default search action
Jun Zhu 0001
Person information
- affiliation: Tsinghua University, State Key Laboratory of Intelligent Technology and Systems, TNList, Beijing, China
- affiliation: Tsinghua University, Department of Computer Science and Technology, Beijing, China
- affiliation (former): Carnegie Mellon University, Machine Learning Department, Pittsburgh, PA, USA
Other persons with the same name
- Jun Zhu — disambiguation page
- Jun Zhu 0002 — University of North Carolina at Charlotte, Charlotte, NC, USA
- Jun Zhu 0003 — Technical University of Eindhoven, The Netherlands
- Jun Zhu 0004 — Nanjing Normal University, China
- Jun Zhu 0005 — The University of British Columbia, Department of Electrical and Computer Engineering, Vancouver, BC, Canada
- Jun Zhu 0006 — Xiamen University, Department of Chemistry, China (and 1 more)
- Jun Zhu 0007 — Southwest Jiaotong University, Faculty of Geosciences and Environmental Engineering, Chengdu, China
- Jun Zhu 0008 — Nanjing University of Information Science and Technology, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, China (and 2 more)
- Jun Zhu 0009 — University of Electronic Science and Technology of China, School of Electronic Engineering, Chengdu, China
- Jun Zhu 0010 — Jinling Institute of Technology, Nanjing, China (and 1 more)
- Jun Zhu 0011 — Royal Institute of Technology, Stockholm, Sweden
- Jun Zhu 0012 — Northwestern Polytechnical University, Department of Civil Aviation, Xi'an, China (and 1 more)
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j63]You Qiaoben, Chengyang Ying, Xinning Zhou, Hang Su, Jun Zhu, Bo Zhang:
Understanding adversarial attacks on observations in deep reinforcement learning. Sci. China Inf. Sci. 67(5) (2024) - [j62]Jinlai Zhang, Yinpeng Dong, Jun Zhu, Jihong Zhu, Minchi Kuang, Xiaming Yuan:
Improving transferability of 3D adversarial attacks with scale and shear transformations. Inf. Sci. 662: 120245 (2024) - [j61]Liyuan Wang, Xingxing Zhang, Hang Su, Jun Zhu:
A Comprehensive Survey of Continual Learning: Theory, Method and Application. IEEE Trans. Pattern Anal. Mach. Intell. 46(8): 5362-5383 (2024) - [j60]Ke Su, Hang Su, Chongxuan Li, Jun Zhu, Bo Zhang:
Probabilistic Neural-Symbolic Models With Inductive Posterior Constraints. IEEE Trans. Neural Networks Learn. Syst. 35(2): 2667-2679 (2024) - [c250]Wentse Chen, Shiyu Huang, Yuan Chiang, Tim Pearce, Wei-Wei Tu, Ting Chen, Jun Zhu:
DGPO: Discovering Multiple Strategies with Diversity-Guided Policy Optimization. AAAI 2024: 11390-11398 - [c249]Huayu Chen, Cheng Lu, Zhengyi Wang, Hang Su, Jun Zhu:
Score Regularized Policy Optimization through Diffusion Behavior. ICLR 2024 - [c248]Huanran Chen, Yichi Zhang, Yinpeng Dong, Xiao Yang, Hang Su, Jun Zhu:
Rethinking Model Ensemble in Transfer-based Adversarial Attacks. ICLR 2024 - [c247]Jianhui Li, Shilong Liu, Zidong Liu, Yikai Wang, Kaiwen Zheng, Jinghui Xu, Jianmin Li, Jun Zhu:
InstructPix2NeRF: Instructed 3D Portrait Editing from a Single Image. ICLR 2024 - [c246]Lingxuan Wu, Xiao Yang, Yinpeng Dong, Liuwei Xie, Hang Su, Jun Zhu:
Embodied Active Defense: Leveraging Recurrent Feedback to Counter Adversarial Patches. ICLR 2024 - [c245]Chendong Xiang, Armando Teles Fortes, Khang Hui Chua, Hang Su, Jun Zhu:
FeedFace: Efficient Inference-based Face Personalization via Diffusion Models. Tiny Papers @ ICLR 2024 - [c244]Huanran Chen, Yinpeng Dong, Zhengyi Wang, Xiao Yang, Chengqi Duan, Hang Su, Jun Zhu:
Robust Classification via a Single Diffusion Model. ICML 2024 - [c243]Shuyu Cheng, Yibo Miao, Yinpeng Dong, Xiao Yang, Xiao-Shan Gao, Jun Zhu:
Efficient Black-box Adversarial Attacks via Bayesian Optimization Guided by a Function Prior. ICML 2024 - [c242]Zhongkai Hao, Chang Su, Songming Liu, Julius Berner, Chengyang Ying, Hang Su, Anima Anandkumar, Jian Song, Jun Zhu:
DPOT: Auto-Regressive Denoising Operator Transformer for Large-Scale PDE Pre-Training. ICML 2024 - [c241]Haozhe Ji, Cheng Lu, Yilin Niu, Pei Ke, Hongning Wang, Jun Zhu, Jie Tang, Minlie Huang:
Towards Efficient Exact Optimization of Language Model Alignment. ICML 2024 - [c240]Hengkai Tan, Songming Liu, Kai Ma, Chengyang Ying, Xingxing Zhang, Hang Su, Jun Zhu:
Fourier Controller Networks for Real-Time Decision-Making in Embodied Learning. ICML 2024 - [i263]Ziqi Yuan, Liyuan Wang, Wenbo Ding, Xingxing Zhang, Jiachen Zhong, Jianyong Ai, Jianmin Li, Jun Zhu:
DualTeacher: Bridging Coexistence of Unlabelled Classes for Semi-supervised Incremental Object Detection. CoRR abs/2401.05362 (2024) - [i262]Songming Liu, Chang Su, Jiachen Yao, Zhongkai Hao, Hang Su, Youjia Wu, Jun Zhu:
Preconditioning for Physics-Informed Neural Networks. CoRR abs/2402.00531 (2024) - [i261]Haozhe Ji, Cheng Lu, Yilin Niu, Pei Ke, Hongning Wang, Jun Zhu, Jie Tang, Minlie Huang:
Towards Efficient and Exact Optimization of Language Model Alignment. CoRR abs/2402.00856 (2024) - [i260]Huanran Chen, Yinpeng Dong, Shitong Shao, Zhongkai Hao, Xiao Yang, Hang Su, Jun Zhu:
Your Diffusion Model is Secretly a Certifiably Robust Classifier. CoRR abs/2402.02316 (2024) - [i259]Huayu Chen, Guande He, Hang Su, Jun Zhu:
Noise Contrastive Alignment of Language Models with Explicit Rewards. CoRR abs/2402.05369 (2024) - [i258]Yu Tian, Xiao Yang, Yinpeng Dong, Heming Yang, Hang Su, Jun Zhu:
BSPA: Exploring Black-box Stealthy Prompt Attacks against Image Generators. CoRR abs/2402.15218 (2024) - [i257]Tianjiao Luo, Tim Pearce, Huayu Chen, Jianfei Chen, Jun Zhu:
C-GAIL: Stabilizing Generative Adversarial Imitation Learning with Control Theory. CoRR abs/2402.16349 (2024) - [i256]Zhongkai Hao, Chang Su, Songming Liu, Julius Berner, Chengyang Ying, Hang Su, Anima Anandkumar, Jian Song, Jun Zhu:
DPOT: Auto-Regressive Denoising Operator Transformer for Large-Scale PDE Pre-Training. CoRR abs/2403.03542 (2024) - [i255]Zhengyi Wang, Yikai Wang, Yifei Chen, Chendong Xiang, Shuo Chen, Dajiang Yu, Chongxuan Li, Hang Su, Jun Zhu:
CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model. CoRR abs/2403.05034 (2024) - [i254]Lingxuan Wu, Xiao Yang, Yinpeng Dong, Liuwei Xie, Hang Su, Jun Zhu:
Embodied Active Defense: Leveraging Recurrent Feedback to Counter Adversarial Patches. CoRR abs/2404.00540 (2024) - [i253]Yichi Zhang, Yinpeng Dong, Siyuan Zhang, Tianzan Min, Hang Su, Jun Zhu:
Exploring the Transferability of Visual Prompting for Multimodal Large Language Models. CoRR abs/2404.11207 (2024) - [i252]Luxi Chen, Zhengyi Wang, Chongxuan Li, Tingting Gao, Hang Su, Jun Zhu:
MicroDreamer: Zero-shot 3D Generation in ~20 Seconds by Score-based Iterative Reconstruction. CoRR abs/2404.19525 (2024) - [i251]Fan Bao, Chendong Xiang, Gang Yue, Guande He, Hongzhou Zhu, Kaiwen Zheng, Min Zhao, Shilong Liu, Yaole Wang, Jun Zhu:
Vidu: a Highly Consistent, Dynamic and Skilled Text-to-Video Generator with Diffusion Models. CoRR abs/2405.04233 (2024) - [i250]Chengyang Ying, Zhongkai Hao, Xinning Zhou, Xuezhou Xu, Hang Su, Xingxing Zhang, Jun Zhu:
PEAC: Unsupervised Pre-training for Cross-Embodiment Reinforcement Learning. CoRR abs/2405.14073 (2024) - [i249]Yikai Wang, Xinzhou Wang, Zilong Chen, Zhengyi Wang, Fuchun Sun, Jun Zhu:
Vidu4D: Single Generated Video to High-Fidelity 4D Reconstruction with Dynamic Gaussian Surfels. CoRR abs/2405.16822 (2024) - [i248]Shuyu Cheng, Yibo Miao, Yinpeng Dong, Xiao Yang, Xiao-Shan Gao, Jun Zhu:
Efficient Black-box Adversarial Attacks via Bayesian Optimization Guided by a Function Prior. CoRR abs/2405.19098 (2024) - [i247]Han Liu, Peng Cui, Bingning Wang, Jun Zhu, Xiaolin Hu:
Accurate and Reliable Predictions with Mutual-Transport Ensemble. CoRR abs/2405.19656 (2024) - [i246]Hengkai Tan, Songming Liu, Kai Ma, Chengyang Ying, Xingxing Zhang, Hang Su, Jun Zhu:
Fourier Controller Networks for Real-Time Decision-Making in Embodied Learning. CoRR abs/2405.19885 (2024) - [i245]Yichi Zhang, Yao Huang, Yitong Sun, Chang Liu, Zhe Zhao, Zhengwei Fang, Yifan Wang, Huanran Chen, Xiao Yang, Xingxing Wei, Hang Su, Yinpeng Dong, Jun Zhu:
Benchmarking Trustworthiness of Multimodal Large Language Models: A Comprehensive Study. CoRR abs/2406.07057 (2024) - [i244]Min Zhao, Hongzhou Zhu, Chendong Xiang, Kaiwen Zheng, Chongxuan Li, Jun Zhu:
Identifying and Solving Conditional Image Leakage in Image-to-Video Diffusion Model. CoRR abs/2406.15735 (2024) - [i243]Liyuan Wang, Jingyi Xie, Xingxing Zhang, Hang Su, Jun Zhu:
HiDe-PET: Continual Learning via Hierarchical Decomposition of Parameter-Efficient Tuning. CoRR abs/2407.05229 (2024) - [i242]Yibo Miao, Yifan Zhu, Yinpeng Dong, Lijia Yu, Jun Zhu, Xiao-Shan Gao:
T2VSafetyBench: Evaluating the Safety of Text-to-Video Generative Models. CoRR abs/2407.05965 (2024) - [i241]Yiwen Chen, Yikai Wang, Yihao Luo, Zhengyi Wang, Zilong Chen, Jun Zhu, Chi Zhang, Guosheng Lin:
MeshAnything V2: Artist-Created Mesh Generation With Adjacent Mesh Tokenization. CoRR abs/2408.02555 (2024) - 2023
- [j59]Zhijie Deng, Yinpeng Dong, Jun Zhu:
Batch virtual adversarial training for graph convolutional networks. AI Open 4: 73-79 (2023) - [j58]Bo Zhang, Jun Zhu, Hang Su:
Toward the third generation artificial intelligence. Sci. China Inf. Sci. 66(2) (2023) - [j57]Yichi Zhang, Zijian Zhu, Hang Su, Jun Zhu, Shibao Zheng, Yuan He, Hui Xue:
To make yourself invisible with Adversarial Semantic Contours. Comput. Vis. Image Underst. 230: 103659 (2023) - [j56]Feng Zhou, Quyu Kong, Zhijie Deng, Fengxiang He, Peng Cui, Jun Zhu:
Heterogeneous multi-task Gaussian Cox processes. Mach. Learn. 112(12): 5105-5134 (2023) - [j55]Yuhao Zhou, Chenglong Bao, Chao Ding, Jun Zhu:
A semismooth Newton based augmented Lagrangian method for nonsmooth optimization on matrix manifolds. Math. Program. 201(1): 1-61 (2023) - [j54]Yudeng Lin, Qingtian Zhang, Bin Gao, Jianshi Tang, Peng Yao, Chongxuan Li, Shiyu Huang, Zhengwu Liu, Ying Zhou, Yuyi Liu, Wenqiang Zhang, Jun Zhu, He Qian, Huaqiang Wu:
Uncertainty quantification via a memristor Bayesian deep neural network for risk-sensitive reinforcement learning. Nat. Mac. Intell. 5(7): 714-723 (2023) - [j53]Liyuan Wang, Xingxing Zhang, Qian Li, Mingtian Zhang, Hang Su, Jun Zhu, Yi Zhong:
Incorporating neuro-inspired adaptability for continual learning in artificial intelligence. Nat. Mac. Intell. 5(12): 1356-1368 (2023) - [c239]Shilong Liu, Shijia Huang, Feng Li, Hao Zhang, Yaoyuan Liang, Hang Su, Jun Zhu, Lei Zhang:
DQ-DETR: Dual Query Detection Transformer for Phrase Extraction and Grounding. AAAI 2023: 1728-1736 - [c238]Nanyang Ye, Lin Zhu, Jia Wang, Zhaoyu Zeng, Jiayao Shao, Chensheng Peng, Bikang Pan, Kaican Li, Jun Zhu:
Certifiable Out-of-Distribution Generalization. AAAI 2023: 10927-10935 - [c237]Wenze Chen, Shiyu Huang, Yuan Chiang, Ting Chen, Jun Zhu:
DGPO: Discovering Multiple Strategies with Diversity-Guided Policy Optimization. AAMAS 2023: 2634-2636 - [c236]Yinpeng Dong, Caixin Kang, Jinlai Zhang, Zijian Zhu, Yikai Wang, Xiao Yang, Hang Su, Xingxing Wei, Jun Zhu:
Benchmarking Robustness of 3D Object Detection to Common Corruptions in Autonomous Driving. CVPR 2023: 1022-1032 - [c235]Xiao Yang, Chang Liu, Longlong Xu, Yikai Wang, Yinpeng Dong, Ning Chen, Hang Su, Jun Zhu:
Towards Effective Adversarial Textured 3D Meshes on Physical Face Recognition. CVPR 2023: 4119-4128 - [c234]Jianhui Li, Jianmin Li, Haoji Zhang, Shilong Liu, Zhengyi Wang, Zihao Xiao, Kaiwen Zheng, Jun Zhu:
PREIM3D: 3D Consistent Precise Image Attribute Editing from a Single Image. CVPR 2023: 8549-8558 - [c233]Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, Jun Zhu:
All are Worth Words: A ViT Backbone for Diffusion Models. CVPR 2023: 22669-22679 - [c232]Shilong Liu, Tianhe Ren, Jiayu Chen, Zhaoyang Zeng, Hao Zhang, Feng Li, Hongyang Li, Jun Huang, Hang Su, Jun Zhu, Lei Zhang:
Detection Transformer with Stable Matching. ICCV 2023: 6468-6477 - [c231]Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M. Ni, Heung-Yeung Shum:
DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection. ICLR 2023 - [c230]Fan Bao, Min Zhao, Zhongkai Hao, Peiyao Li, Chongxuan Li, Jun Zhu:
Equivariant Energy-Guided SDE for Inverse Molecular Design. ICLR 2023 - [c229]Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, Jun Zhu:
Offline Reinforcement Learning via High-Fidelity Generative Behavior Modeling. ICLR 2023 - [c228]Zhongkai Hao, Chengyang Ying, Hang Su, Jun Zhu, Jian Song, Ze Cheng:
Bi-level Physics-Informed Neural Networks for PDE Constrained Optimization using Broyden's Hypergradients. ICLR 2023 - [c227]Fan Bao, Shen Nie, Kaiwen Xue, Chongxuan Li, Shi Pu, Yaole Wang, Gang Yue, Yue Cao, Hang Su, Jun Zhu:
One Transformer Fits All Distributions in Multi-Modal Diffusion at Scale. ICML 2023: 1692-1717 - [c226]Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu, Ze Cheng, Jian Song, Jun Zhu:
GNOT: A General Neural Operator Transformer for Operator Learning. ICML 2023: 12556-12569 - [c225]Songming Liu, Zhongkai Hao, Chengyang Ying, Hang Su, Ze Cheng, Jun Zhu:
NUNO: A General Framework for Learning Parametric PDEs with Non-Uniform Data. ICML 2023: 21658-21671 - [c224]Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, Jun Zhu:
Contrastive Energy Prediction for Exact Energy-Guided Diffusion Sampling in Offline Reinforcement Learning. ICML 2023: 22825-22855 - [c223]Jiachen Yao, Chang Su, Zhongkai Hao, Songming Liu, Hang Su, Jun Zhu:
MultiAdam: Parameter-wise Scale-invariant Optimizer for Multiscale Training of Physics-informed Neural Networks. ICML 2023: 39702-39721 - [c222]Kaiwen Zheng, Cheng Lu, Jianfei Chen, Jun Zhu:
Improved Techniques for Maximum Likelihood Estimation for Diffusion ODEs. ICML 2023: 42363-42389 - [c221]Chengyang Ying, Zhongkai Hao, Xinning Zhou, Hang Su, Dong Yan, Jun Zhu:
On the Reuse Bias in Off-Policy Reinforcement Learning. IJCAI 2023: 4513-4521 - [c220]Yingtao Luo, Qiang Liu, Yuntian Chen, Wenbo Hu, Tian Tian, Jun Zhu:
Physics-Guided Discovery of Highly Nonlinear Parametric Partial Differential Equations. KDD 2023: 1595-1607 - [c219]Peng Cui, Dan Zhang, Zhijie Deng, Yinpeng Dong, Jun Zhu:
Learning Sample Difficulty from Pre-trained Models for Reliable Prediction. NeurIPS 2023 - [c218]Zhijie Deng, Peng Cui, Jun Zhu:
Towards Accelerated Model Training via Bayesian Data Selection. NeurIPS 2023 - [c217]Yilin Lyu, Liyuan Wang, Xingxing Zhang, Zicheng Sun, Hang Su, Jun Zhu, Liping Jing:
Overcoming Recency Bias of Normalization Statistics in Continual Learning: Balance and Adaptation. NeurIPS 2023 - [c216]Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, Jun Zhu:
ProlificDreamer: High-Fidelity and Diverse Text-to-3D Generation with Variational Score Distillation. NeurIPS 2023 - [c215]Liyuan Wang, Jingyi Xie, Xingxing Zhang, Mingyi Huang, Hang Su, Jun Zhu:
Hierarchical Decomposition of Prompt-Based Continual Learning: Rethinking Obscured Sub-optimality. NeurIPS 2023 - [c214]Kaiwen Zheng, Cheng Lu, Jianfei Chen, Jun Zhu:
DPM-Solver-v3: Improved Diffusion ODE Solver with Empirical Model Statistics. NeurIPS 2023 - [c213]Ziyu Wang, Binjie Yuan, Jiaxun Lu, Bowen Ding, Yunfeng Shao, Qibin Wu, Jun Zhu:
A constrained Bayesian approach to out-of-distribution prediction. UAI 2023: 2248-2258 - [i240]Liyuan Wang, Xingxing Zhang, Hang Su, Jun Zhu:
A Comprehensive Survey of Continual Learning: Theory, Method and Application. CoRR abs/2302.00487 (2023) - [i239]Chenyu Zheng, Guoqiang Wu, Fan Bao, Yue Cao, Chongxuan Li, Jun Zhu:
Revisiting Discriminative vs. Generative Classifiers: Theory and Implications. CoRR abs/2302.02334 (2023) - [i238]Peng Cui, Yang Yue, Zhijie Deng, Jun Zhu:
Confidence-based Reliable Learning under Dual Noises. CoRR abs/2302.05098 (2023) - [i237]Zebin You, Yong Zhong, Fan Bao, Jiacheng Sun, Chongxuan Li, Jun Zhu:
Diffusion Models and Semi-Supervised Learners Benefit Mutually with Few Labels. CoRR abs/2302.10586 (2023) - [i236]Chang Liu, Yinpeng Dong, Wenzhao Xiang, Xiao Yang, Hang Su, Jun Zhu, Yuefeng Chen, Yuan He, Hui Xue, Shibao Zheng:
A Comprehensive Study on Robustness of Image Classification Models: Benchmarking and Rethinking. CoRR abs/2302.14301 (2023) - [i235]Zhongkai Hao, Chengyang Ying, Zhengyi Wang, Hang Su, Yinpeng Dong, Songming Liu, Ze Cheng, Jun Zhu, Jian Song:
GNOT: A General Neural Operator Transformer for Operator Learning. CoRR abs/2302.14376 (2023) - [i234]Yichi Zhang, Zijian Zhu, Hang Su, Jun Zhu, Shibao Zheng, Yuan He, Hui Xue:
To Make Yourself Invisible with Adversarial Semantic Contours. CoRR abs/2303.00284 (2023) - [i233]Chengyang Ying, Zhongkai Hao, Xinning Zhou, Hang Su, Songming Liu, Jialian Li, Dong Yan, Jun Zhu:
Reward Informed Dreamer for Task Generalization in Reinforcement Learning. CoRR abs/2303.05092 (2023) - [i232]Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang:
Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection. CoRR abs/2303.05499 (2023) - [i231]Fan Bao, Shen Nie, Kaiwen Xue, Chongxuan Li, Shi Pu, Yaole Wang, Gang Yue, Yue Cao, Hang Su, Jun Zhu:
One Transformer Fits All Distributions in Multi-Modal Diffusion at Scale. CoRR abs/2303.06555 (2023) - [i230]Huanran Chen, Yichi Zhang, Yinpeng Dong, Jun Zhu:
Rethinking Model Ensemble in Transfer-based Adversarial Attacks. CoRR abs/2303.09105 (2023) - [i229]Yinpeng Dong, Caixin Kang, Jinlai Zhang, Zijian Zhu, Yikai Wang, Xiao Yang, Hang Su, Xingxing Wei, Jun Zhu:
Benchmarking Robustness of 3D Object Detection to Common Corruptions in Autonomous Driving. CoRR abs/2303.11040 (2023) - [i228]Xiao Yang, Chang Liu, Longlong Xu, Yikai Wang, Yinpeng Dong, Ning Chen, Hang Su, Jun Zhu:
Towards Effective Adversarial Textured 3D Meshes on Physical Face Recognition. CoRR abs/2303.15818 (2023) - [i227]Chendong Xiang, Fan Bao, Chongxuan Li, Hang Su, Jun Zhu:
A Closer Look at Parameter-Efficient Tuning in Diffusion Models. CoRR abs/2303.18181 (2023) - [i226]Shilong Liu, Tianhe Ren, Jiayu Chen, Zhaoyang Zeng, Hao Zhang, Feng Li, Hongyang Li, Jun Huang, Hang Su, Jun Zhu, Lei Zhang:
Detection Transformer with Stable Matching. CoRR abs/2304.04742 (2023) - [i225]Peng Cui, Dan Zhang, Zhijie Deng, Yinpeng Dong, Jun Zhu:
Learning Sample Difficulty from Pre-trained Models for Reliable Prediction. CoRR abs/2304.10127 (2023) - [i224]Jianhui Li, Jianmin Li, Haoji Zhang, Shilong Liu, Zhengyi Wang, Zihao Xiao, Kaiwen Zheng, Jun Zhu:
PREIM3D: 3D Consistent Precise Image Attribute Editing from a Single Image. CoRR abs/2304.10263 (2023) - [i223]Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, Jun Zhu:
Contrastive Energy Prediction for Exact Energy-Guided Diffusion Sampling in Offline Reinforcement Learning. CoRR abs/2304.12824 (2023) - [i222]Kaiwen Zheng, Cheng Lu, Jianfei Chen, Jun Zhu:
Improved Techniques for Maximum Likelihood Estimation for Diffusion ODEs. CoRR abs/2305.03935 (2023) - [i221]Huanran Chen, Yinpeng Dong, Zhengyi Wang, Xiao Yang, Chengqi Duan, Hang Su, Jun Zhu:
Robust Classification via a Single Diffusion Model. CoRR abs/2305.15241 (2023) - [i220]Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, Jun Zhu:
ProlificDreamer: High-Fidelity and Diverse Text-to-3D Generation with Variational Score Distillation. CoRR abs/2305.16213 (2023) - [i219]Min Zhao, Rongzhen Wang, Fan Bao, Chongxuan Li, Jun Zhu:
ControlVideo: Adding Conditional Control for One Shot Text-to-Video Editing. CoRR abs/2305.17098 (2023) - [i218]Zhanhao Hu, Jun Zhu, Bo Zhang, Xiaolin Hu:
Amplification trojan network: Attack deep neural networks by amplifying their inherent weakness. CoRR abs/2305.17688 (2023) - [i217]Songming Liu, Zhongkai Hao, Chengyang Ying, Hang Su, Ze Cheng, Jun Zhu:
NUNO: A General Framework for Learning Parametric PDEs with Non-Uniform Data. CoRR abs/2305.18694 (2023) - [i216]Jiachen Yao, Chang Su, Zhongkai Hao, Songming Liu, Hang Su, Jun Zhu:
MultiAdam: Parameter-wise Scale-invariant Optimizer for Multiscale Training of Physics-informed Neural Networks. CoRR abs/2306.02816 (2023) - [i215]Zhongkai Hao, Jiachen Yao, Chang Su, Hang Su, Ziao Wang, Fanzhi Lu, Zeyu Xia, Yichi Zhang, Songming Liu, Lu Lu, Jun Zhu:
PINNacle: A Comprehensive Benchmark of Physics-Informed Neural Networks for Solving PDEs. CoRR abs/2306.08827 (2023) - [i214]Zhijie Deng, Peng Cui, Jun Zhu:
Towards Accelerated Model Training via Bayesian Data Selection. CoRR abs/2308.10544 (2023) - [i213]Liyuan Wang, Xingxing Zhang, Qian Li, Mingtian Zhang, Hang Su, Jun Zhu, Yi Zhong:
Incorporating Neuro-Inspired Adaptability for Continual Learning in Artificial Intelligence. CoRR abs/2308.14991 (2023) - [i212]Feng Zhou, Quyu Kong, Zhijie Deng, Fengxiang He, Peng Cui, Jun Zhu:
Heterogeneous Multi-Task Gaussian Cox Processes. CoRR abs/2308.15364 (2023) - [i211]Bingrui Li, Jianfei Chen, Jun Zhu:
Memory Efficient Optimizers with 4-bit States. CoRR abs/2309.01507 (2023) - [i210]Yinpeng Dong, Huanran Chen, Jiawei Chen, Zhengwei Fang, Xiao Yang, Yichi Zhang, Yu Tian, Hang Su, Jun Zhu:
How Robust is Google's Bard to Adversarial Image Attacks? CoRR abs/2309.11751 (2023) - [i209]Liyuan Wang, Jingyi Xie, Xingxing Zhang, Mingyi Huang, Hang Su, Jun Zhu:
Hierarchical Decomposition of Prompt-Based Continual Learning: Rethinking Obscured Sub-optimality. CoRR abs/2310.07234 (2023) - [i208]Huayu Chen, Cheng Lu, Zhengyi Wang, Hang Su, Jun Zhu:
Score Regularized Policy Optimization through Diffusion Behavior. CoRR abs/2310.07297 (2023) - [i207]Yilin Lyu, Liyuan Wang, Xingxing Zhang, Zicheng Sun, Hang Su, Jun Zhu, Liping Jing:
Overcoming Recency Bias of Normalization Statistics in Continual Learning: Balance and Adaptation. CoRR abs/2310.08855 (2023) - [i206]Guande He, Peng Cui, Jianfei Chen, Wenbo Hu, Jun Zhu:
Investigating Uncertainty Calibration of Aligned Language Models under the Multiple-Choice Setting. CoRR abs/2310.11732 (2023) - [i205]Kaiwen Zheng, Cheng Lu, Jianfei Chen, Jun Zhu:
DPM-Solver-v3: Improved Diffusion ODE Solver with Empirical Model Statistics. CoRR abs/2310.13268 (2023) - [i204]Liyuan Wang, Jingyi Xie, Xingxing Zhang, Hang Su, Jun Zhu:
Towards a General Framework for Continual Learning with Pre-training. CoRR abs/2310.13888 (2023) - [i203]Jianhui Li, Shilong Liu, Zidong Liu, Yikai Wang, Kaiwen Zheng, Jinghui Xu, Jianmin Li, Jun Zhu:
InstructPix2NeRF: Instructed 3D Portrait Editing from a Single Image.