


default search action
NIPS 2001: Vancouver, British Columbia, Canada
- Thomas G. Dietterich, Suzanna Becker, Zoubin Ghahramani:

Advances in Neural Information Processing Systems 14 [Neural Information Processing Systems: Natural and Synthetic, NIPS 2001, December 3-8, 2001, Vancouver, British Columbia, Canada]. MIT Press 2001 - Aaron C. Courville, David S. Touretzky:

Modeling Temporal Structure in Classical Conditioning. 3-10 - Peter Dayan:

Motivated Reinforcement Learning. 11-18 - Shimon Edelman, Benjamin P. Hiles, Hwajin Yang, Nathan Intrator:

Probabilistic principles in unsupervised learning of visual structure: human data and a model. 19-26 - David Jacobs, Bas Rokers, Archisman Rudra, Zili Liu:

Fragment Completion in Humans and Machines. 27-34 - Dan Klein, Christopher D. Manning:

Natural Language Grammar Induction Using a Constituent-Context Model. 35-42 - Michael Kositsky, Andrew G. Barto:

The Emergence of Multiple Movement Units in the Presence of Noise and Feedback Delay. 43-50 - Michael C. Mozer, Michael D. Colagrosso, David E. Huber:

A Rational Analysis of Cognitive Control in a Speeded Discrimination Task. 51-57 - S. Narayanan, Daniel Jurafsky:

A Bayesian Model Predicts Human Parse Preference and Reading Times in Sentence Processing. 59-65 - Michiro Negishi, Stephen Jose Hanson:

Grammar Transfer in a Second Order Recurrent Neural Network. 67-73 - Randall C. O'Reilly, Richard S. Busby:

Generalizable Relational Binding from Coarse-coded Distributed Representations. 75-82 - Randall C. O'Reilly, R. Soto:

A Model of the Phonological Loop: Generalization and Binding. 83-90 - Mark A. Paskin:

Grammatical Bigrams. 91-97 - Bob Rehder:

Causal Categorization with Bayes Nets. 99-105 - Wheeler Ruml:

Constructing Distributed Representations Using Additive Clustering. 107-114 - Jonathan L. Shapiro, John Wearden:

Reinforcement Learning and Time Perception -- a Model of Animal Experiments. 115-122 - Daniel Yarlett, Michael Ramscar:

A Quantitative Model of Counterfactual Reasoning. 123-130 - Giorgio A. Ascoli, Alexei V. Samsonovich:

Bayesian morphometry of hippocampal cells suggests same-cell somatodendritic repulsion. 133-139 - Andrea d'Avella, Matthew C. Tresch:

Modularity in the motor system: decomposition of muscle patterns as combinations of time-varying synergies. 141-148 - Jaap A. Beintema, Albert V. van den Berg, Markus Lappe:

Receptive field structure of flow detectors for heading perception. 149-156 - Benjamin Blankertz, Gabriel Curio, Klaus-Robert Müller:

Classifying Single Trial EEG: Towards Brain Computer Interfacing. 157-164 - Neil Burgess, Tom Hartley:

Orientational and Geometric Determinants of Place and Head-direction. 165-172 - Gal Chechik, Amir Globerson, Michael J. Anderson, Eric D. Young, Israel Nelken, Naftali Tishby:

Group Redundancy Measures Reveal Redundancy Reduction in the Auditory Pathway. 173-180 - Hans Colonius, Adele Diederich:

A Maximum-Likelihood Approach to Modeling Multisensory Enhancement. 181-187 - Peter Dayan, Angela J. Yu:

ACh, Uncertainty, and Cortical Inference. 189-196 - Opher Donchin, Reza Shadmehr:

Linking Motor Learning to Function Approximation: Learning in an Unlearnable Force Field. 197-203 - Julian Eggert, Berthold Bäuml:

Exact differential equation population dynamics for integrate-and-fire neurons. 205-212 - Yun Gao, Michael J. Black, Elie Bienenstock, Shy Shoham, John P. Donoghue:

Probabilistic Inference of Hand Motion from Neural Activity in Motor Cortex. 213-220 - Richard H. R. Hahnloser, Xiaohui Xie, H. Sebastian Seung:

A theory of neural integration in the head-direction system. 221-228 - Ádám Kepecs, S. Raghavachari:

3 state neurons for contextual processing. 229-236 - Peter E. Latham:

Associative memory in realistic neuronal networks. 237-244 - Narihisa Matsumoto, Masato Okada:

Self-regulation Mechanism of Temporally Asymmetric Hebbian Plasticity. 245-252 - Hiroyuki Nakahara, Shun-ichi Amari:

Information-Geometric Decomposition in Spike Analysis. 253-260 - Antonino Casile, Michele Rucci:

Eye movements and the maturation of cortical orientation selectivity. 261-267 - Odelia Schwartz, E. J. Chichilnisky, Eero P. Simoncelli:

Characterizing Neural Gain Control using Spike-triggered Covariance. 269-276 - Maoz Shamir, Haim Sompolinsky:

Correlation Codes in Neuronal Populations. 277-284 - Jesper Tegnér, Ádám Kepecs:

Why Neuronal Dynamics Should Control Synaptic Learning Rules. 285-292 - Thomas Trappenberg, Edmund T. Rolls, Simon M. Stringer:

Effective Size of Receptive Fields of Inferior Temporal Visual Cortex Neurons in Natural Scenes. 293-300 - Gregor Wenning, Klaus Obermayer:

Activity Driven Adaptive Stochastic Resonance. 301-308 - B. D. Wright, Kamal Sen, William Bialek, A. J. Doupe:

Spike timing and the coding of naturalistic sounds in a central auditory area of songbirds. 309-316 - Si Wu, Shun-ichi Amari:

Neural Implementation of Bayesian Inference in Population Codes. 317-323 - Xiaohui Xie, Martin A. Giese:

Generating velocity tuning by asymmetric recurrent connections. 325-332 - Dimitris Achlioptas, Frank McSherry, Bernhard Schölkopf:

Sampling Techniques for Kernel Methods. 335-342 - Shun-ichi Amari, Hyeyoung Park, Tomoko Ozeki:

Geometrical Singularities in the Neuromanifold of Multilayer Perceptrons. 343-350 - Mikio L. Braun, Joachim M. Buhmann:

The Noisy Euclidean Traveling Salesman Problem and Learning. 351-358 - Nicolò Cesa-Bianchi, Alex Conconi, Claudio Gentile:

On the Generalization Ability of On-Line Learning Algorithms. 359-366 - Nello Cristianini, John Shawe-Taylor, André Elisseeff, Jaz S. Kandola:

On Kernel-Target Alignment. 367-373 - Sanjoy Dasgupta, Michael L. Littman, David A. McAllester:

PAC Generalization Bounds for Co-training. 375-382 - Anita C. Faul, Michael E. Tipping:

Analysis of Sparse Bayesian Learning. 383-389 - Ralf Herbrich, Robert C. Williamson:

Algorithmic Luckiness. 391-397 - Marcus Hutter:

Distribution of Mutual Information. 399-406 - Shiro Ikeda, Toshiyuki Tanaka, Shun-ichi Amari:

Information Geometrical Framework for Analyzing Belief Propagation Decoder. 407-414 - Hilbert J. Kappen, Wim Wiegerinck:

Novel iteration schemes for the Cluster Variation Method. 415-422 - Roni Khardon, Dan Roth, Rocco A. Servedio:

Efficiency versus Convergence of Boolean Kernels for On-Line Learning Algorithms. 423-430 - Jon M. Kleinberg:

Small-World Phenomena and the Dynamics of Information. 431-438 - Adam Kowalczyk, Alexander J. Smola, Robert C. Williamson:

Kernel Machines and Boolean Functions. 439-446 - Guy Lebanon, John D. Lafferty:

Boosting and Maximum Likelihood for Exponential Models. 447-454 - Martijn A. R. Leisink, Bert Kappen:

Means, Correlations and Bounds. 455-462 - Dörthe Malzahn, Manfred Opper:

A Variational Approach to Learning Curves. 463-469 - Ilya Nemenman, F. Shafee, William Bialek:

Entropy and Inference, Revisited. 471-478 - Manfred Opper, Robert Urbanczik:

Asymptotic Universality for Learning Curves of Support Vector Machines. 479-486 - Gunnar Rätsch, Sebastian Mika, Manfred K. Warmuth:

On the Convergence of Leveraging. 487-494 - Magnus Rattray, Gleb Basalyga:

Scaling Laws and Local Minima in Hebbian ICA. 495-501 - M. Schmitt:

Computing Time Lower Bounds for Recurrent Sigmoidal Neural Networks. 503-510 - John Shawe-Taylor, Nello Cristianini, Jaz S. Kandola:

On the Concentration of Spectral Properties. 511-517 - Peter Sollich:

Gaussian Process Regression with Mismatched Models. 519-526 - Toshiyuki Tanaka, Shiro Ikeda, Shun-ichi Amari:

Information-Geometrical Significance of Sparsity in Gallager Codes. 527-534 - K. Y. Michael Wong, F. Li:

Fast Parameter Estimation Using Green's Functions. 535-542 - Tong Zhang:

Generalization Performance of Some Learning Problems in Hilbert Functional Spaces. 543-550 - Florence d'Alché-Buc, Yves Grandvalet, Christophe Ambroise:

Semi-supervised MarginBoost. 553-560 - Christophe Andrieu, Nando de Freitas, Arnaud Doucet:

Rao-Blackwellised Particle Filtering via Data Augmentation. 561-567 - Francis R. Bach, Michael I. Jordan:

Thin Junction Trees. 569-576 - Matthew J. Beal, Zoubin Ghahramani, Carl Edward Rasmussen:

The Infinite Hidden Markov Model. 577-584 - Mikhail Belkin, Partha Niyogi:

Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering. 585-591 - Jinbo Bi, Kristin P. Bennett:

Duality, Geometry, and Support Vector Regression. 593-600 - David M. Blei, Andrew Y. Ng, Michael I. Jordan:

Latent Dirichlet Allocation. 601-608 - Olivier Chapelle, Bernhard Schölkopf:

Incorporating Invariances in Non-Linear Support Vector Machines. 609-616 - Michael Collins, Sanjoy Dasgupta, Robert E. Schapire:

A Generalization of Principal Components Analysis to the Exponential Family. 617-624 - Michael Collins, Nigel Duffy:

Convolution Kernels for Natural Language. 625-632 - Ronan Collobert, Samy Bengio, Yoshua Bengio:

A Parallel Mixture of SVMs for Very Large Scale Problems. 633-640 - Koby Crammer, Yoram Singer:

Pranking with Ranking. 641-647 - Nello Cristianini, John Shawe-Taylor, Jaz S. Kandola:

Spectral Kernel Methods for Clustering. 649-655 - Lehel Csató, Manfred Opper, Ole Winther:

TAP Gibbs Free Energy, Belief Propagation and Sparsity. 657-663 - Carlotta Domeniconi, Dimitrios Gunopulos:

Adaptive Nearest Neighbor Classification Using Support Vector Machines. 665-672 - Pedro M. Domingos, Geoff Hulten:

Learning from Infinite Data in Finite Time. 673-680 - André Elisseeff, Jason Weston:

A kernel method for multi-labelled classification. 681-687 - Daniela Pucci de Farias, Benjamin Van Roy:

Approximate Dynamic Programming via Linear Programming. 689-695 - Mário A. T. Figueiredo:

Adaptive Sparseness Using Jeffreys Prior. 697-704 - Shai Fine, Katya Scheinberg

:
Incremental Learning and Selective Sampling via Parametric Optimization Framework for SVM. 705-711 - Dieter Fox:

KLD-Sampling: Adaptive Particle Filters. 713-720 - Brendan J. Frey, Nebojsa Jojic:

Fast, Large-Scale Transformation-Invariant Clustering. 721-727 - Brendan J. Frey, Anitha Kannan, Nebojsa Jojic:

Product Analysis: Learning to Model Observations as Products of Hidden Variables. 729-735 - Brendan J. Frey, Ralf Koetter, Nemanja Petrovic:

Very loopy belief propagation for unwrapping phase images. 737-743 - Polina Golland:

Discriminative Direction for Kernel Classifiers. 745-752 - Patrick Haffner:

Escaping the Convex Hull with Extrapolated Vector Machines. 753-760 - Stefan Harmeling, Andreas Ziehe, Motoaki Kawanabe, Klaus-Robert Müller:

Kernel Feature Spaces and Nonlinear Blind Souce Separation. 761-768 - David Horn, Assaf Gottlieb:

The Method of Quantum Clustering. 769-776 - Tommi S. Jaakkola, Hava T. Siegelmann:

Active Information Retrieval. 777-784 - Jyrki Kivinen, Alexander J. Smola, Robert C. Williamson:

Online Learning with Kernels. 785-792 - Jens Kohlmorgen, Steven Lemm:

A Dynamic HMM for On-line Segmentation of Sequential Data. 793-800 - Gert R. G. Lanckriet, Laurent El Ghaoui, Chiranjib Bhattacharyya, Michael I. Jordan:

Minimax Probability Machine. 801-807 - John Langford, Rich Caruana:

(Not) Bounding the True Error. 809-816 - Michael L. Littman, Michael J. Kearns, Satinder Singh:

An Efficient, Exact Algorithm for Solving Tree-Structured Graphical Games. 817-823 - Peter Meinicke, Helge J. Ritter:

Quantizing Density Estimators. 825-832 - Kevin P. Murphy, Mark A. Paskin:

Linear-time inference in Hierarchical HMMs. 833-840 - Andrew Y. Ng, Michael I. Jordan:

On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes. 841-848 - Andrew Y. Ng, Michael I. Jordan, Yair Weiss:

On Spectral Clustering: Analysis and an algorithm. 849-856 - Alberto Paccanaro, Geoffrey E. Hinton:

Learning Hierarchical Structures with Linear Relational Embedding. 857-864 - Marcello Pelillo:

Matching Free Trees with Replicator Equations. 865-872 - Anand Rangarajan, Alan L. Yuille:

MIME: Mutual Information Minimization and Entropy Maximization for Bayesian Belief Propagation. 873-880 - Carl Edward Rasmussen, Zoubin Ghahramani:

Infinite Mixtures of Gaussian Process Experts. 881-888 - Sam T. Roweis, Lawrence K. Saul, Geoffrey E. Hinton:

Global Coordination of Local Linear Models. 889-896 - Lawrence K. Saul, Daniel D. Lee:

Multiplicative Updates for Classification by Mixture Models. 897-904 - Matthias W. Seeger:

Covariance Kernels from Bayesian Generative Models. 905-912 - Eran Segal, Daphne Koller, Dirk Ormoneit:

Probabilistic Abstraction Hierarchies. 913-920 - Hiroshi Shimodaira, Ken-ichi Noma, Mitsuru Nakai, Shigeki Sagayama:

Dynamic Time-Alignment Kernel in Support Vector Machine. 921-928 - Noam Slonim, Nir Friedman, Naftali Tishby:

Agglomerative Multivariate Information Bottleneck. 929-936 - Peter Sykacek, Stephen J. Roberts:

Bayesian time series classification. 937-944 - Martin Szummer, Tommi S. Jaakkola:

Partially labeled classification with Markov random walks. 945-952 - Yee Whye Teh, Max Welling:

The Unified Propagation and Scaling Algorithm. 953-960 - Sebastian Thrun, John Langford, Vandi Verma:

Risk Sensitive Particle Filters. 961-968 - Kari Torkkola:

Learning Discriminative Feature Transforms to Low Dimensions in Low Dimentions. 969-976 - Koji Tsuda, Motoaki Kawanabe, Gunnar Rätsch, Sören Sonnenburg, Klaus-Robert Müller:

A New Discriminative Kernel From Probabilistic Models. 977-984 - Pascal Vincent, Yoshua Bengio:

K-Local Hyperplane and Convex Distance Nearest Neighbor Algorithms. 985-992 - Roland Vollgraf, Klaus Obermayer:

Multi Dimensional ICA to Separate Correlated Sources. 993-1000 - Martin J. Wainwright, Tommi S. Jaakkola, Alan S. Willsky:

Tree-based reparameterization for approximate inference on loopy graphs. 1001-1008 - Heiko Wersing:

Learning Lateral Interactions for Feature Binding and Sensory Segmentation. 1009-1016 - Christopher K. I. Williams, Felix V. Agakov, Stephen N. Felderhof:

Products of Gaussians. 1017-1024 - Ran El-Yaniv, Oren Souroujon:

Iterative Double Clustering for Unsupervised and Semi-Supervised Learning. 1025-1032 - Alan L. Yuille, Anand Rangarajan:

The Concave-Convex Procedure (CCCP). 1033-1040 - Bianca Zadrozny:

Reducing multiclass to binary by coupling probability estimates. 1041-1048 - Michael Zibulevsky, Pavel Kisilev, Yehoshua Y. Zeevi, Barak A. Pearlmutter:

Blind Source Separation via Multinode Sparse Representation. 1049-1056 - Hongyuan Zha, Xiaofeng He, Chris H. Q. Ding, Ming Gu, Horst D. Simon:

Spectral Relaxation for K-means Clustering. 1057-1064 - Tong Zhang:

A General Greedy Approximation Algorithm with Applications. 1065-1072 - Qi Zhang, Sally A. Goldman:

EM-DD: An Improved Multiple-Instance Learning Technique. 1073-1080 - Ji Zhu, Trevor Hastie:

Kernel Logistic Regression and the Import Vector Machine. 1081-1088 - Adria Bofill, Alan F. Murray, Damon P. Thompson:

Citcuits for VLSI Implementation of Temporally Asymmetric Hebbian Learning. 1091-1098 - Roman Genov, Gert Cauwenberghs:

Stochastic Mixed-Signal VLSI Architecture for High-Dimensional Kernel Machines. 1099-1105 - Shih-Chii Liu, Jörg Kramer, Giacomo Indiveri, Tobi Delbrück, Rodney J. Douglas:

Orientation-Selective aVLSI Spiking Neurons. 1107-1114 - Takashi Morie, Tomohiro Matsuura, Makoto Nagata, Atsushi Iwata:

An Efficient Clustering Algorithm Using Stochastic Association Model and Its Implementation Using Nanostructures. 1115-1122 - Aaron P. Shon, David Hsu, Chris Diorio:

Learning Spike-Based Correlations and Conditional Probabilities in Silicon. 1123-1130 - Toshihiko Yamasaki, Tadashi Shibata:

Analog Soft-Pattern-Matching Classifier using Floating-Gate MOS Technology. 1131-1138 - Jeff A. Bilmes, Gang Ji, Marina Meila:

Intransitive Likelihood-Ratio Classifiers. 1141-1148 - Andrew D. Brown, Geoffrey E. Hinton:

Relative Density Nets: A New Way to Combine Backpropagation with HMM's. 1149-1156 - William M. Campbell:

A Sequence Kernel and its Application to Speaker Recognition. 1157-1163 - Brendan J. Frey, Trausti T. Kristjansson, Li Deng, Alex Acero:

ALGONQUIN - Learning Dynamic Noise Models From Noisy Speech for Robust Speech Recognition. 1165-1171 - John R. Hershey, Michael Casey:

Audio-Visual Sound Separation Via Hidden Markov Models. 1173-1180 - Frank C. Meinecke, Andreas Ziehe, Motoaki Kawanabe, Klaus-Robert Müller:

Estimating the Reliability of ICA Projections. 1181-1188 - Shahla Parveen, Phil D. Green:

Speech Recognition with Missing Data using Recurrent Neural Nets. 1189-1195 - N. Smith, Mark J. F. Gales:

Speech Recognition using SVMs. 1197-1204 - Kaisheng Yao, Satoshi Nakamura:

Sequential Noise Compensation by Sequential Monte Carlo Method. 1205-1212 - Stuart N. Wrigley, Guy J. Brown:

A Neural Oscillator Model of Auditory Selective Attention. 1213-1220 - Benjamin T. Backus:

Perceptual Metamers in Stereoscopic Vision. 1223-1230 - James M. Coughlan, Alan L. Yuille:

The g Factor: Relating Distributions on Features to Distributions on Images. 1231-1238 - Bernd Heisele, Thomas Serre, Massimiliano Pontil, Thomas Vetter, Tomaso A. Poggio:

Categorization by Learning and Combining Object Parts. 1239-1245 - Laurent Itti, Jochen Braun, Christof Koch:

Modeling the Modulatory Effect of Attention on Human Spatial Vision. 1247-1254 - Marzia Polito, Pietro Perona:

Grouping and dimensionality reduction by locally linear embedding. 1255-1262 - Rómer Rosales, Stan Sclaroff:

Learning Body Pose via Specialized Maps. 1263-1270 - Silvio P. Sabatini, Fabio Solari, Giulia Andreani, Chiara Bartolozzi, Giacomo M. Bisio:

A Hierarchical Model of Complex Cells in Visual Cortex for the Binocular Perception of Motion-in-Depth. 1271-1278 - Javid Sadr, Sayan Mukherjee, K. Thoresz, Pawan Sinha:

The Fidelity of Local Ordinal Encoding. 1279-1286 - Yang Song, Luis Goncalves, Pietro Perona:

Unsupervised Learning of Human Motion Models. 1287-1294 - Chris Stauffer, Erik G. Miller, Kinh Tieu:

Transform-invariant Image Decomposition with Similarity Templates. 1295-1302 - Antonio Torralba:

Contextual Modulation of Target Saliency. 1303-1310 - Paul A. Viola, Michael J. Jones:

Fast and Robust Classification using Asymmetric AdaBoost and a Detector Cascade. 1311-1318 - Lance R. Williams, John W. Zweck:

A Rotation and Translation Invariant Discrete Saliency Network. 1319-1326 - Stella X. Yu, Jianbo Shi:

Grouping with Bias. 1327-1334 - Timothy X. Brown:

Switch Packet Arbitration via Queue-Learning. 1337-1344 - Igor V. Cadez, Paul S. Bradley:

Model Based Population Tracking and Automatic Detection of Distribution Changes. 1345-1352 - Igor V. Cadez, Padhraic Smyth:

Bayesian Predictive Profiles With Applications to Retail Transaction Data. 1353-1360 - Ali Taylan Cemgil, Bert Kappen:

Tempo tracking and rhythm quantization by sequential Monte Carlo. 1361-1368 - Nicolas Chapados, Yoshua Bengio, Pascal Vincent, Joumana Ghosn, Charles Dugas, Ichiro Takeuchi, Linyan Meng:

Estimating Car Insurance Premia: a Case Study in High-Dimensional Data Inference. 1369-1376 - Judy A. Franklin:

Improvisation and Learning. 1377-1384 - Thomas L. Griffiths, Joshua B. Tenenbaum:

Using Vocabulary Knowledge in Bayesian Multinomial Estimation. 1385-1392 - Charles Lee Isbell Jr., Christian R. Shelton, Michael J. Kearns, Satinder Singh, Peter Stone:

Cobot: A Social Reinforcement Learning Agent. 1393-1400 - Neil D. Lawrence, Antony I. T. Rowstron, Christopher M. Bishop, M. J. Taylor:

Optimising Synchronisation Times for Mobile Devices. 1401-1408 - Michael C. Mozer, Robert H. Dodier, Michael D. Colagrosso, Cesar Guerra-Salcedo, Richard H. Wolniewicz:

Prodding the ROC Curve: Constrained Optimization of Classifier Performance. 1409-1415 - Jörg Ontrup, Helge J. Ritter:

Hyperbolic Self-Organizing Maps for Semantic Navigation. 1417-1424 - John C. Platt, Christopher J. C. Burges, Steven Swenson, Christopher Weare, Alice Zheng:

Learning a Gaussian Process Prior for Automatically Generating Music Playlists. 1425-1432 - Christopher Raphael:

A Bayesian Network for Real-Time Musical Accompaniment. 1433-1439 - Matthew Richardson, Pedro M. Domingos:

The Intelligent surfer: Probabilistic Combination of Link and Content Information in PageRank. 1441-1448 - Manfred K. Warmuth, Gunnar Rätsch, Michael Mathieson, Jun Liao, Christian Lemmen:

Active Learning in the Drug Discovery Process. 1449-1456 - Ming-Hsuan Yang:

Face Recognition Using Kernel Methods. 1457-1464 - Hans-Georg Zimmermann, Ralph Neuneier, Ralph Grothmann:

Active Portfolio-Management based on Error Correction Neural Networks. 1465-1472 - Bram Bakker:

Reinforcement Learning with Long Short-Term Memory. 1475-1482 - Yu-Han Chang, Leslie Pack Kaelbling:

Playing is believing: The role of beliefs in multi-agent learning. 1483-1490 - Thomas G. Dietterich, Xin Wang:

Batch Value Function Approximation via Support Vectors. 1491-1498 - Eyal Even-Dar, Yishay Mansour:

Convergence of Optimistic and Incremental Q-Learning. 1499-1506 - Evan Greensmith, Peter L. Bartlett, Jonathan Baxter:

Variance Reduction Techniques for Gradient Estimates in Reinforcement Learning. 1507-1514 - Gregory Z. Grudic, Lyle H. Ungar:

Rates of Convergence of Performance Gradient Estimates Using Function Approximation and Bias in Reinforcement Learning. 1515-1522 - Carlos Guestrin, Daphne Koller, Ronald Parr:

Multiagent Planning with Factored MDPs. 1523-1530 - Sham M. Kakade:

A Natural Policy Gradient. 1531-1538 - Sven Koenig, Maxim Likhachev:

Incremental A*. 1539-1546 - Michail G. Lagoudakis, Ronald Parr:

Model-Free Least-Squares Policy Iteration. 1547-1554 - Michael L. Littman, Richard S. Sutton, Satinder Singh:

Predictive Representations of State. 1555-1561 - Shie Mannor, Nahum Shimkin:

The Steering Approach for Multi-Criteria Reinforcement Learning. 1563-1570 - Rémi Munos:

Efficient Resources Allocation for Markov Decision Processes. 1571-1578 - Dale Schuurmans, Relu Patrascu:

Direct value-approximation for factored MDPs. 1579-1586 - Xin Wang, Thomas G. Dietterich:

Stabilizing Value Function Approximation with the BFBP Algorithm. 1587-1594

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














