríguez Santana, Daniel Hernández-Lobato:
Adversarial α-divergence Minimization for Bayesian Approximate Inference. CoRR abs/1909.06945 (2019) - 2018
- [j15]Laura Cornejo-Bueno, Eduardo C. Garrido-Merchán, Daniel Hernández-Lobato, Sancho Salcedo-Sanz:
Bayesian optimization of a hybrid system for robust ocean wave features prediction. Neurocomputing 275: 818-828 (2018) - [c25]Irene Córdoba, Eduardo C. Garrido-Merchán, Daniel Hernández-Lobato, Concha Bielza, Pedro Larrañaga:
Bayesian Optimization of the PC Algorithm for Learning Gaussian Bayesian Networks. CAEPIA 2018: 44-54 - [i4]Eduardo C. Garrido-Merchán, Daniel Hernández-Lobato:
Dealing with Categorical and Integer-valued Variables in Bayesian Optimization with Gaussian Processes. CoRR abs/1805.03463 (2018) - [i3]Irene Córdoba-Sánchez, Eduardo C. Garrido-Merchán, Daniel Hernández-Lobato, Concha Bielza, Pedro Larrañaga:
Bayesian optimization of the PC algorithm for learning Gaussian Bayesian networks. CoRR abs/1806.11015 (2018) - 2017
- [c24]Carlos Villacampa-Calvo, Daniel Hernández-Lobato:
Scalable Multi-Class Gaussian Process Classification using Expectation Propagation. ICML 2017: 3550-3559 - [c23]Laura Cornejo-Bueno, Eduardo C. Garrido-Merchán, Daniel Hernández-Lobato, Sancho Salcedo-Sanz:
Bayesian Optimization of a Hybrid Prediction System for Optimal Wave Energy Estimation Problems. IWANN (1) 2017: 648-660 - 2016
- [j14]Daniel Hernández-Lobato, Pablo Morales-Mombiela, David Lopez-Paz, Alberto Suárez:
Non-linear Causal Inference using Gaussianity Measures. J. Mach. Learn. Res. 17: 28:1-28:39 (2016) - [c22]Daniel Hernández-Lobato, José Miguel Hernández-Lobato:
Scalable Gaussian Process Classification via Expectation Propagation. AISTATS 2016: 168-176 - [c21]Viktoriia Sharmanska, Daniel Hernández-Lobato, José Miguel Hernández-Lobato, Novi Quadrianto:
Ambiguity Helps: Classification with Disagreements in Crowdsourced Annotations. CVPR 2016: 2194-2202 - [c20]Thang D. Bui, Daniel Hernández-Lobato, José Miguel Hernández-Lobato, Yingzhen Li, Richard E. Turner:
Deep Gaussian Processes for Regression using Approximate Expectation Propagation. ICML 2016: 1472-1481 - [c19]Daniel Hernández-Lobato, José Miguel Hernández-Lobato, Amar Shah, Ryan P. Adams:
Predictive Entropy Search for Multi-objective Bayesian Optimization. ICML 2016: 1492-1501 - [c18]José Miguel Hernández-Lobato, Yingzhen Li, Mark Rowland, Thang D. Bui, Daniel Hernández-Lobato, Richard E. Turner:
Black-Box Alpha Divergence Minimization. ICML 2016: 1511-1520 - [i2]Thang D. Bui, Daniel Hernández-Lobato, Yingzhen Li, José Miguel Hernández-Lobato, Richard E. Turner:
Deep Gaussian Processes for Regression using Approximate Expectation Propagation. CoRR abs/1602.04133 (2016) - 2015
- [j13]Daniel Hernández-Lobato, Ioannis Katakis, Gonzalo Martínez-Muñoz, Ioannis Partalas:
Special Issue on "Solving complex machine learning problems with ensemble methods". Neurocomputing 150: 402-403 (2015) - [j12]José Miguel Hernández-Lobato, Daniel Hernández-Lobato, Alberto Suárez:
Expectation propagation in linear regression models with spike-and-slab priors. Mach. Learn. 99(3): 437-487 (2015) - [c17]Daniel Hernández-Lobato, José Miguel Hernández-Lobato, Zoubin Ghahramani:
A Probabilistic Model for Dirty Multi-task Feature Selection. ICML 2015: 1073-1082 - 2014
- [j11]Víctor Soto, Sergio García-Moratilla, Gonzalo Martínez-Muñoz, Daniel Hernández-Lobato, Alberto Suárez:
A Double Pruning Scheme for Boosting Ensembles. IEEE Trans. Cybern. 44(12): 2682-2695 (2014) - [c16]Daniel Hernández-Lobato, Viktoriia Sharmanska, Kristian Kersting, Christoph H. Lampert, Novi Quadrianto:
Mind the Nuisance: Gaussian Process Classification using Privileged Noise. NIPS 2014: 837-845 - [i1]Daniel Hernández-Lobato, Viktoriia Sharmanska, Kristian Kersting, Christoph H. Lampert, Novi Quadrianto:
Mind the Nuisance: Gaussian Process Classification using Privileged Noise. CoRR abs/1407.0179 (2014) - 2013
- [j10]Daniel Hernández-Lobato, José Miguel Hernández-Lobato, Pierre Dupont:
Generalized spike-and-slab priors for Bayesian group feature selection using expectation propagation. J. Mach. Learn. Res. 14(1): 1891-1945 (2013) - [j9]Daniel Hernández-Lobato, Gonzalo Martínez-Muñoz, Alberto Suárez:
How large should ensembles of classifiers be? Pattern Recognit. 46(5): 1323-1336 (2013) - [c15]Pablo Morales-Mombiela, Daniel Hernández-Lobato, Alberto Suárez:
Statistical Tests for the Detection of the Arrow of Time in Vector Autoregressive Models. IJCAI 2013: 1544-1550 - [c14]Daniel Hernández-Lobato, José Miguel Hernández-Lobato:
Learning Feature Selection Dependencies in Multi-task Learning. NIPS 2013: 746-754 - [c13]José Miguel Hernández-Lobato, James Robert Lloyd, Daniel Hernández-Lobato:
Gaussian Process Conditional Copulas with Applications to Financial Time Series. NIPS 2013: 1736-1744 - 2012
- [c12]Daniel Hernández-Lobato, Gonzalo Martínez-Muñoz, Alberto Suárez:
On the Independence of the Individual Predictions in Parallel Randomized Ensembles. ESANN 2012 - 2011
- [j8]Daniel Hernández-Lobato, Gonzalo Martínez-Muñoz, Alberto Suárez:
Empirical analysis and evaluation of approximate techniques for pruning regression bagging ensembles. Neurocomputing 74(12-13): 2250-2264 (2011) - [j7]José Miguel Hernández-Lobato, Daniel Hernández-Lobato, Alberto Suárez:
Network-based sparse Bayesian classification. Pattern Recognit. 44(4): 886-900 (2011) - [j6]Daniel Hernández-Lobato, Gonzalo Martínez-Muñoz, Alberto Suárez:
Inference on the prediction of ensembles of infinite size. Pattern Recognit. 44(7): 1426-1434 (2011) - [c11]Daniel Hernández-Lobato, José Miguel Hernández-Lobato, Pierre Dupont:
Robust Multi-Class Gaussian Process Classification. NIPS 2011: 280-288 - 2010
- [j5]Daniel Hernández-Lobato, José Miguel Hernández-Lobato, Alberto Suárez:
Expectation Propagation for microarray data classification. Pattern Recognit. Lett. 31(12): 1618-1626 (2010) - [c10]Víctor Soto, Gonzalo Martínez-Muñoz, Daniel Hernández-Lobato, Alberto Suárez:
A Double Pruning Algorithm for Classification Ensembles. MCS 2010: 104-113 - [c9]Daniel Hernández-Lobato, José Miguel Hernández-Lobato, Thibault Helleputte, Pierre Dupont:
Expectation Propagation for Bayesian Multi-task Feature Selection. ECML/PKDD (1) 2010: 522-537
2000 – 2009
- 2009
- [j4]Gonzalo Martínez-Muñoz, Daniel Hernández-Lobato, Alberto Suárez:
An Analysis of Ensemble Pruning Techniques Based on Ordered Aggregation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2): 245-259 (2009) - [j3]Daniel Hernández-Lobato, Gonzalo Martínez-Muñoz, Alberto Suárez:
Statistical Instance-Based Pruning in Ensembles of Independent Classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 31(2): 364-369 (2009) - [c8]Gonzalo Martínez-Muñoz, Daniel Hernández-Lobato, Alberto Suárez:
Statistical Instance-Based Ensemble Pruning for Multi-class Problems. ICANN (1) 2009: 90-99 - 2008
- [j2]Gonzalo Martínez-Muñoz, Aitor Sánchez-Martínez, Daniel Hernández-Lobato, Alberto Suárez:
Class-switching neural network ensembles. Neurocomputing 71(13-15): 2521-2528 (2008) - [j1]Daniel Hernández-Lobato, José Miguel Hernández-Lobato:
Bayes Machines for binary classification. Pattern Recognit. Lett. 29(10): 1466-1473 (2008) - [c7]Daniel Hernández-Lobato:
Sparse Bayes Machines for Binary Classification. ICANN (1) 2008: 205-214 - 2007
- [c6]Gonzalo Martínez-Muñoz, Daniel Hernández-Lobato, Alberto Suárez:
Selection of Decision Stumps in Bagging Ensembles. ICANN (1) 2007: 319-328 - [c5]José Miguel Hernández-Lobato, Daniel Hernández-Lobato, Alberto Suárez:
GARCH Processes with Non-parametric Innovations for Market Risk Estimation. ICANN (2) 2007: 718-727 - [c4]Daniel Hernández-Lobato, Gonzalo Martínez-Muñoz, Alberto Suárez:
Out of Bootstrap Estimation of Generalization Error Curves in Bagging Ensembles. IDEAL 2007: 47-56 - 2006
- [c3]Gonzalo Martínez-Muñoz, Aitor Sánchez-Martínez, Daniel Hernández-Lobato, Alberto Suárez:
Building Ensembles of Neural Networks with Class-Switching. ICANN (1) 2006: 178-187 - [c2]Daniel Hernández-Lobato, José Miguel Hernández-Lobato, Rubén Ruiz-Torrubiano, Ángel Valle:
Pruning Adaptive Boosting Ensembles by Means of a Genetic Algorithm. IDEAL 2006: 322-329 - [c1]Daniel Hernández-Lobato, Gonzalo Martínez-Muñoz, Alberto Suárez:
Pruning in Ordered Regression Bagging Ensembles. IJCNN 2006: 1266-1273
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-04 20:04 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint