default search action
Luis Chacón
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j54]Pedro Jiménez, Luis Chacón, Mario Merino:
An implicit, conservative electrostatic particle-in-cell algorithm for paraxial magnetic nozzles. J. Comput. Phys. 502: 112826 (2024) - [j53]Lee F. Ricketson, Luis Chacón:
Asymptotic-preserving gyrokinetic implicit particle-orbit integrator for arbitrary electromagnetic fields. J. Comput. Phys. 513: 113136 (2024) - [j52]Hamad El Kahza, William T. Taitano, Jing-Mei Qiu, Luis Chacón:
Krylov-based adaptive-rank implicit time integrators for stiff problems with application to nonlinear Fokker-Planck kinetic models. J. Comput. Phys. 518: 113332 (2024) - [j51]Oleksandr Koshkarov, Luis Chacón:
A fully implicit, asymptotic-preserving, semi-Lagrangian algorithm for the time dependent anisotropic heat transport equation. J. Comput. Phys. 519: 113381 (2024) - [i8]Hamad El Kahza, William T. Taitano, Jing-Mei Qiu, Luis Chacón:
Krylov-based Adaptive-Rank Implicit Time Integrators for Stiff Problems with Application to Nonlinear Fokker-Planck Kinetic Models. CoRR abs/2404.03119 (2024) - [i7]Luis Chacón:
A scalable multidimensional fully implicit solver for Hall magnetohydrodynamics. CoRR abs/2407.07031 (2024) - [i6]Luis Chacón, G. Di Giannatale:
An asymptotic-preserving semi-Lagrangian algorithm for the anisotropic heat transport equation with arbitrary magnetic fields. CoRR abs/2408.02829 (2024) - 2023
- [j50]Guangye Chen, Luis Chacón:
An implicit, conservative and asymptotic-preserving electrostatic particle-in-cell algorithm for arbitrarily magnetized plasmas in uniform magnetic fields. J. Comput. Phys. 487: 112160 (2023) - [i5]Lee F. Ricketson, Luis Chacón:
Asymptotic-preserving gyrokinetic implicit particle-orbit integrator for arbitrary electromagnetic fields. CoRR abs/2312.00730 (2023) - 2022
- [j49]Paul Tranquilli, Lee F. Ricketson, Luis Chacón:
A deterministic verification strategy for electrostatic particle-in-cell algorithms in arbitrary spatial dimensions using the method of manufactured solutions. J. Comput. Phys. 448: 110751 (2022) - [j48]Luis Chacón, Don Daniel, William T. Taitano:
An asymptotic-preserving 2D-2P relativistic drift-kinetic-equation solver for runaway electron simulations in axisymmetric tokamaks. J. Comput. Phys. 449: 110772 (2022) - [j47]Qi Tang, Luis Chacón, Tzanio V. Kolev, John N. Shadid, Xian-Zhu Tang:
An adaptive scalable fully implicit algorithm based on stabilized finite element for reduced visco-resistive MHD. J. Comput. Phys. 454: 110967 (2022) - [j46]Adam Stanier, Luis Chacón:
A conservative implicit-PIC scheme for the hybrid kinetic-ion fluid-electron plasma model on curvilinear meshes. J. Comput. Phys. 459: 111144 (2022) - [j45]Oleksandr Koshkarov, Luis Chacón, Guangye Chen, Lee F. Ricketson:
Fast nonlinear iterative solver for an implicit, energy-conserving, asymptotic-preserving charged-particle orbit integrator. J. Comput. Phys. 459: 111146 (2022) - [j44]Benjamin J. M. Sturdevant, Luis Chacón:
Eliminating finite-grid instabilities in gyrokinetic particle-in-cell simulations. J. Comput. Phys. 464: 111330 (2022) - 2021
- [j43]William T. Taitano, Luis Chacón, A. N. Simakov, Steven E. Anderson:
A conservative phase-space moving-grid strategy for a 1D-2V Vlasov-Fokker-Planck Solver. Comput. Phys. Commun. 258: 107547 (2021) - [j42]Daniel C. Barnes, Luis Chacón:
Finite spatial-grid effects in energy-conserving particle-in-cell algorithms. Comput. Phys. Commun. 258: 107560 (2021) - [j41]William T. Taitano, B. D. Keenan, Luis Chacón, Steven E. Anderson, Hans Hammer, A. N. Simakov:
An Eulerian Vlasov-Fokker-Planck algorithm for spherical implosion simulations of inertial confinement fusion capsules. Comput. Phys. Commun. 263: 107861 (2021) - [j40]Rémi Abgrall, Nikolaus A. Adams, Luis Chacón, Feng Xiao:
Preface. J. Comput. Phys. 430: 110137 (2021) - [j39]Guangye Chen, Luis Chacón, Truong B. Nguyen:
An unsupervised machine-learning checkpoint-restart algorithm using Gaussian mixtures for particle-in-cell simulations. J. Comput. Phys. 436: 110185 (2021) - [i4]Guangye Chen, Luis Chacón, Truong B. Nguyen:
An unsupervised machine-learning checkpoint-restart algorithm using Gaussian mixtures for particle-in-cell simulations. CoRR abs/2105.13797 (2021) - [i3]Qi Tang, Luis Chacón, Tzanio V. Kolev, John N. Shadid, Xian-Zhu Tang:
An adaptive scalable fully implicit algorithm based on stabilized finite element for reduced visco-resistive MHD. CoRR abs/2106.00260 (2021) - 2020
- [j38]Don Daniel, William T. Taitano, Luis Chacón:
A fully implicit, scalable, conservative nonlinear relativistic Fokker-Planck 0D-2P solver for runaway electrons. Comput. Phys. Commun. 254: 107361 (2020) - [j37]Guangye Chen, Luis Chacón, L. Yin, Brian J. Albright, John D. Stark, Robert F. Bird:
A semi-implicit, energy- and charge-conserving particle-in-cell algorithm for the relativistic Vlasov-Maxwell equations. J. Comput. Phys. 407: 109228 (2020) - [j36]Lee F. Ricketson, Luis Chacón:
An energy-conserving and asymptotic-preserving charged-particle orbit implicit time integrator for arbitrary electromagnetic fields. J. Comput. Phys. 418: 109639 (2020) - [j35]Steven E. Anderson, William T. Taitano, Luis Chacón, A. N. Simakov:
An efficient, conservative, time-implicit solver for the fully kinetic arbitrary-species 1D-2V Vlasov-Ampère system. J. Comput. Phys. 419: 109686 (2020) - [j34]Adam Stanier, Luis Chacón, A. Le:
A cancellation problem in hybrid particle-in-cell schemes due to finite particle size. J. Comput. Phys. 420: 109705 (2020) - [i2]Truong Nguyen, Guangye Chen, Luis Chacón:
An Adaptive EM Accelerator for Unsupervised Learning of Gaussian Mixture Models. CoRR abs/2009.12703 (2020)
2010 – 2019
- 2019
- [j33]Adam Stanier, Luis Chacón, Guangye Chen:
A fully implicit, conservative, non-linear, electromagnetic hybrid particle-ion/fluid-electron algorithm. J. Comput. Phys. 376: 597-616 (2019) - [j32]Hans Hammer, HyeongKae Park, Luis Chacón:
A multi-dimensional, moment-accelerated deterministic particle method for time-dependent, multi-frequency thermal radiative transfer problems. J. Comput. Phys. 386: 653-674 (2019) - [j31]HyeongKae Park, Luis Chacón, Anna Matsekh, Guangye Chen:
A multigroup moment-accelerated deterministic particle solver for 1-D time-dependent thermal radiative transfer problems. J. Comput. Phys. 388: 416-438 (2019) - [j30]Luis Chacón, Guangye Chen:
Energy-conserving perfect-conductor boundary conditions for an implicit, curvilinear Darwin particle-in-cell algorithm. J. Comput. Phys. 391: 216-225 (2019) - 2018
- [j29]William T. Taitano, Luis Chacón, A. N. Simakov:
An adaptive, implicit, conservative, 1D-2V multi-species Vlasov-Fokker-Planck multi-scale solver in planar geometry. J. Comput. Phys. 365: 173-205 (2018) - 2017
- [j28]Luis Chacón, Guangye Chen, Dana A. Knoll, Christopher K. Newman, HyeongKae Park, William T. Taitano, Jeffrey Willert, Geoffrey Womeldorff:
Multiscale high-order/low-order (HOLO) algorithms and applications. J. Comput. Phys. 330: 21-45 (2017) - [j27]William T. Taitano, Luis Chacón, A. N. Simakov:
An equilibrium-preserving discretization for the nonlinear Rosenbluth-Fokker-Planck operator in arbitrary multi-dimensional geometry. J. Comput. Phys. 339: 453-460 (2017) - 2016
- [j26]Christopher K. Newman, Geoffrey Womeldorff, Dana A. Knoll, Luis Chacón:
A communication-avoiding implicit-explicit method for a free-surface ocean model. J. Comput. Phys. 305: 877-894 (2016) - [j25]Luis Chacón, Guangye Chen:
A curvilinear, fully implicit, conservative electromagnetic PIC algorithm in multiple dimensions. J. Comput. Phys. 316: 578-597 (2016) - [j24]William T. Taitano, Luis Chacón, A. N. Simakov:
An adaptive, conservative 0D-2V multispecies Rosenbluth-Fokker-Planck solver for arbitrarily disparate mass and temperature regimes. J. Comput. Phys. 318: 391-420 (2016) - [j23]Scott E. Parker, Luis Chacón:
Preface to advances in numerical simulation of plasmas. J. Comput. Phys. 322: 849 (2016) - [j22]Luis Chacón, Adam Stanier:
A scalable, fully implicit algorithm for the reduced two-field low-β extended MHD model. J. Comput. Phys. 326: 763-772 (2016) - 2015
- [j21]Guangye Chen, Luis Chacón:
A multi-dimensional, energy- and charge-conserving, nonlinearly implicit, electromagnetic Vlasov-Darwin particle-in-cell algorithm. Comput. Phys. Commun. 197: 73-87 (2015) - [j20]William T. Taitano, Luis Chacón:
Charge-and-energy conserving moment-based accelerator for a multi-species Vlasov-Fokker-Planck-Ampère system, part I: Collisionless aspects. J. Comput. Phys. 284: 718-736 (2015) - [j19]William T. Taitano, Dana A. Knoll, Luis Chacón:
Charge-and-energy conserving moment-based accelerator for a multi-species Vlasov-Fokker-Planck-Ampère system, part II: Collisional aspects. J. Comput. Phys. 284: 737-757 (2015) - [j18]William T. Taitano, Luis Chacón, A. N. Simakov, K. Molvig:
A mass, momentum, and energy conserving, fully implicit, scalable algorithm for the multi-dimensional, multi-species Rosenbluth-Fokker-Planck equation. J. Comput. Phys. 297: 357-380 (2015) - [c4]Christopher K. Newman, Geoff Womeldorff, Luis Chacón, Dana A. Knoll:
High-Order/Low-Order Methods for Ocean Modeling. ICCS 2015: 2086-2096 - 2014
- [j17]Guangye Chen, Luis Chacón:
An energy- and charge-conserving, nonlinearly implicit, electromagnetic 1D-3V Vlasov-Darwin particle-in-cell algorithm. Comput. Phys. Commun. 185(10): 2391-2402 (2014) - [j16]Guangye Chen, Luis Chacón, Christopher A. Leibs, Dana A. Knoll, William T. Taitano:
Fluid preconditioning for Newton-Krylov-based, fully implicit, electrostatic particle-in-cell simulations. J. Comput. Phys. 258: 555-567 (2014) - [j15]Luis Chacón, Diego del-Castillo-Negrete, Cory D. Hauck:
An asymptotic-preserving semi-Lagrangian algorithm for the time-dependent anisotropic heat transport equation. J. Comput. Phys. 272: 719-746 (2014) - [c3]Joshua Payne, Dana A. Knoll, Allen McPherson, William T. Taitano, Luis Chacón, Guangye Chen, Scott Pakin:
Computational Co-design of a Multiscale Plasma Application: A Process and Initial Results. IPDPS 2014: 1093-1102 - 2013
- [j14]Luis Chacón, Guangye Chen, Daniel C. Barnes:
A charge- and energy-conserving implicit, electrostatic particle-in-cell algorithm on mapped computational meshes. J. Comput. Phys. 233: 1-9 (2013) - [j13]Guangye Chen, Luis Chacón:
An analytical particle mover for the charge- and energy-conserving, nonlinearly implicit, electrostatic particle-in-cell algorithm. J. Comput. Phys. 247: 79-87 (2013) - [j12]Eric C. Cyr, John N. Shadid, Raymond S. Tuminaro, Roger P. Pawlowski, Luis Chacón:
A New Approximate Block Factorization Preconditioner for Two-Dimensional Incompressible (Reduced) Resistive MHD. SIAM J. Sci. Comput. 35(3) (2013) - [j11]William T. Taitano, Dana A. Knoll, Luis Chacón, Guangye Chen:
Development of a Consistent and Stable Fully Implicit Moment Method for Vlasov-Ampère Particle in Cell (PIC) System. SIAM J. Sci. Comput. 35(5) (2013) - [i1]Guangye Chen, Luis Chacón, Christopher A. Leibs, Dana A. Knoll, William T. Taitano:
Fluid preconditioning for Newton-Krylov-based, fully implicit, electrostatic particle-in-cell simulations. CoRR abs/1309.6243 (2013) - 2012
- [j10]Guangye Chen, Luis Chacón, Daniel C. Barnes:
An efficient mixed-precision, hybrid CPU-GPU implementation of a nonlinearly implicit one-dimensional particle-in-cell algorithm. J. Comput. Phys. 231(16): 5374-5388 (2012) - 2011
- [j9]Luis Chacón, Gian Luca Delzanno, John M. Finn:
Robust, multidimensional mesh-motion based on Monge-Kantorovich equidistribution. J. Comput. Phys. 230(1): 87-103 (2011) - [j8]Guangye Chen, Luis Chacón, Daniel C. Barnes:
An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm. J. Comput. Phys. 230(18): 7018-7036 (2011) - [c2]Jinoh Kim, Hasan Abbasi, Luis Chacón, Ciprian Docan, Scott Klasky, Qing Liu, Norbert Podhorszki, Arie Shoshani, Kesheng Wu:
Parallel in situ indexing for data-intensive computing. LDAV 2011: 65-72 - 2010
- [j7]John N. Shadid, Roger P. Pawlowski, Jeffrey W. Banks, Luis Chacón, Paul T. Lin, Raymond S. Tuminaro:
Towards a scalable fully-implicit fully-coupled resistive MHD formulation with stabilized FE methods. J. Comput. Phys. 229(20): 7649-7671 (2010)
2000 – 2009
- 2008
- [j6]Bobby Philip, Luis Chacón, Michael Pernice:
Implicit adaptive mesh refinement for 2D reduced resistive magnetohydrodynamics. J. Comput. Phys. 227(20): 8855-8874 (2008) - [j5]Gian Luca Delzanno, Luis Chacón, John M. Finn, Yeo-Jin Chung, Giovanni Lapenta:
An optimal robust equidistribution method for two-dimensional grid adaptation based on Monge-Kantorovich optimization. J. Comput. Phys. 227(23): 9841-9864 (2008) - [c1]John M. Finn, Gian Luca Delzanno, Luis Chacón:
Grid Generation and Adaptation by Monge-Kantorovich Optimization in Two and Three Dimensions. IMR 2008: 551-568 - 2006
- [j4]Luis Chacón, Giovanni Lapenta:
A fully implicit, nonlinear adaptive grid strategy. J. Comput. Phys. 212(2): 703-717 (2006) - [j3]Giovanni Lapenta, Luis Chacón:
Cost-effectiveness of fully implicit moving mesh adaptation: A practical investigation in 1D. J. Comput. Phys. 219(1): 86-103 (2006) - 2005
- [j2]Dana A. Knoll, V. A. Mousseau, Luis Chacón, John A. Reisner:
Jacobian-Free Newton-Krylov Methods for the Accurate Time Integration of Stiff Wave Systems. J. Sci. Comput. 25(1-2): 213-230 (2005) - 2004
- [j1]Luis Chacón:
A non-staggered, conservative, V×B=0' finite-volume scheme for 3D implicit extended magnetohydrodynamics in curvilinear geometries. Comput. Phys. Commun. 163(3): 143-171 (2004)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-09 20:29 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint