


default search action
Cynthia Rudin
Person information
- affiliation: Duke University, USA
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j52]Manickam Ashokkumar
, Wenwen Mei
, Jackson J. Peterson
, Yuriko Harigaya
, David M. Murdoch
, David M. Margolis
, Caleb Kornfein
, Alexander X. Oesterling
, Zhicheng Guo
, Cynthia Rudin
, Yuchao Jiang
, Edward P. Browne
:
Integrated Single-cell Multiomic Analysis of HIV Latency Reversal Reveals Novel Regulators of Viral Reactivation. Genom. Proteom. Bioinform. 22(1) (2024) - [j51]Sully F. Chen
, Zhicheng Guo, Cheng Ding, Xiao Hu, Cynthia Rudin
:
Sparse learned kernels for interpretable and efficient medical time series processing. Nat. Mac. Intell. 6(10): 1132-1144 (2024) - [j50]Cheng Ding
, Zhicheng Guo
, Cynthia Rudin
, Ran Xiao
, Amit J. Shah
, Duc H. Do
, Randall J. Lee, Gari D. Clifford
, Fadi B. Nahab
, Xiao Hu
:
Learning From Alarms: A Robust Learning Approach for Accurate Photoplethysmography-Based Atrial Fibrillation Detection Using Eight Million Samples Labeled With Imprecise Arrhythmia Alarms. IEEE J. Biomed. Health Informatics 28(5): 2650-2661 (2024) - [c93]Travis Seale-Carlisle, Saksham Jain, Courtney Lee, Caroline Levenson, Swathi Ramprasad, Brandon Garrett, Sudeepa Roy, Cynthia Rudin, Alexander Volfovsky:
Evaluating Pre-trial Programs Using Interpretable Machine Learning Matching Algorithms for Causal Inference. AAAI 2024: 22331-22340 - [c92]Rui Zhang, Rui Xin, Margo I. Seltzer, Cynthia Rudin:
Optimal Sparse Survival Trees. AISTATS 2024: 352-360 - [c91]Yiyang Sun, Zhi Chen, Vittorio Orlandi, Tong Wang, Cynthia Rudin:
Sparse and Faithful Explanations Without Sparse Models. AISTATS 2024: 2071-2079 - [c90]Harsh Parikh, Quinn Lanners, Zade Akras, Sahar Zafar, M. Brandon Westover, Cynthia Rudin, Alexander Volfovsky:
Safe and Interpretable Estimation of Optimal Treatment Regimes. AISTATS 2024: 2134-2142 - [c89]Srikar Katta, Harsh Parikh, Cynthia Rudin, Alexander Volfovsky:
Interpretable Causal Inference for Analyzing Wearable, Sensor, and Distributional Data. AISTATS 2024: 3340-3348 - [c88]Julia Yang, Alina Jade Barnett, Jon Donnelly, Satvik Kishore, Jerry Fang, Fides Regina Schwartz, Chaofan Chen, Joseph Y. Lo, Cynthia Rudin:
FPN-IAIA-BL: A Multi-Scale Interpretable Deep Learning Model for Classification of Mass Margins in Digital Mammography. CVPR Workshops 2024: 5003-5009 - [c87]Cynthia Rudin, Chudi Zhong, Lesia Semenova, Margo I. Seltzer, Ronald Parr, Jiachang Liu, Srikar Katta, Jon Donnelly, Harry Chen, Zachery Boner:
Position: Amazing Things Come From Having Many Good Models. ICML 2024 - [c86]Stephen Hahn
, Jerry Yin
, Rico Zhu
, Weihan Xu
, Yue Jiang
, Simon Mak
, Cynthia Rudin
:
SentHYMNent: An Interpretable and Sentiment-Driven Model for Algorithmic Melody Harmonization. KDD 2024: 5050-5060 - [c85]Jiachang Liu, Rui Zhang, Cynthia Rudin:
FastSurvival: Hidden Computational Blessings in Training Cox Proportional Hazards Models. NeurIPS 2024 - [c84]Haiyang Huang, Yingfan Wang, Cynthia Rudin:
Navigating the Effect of Parametrization for Dimensionality Reduction. NeurIPS 2024 - [c83]Zachery Boner, Harry Chen, Lesia Semenova, Ronald Parr, Cynthia Rudin:
Using Noise to Infer Aspects of Simplicity Without Learning. NeurIPS 2024 - [c82]Chiyu Ma, Jon Donnelly, Wenjun Liu, Soroush Vosoughi, Cynthia Rudin, Chaofan Chen:
Interpretable Image Classification with Adaptive Prototype-based Vision Transformers. NeurIPS 2024 - [c81]Hayden McTavish, Jon Donnelly, Margo I. Seltzer, Cynthia Rudin:
Interpretable Generalized Additive Models for Datasets with Missing Values. NeurIPS 2024 - [c80]Yiyang Sun, Tong Wang, Cynthia Rudin:
Improving Decision Sparsity. NeurIPS 2024 - [i114]Rui Zhang, Rui Xin, Margo I. Seltzer, Cynthia Rudin:
Optimal Sparse Survival Trees. CoRR abs/2401.15330 (2024) - [i113]Yiyang Sun, Zhi Chen, Vittorio Orlandi, Tong Wang, Cynthia Rudin:
Sparse and Faithful Explanations Without Sparse Models. CoRR abs/2402.09702 (2024) - [i112]Varun Babbar, Zhicheng Guo, Cynthia Rudin:
What is different between these datasets? CoRR abs/2403.05652 (2024) - [i111]Elita A. Lobo, Harvineet Singh, Marek Petrik, Cynthia Rudin, Himabindu Lakkaraju:
Data Poisoning Attacks on Off-Policy Policy Evaluation Methods. CoRR abs/2404.04714 (2024) - [i110]Cheng Ding, Zhicheng Guo, Zhaoliang Chen, Randall J. Lee, Cynthia Rudin, Xiao Hu:
SiamQuality: A ConvNet-Based Foundation Model for Imperfect Physiological Signals. CoRR abs/2404.17667 (2024) - [i109]Julia Yang, Alina Jade Barnett
, Jon Donnelly, Satvik Kishore, Jerry Fang, Fides Regina Schwartz, Chaofan Chen, Joseph Y. Lo, Cynthia Rudin:
FPN-IAIA-BL: A Multi-Scale Interpretable Deep Learning Model for Classification of Mass Margins in Digital Mammography. CoRR abs/2406.06386 (2024) - [i108]Frank Willard, Luke Moffett, Emmanuel Mokel, Jon Donnelly, Stark Guo, Julia Yang, Giyoung Kim, Alina Jade Barnett
, Cynthia Rudin:
This Looks Better than That: Better Interpretable Models with ProtoPNeXt. CoRR abs/2406.14675 (2024) - [i107]Cynthia Rudin, Chudi Zhong, Lesia Semenova, Margo I. Seltzer, Ronald Parr, Jiachang Liu, Srikar Katta, Jon Donnelly, Harry Chen, Zachery Boner:
Amazing Things Come From Having Many Good Models. CoRR abs/2407.04846 (2024) - [i106]Stephen Ni-Hahn, Weihan Xu, Jerry Yin, Rico Zhu, Simon Mak, Yue Jiang, Cynthia Rudin:
A New Dataset, Notation Software, and Representation for Computational Schenkerian Analysis. CoRR abs/2408.07184 (2024) - [i105]Mary Bastawrous, Zhi Chen, Alexander C. Ogren, Chiara Daraio, Cynthia Rudin, L. Catherine Brinson:
Phononic materials with effectively scale-separated hierarchical features using interpretable machine learning. CoRR abs/2408.08428 (2024) - [i104]Jiachang Liu, Rui Zhang, Cynthia Rudin:
FastSurvival: Hidden Computational Blessings in Training Cox Proportional Hazards Models. CoRR abs/2410.19081 (2024) - [i103]Yiyang Sun, Tong Wang, Cynthia Rudin:
Improving Decision Sparsity. CoRR abs/2410.20483 (2024) - [i102]Chiyu Ma, Jon Donnelly, Wenjun Liu, Soroush Vosoughi, Cynthia Rudin, Chaofan Chen:
Interpretable Image Classification with Adaptive Prototype-based Vision Transformers. CoRR abs/2410.20722 (2024) - [i101]Haiyang Huang, Yingfan Wang, Cynthia Rudin:
Navigating the Effect of Parametrization for Dimensionality Reduction. CoRR abs/2411.15894 (2024) - [i100]Hayden McTavish, Jon Donnelly, Margo I. Seltzer, Cynthia Rudin:
Interpretable Generalized Additive Models for Datasets with Missing Values. CoRR abs/2412.02646 (2024) - [i99]Yingfan Wang, Yiyang Sun, Haiyang Huang, Cynthia Rudin:
Dimension Reduction with Locally Adjusted Graphs. CoRR abs/2412.15426 (2024) - 2023
- [j49]Lina Zhou, Cynthia Rudin, Matthew C. Gombolay, Jim Spohrer, Michelle Zhou, Souren Paul:
From Artificial Intelligence (AI) to Intelligence Augmentation (IA): Design Principles, Potential Risks, and Emerging Issues. AIS Trans. Hum. Comput. Interact. 15(1): 111-135 (2023) - [j48]Cynthia Rudin, Yaron Shaposhnik:
Globally-Consistent Rule-Based Summary-Explanations for Machine Learning Models: Application to Credit-Risk Evaluation. J. Mach. Learn. Res. 24: 16:1-16:44 (2023) - [c79]Rui Zhang, Rui Xin, Margo I. Seltzer, Cynthia Rudin:
Optimal Sparse Regression Trees. AAAI 2023: 11270-11279 - [c78]Edwin Agnew, Michelle Qiu, Lily Zhu, Sam Wiseman, Cynthia Rudin:
The Mechanical Bard: An Interpretable Machine Learning Approach to Shakespearean Sonnet Generation. ACL (2) 2023: 1627-1638 - [c77]Zhi Chen, Sarah Tan, Urszula Chajewska, Cynthia Rudin, Rich Caruana:
Missing Values and Imputation in Healthcare Data: Can Interpretable Machine Learning Help? CHIL 2023: 86-99 - [c76]Stephen Hahn
, Rico Zhu
, Simon Mak
, Cynthia Rudin
, Yue Jiang
:
An Interpretable, Flexible, and Interactive Probabilistic Framework for Melody Generation. KDD 2023: 4089-4099 - [c75]Yanchen Jessie Ou, Alina Jade Barnett
, Anika Mitra, Fides Regina Schwartz
, Chaofan Chen, Lars J. Grimm, Joseph Y. Lo, Cynthia Rudin:
A user interface to communicate interpretable AI decisions to radiologists. Image Perception, Observer Performance, and Technology Assessment 2023 - [c74]Yanchen Ou, Alina Jade Barnett, Anika Mitra, Fides Regina Schwartz, Chaofan Chen, Lars J. Grimm, Joseph Y. Lo, Cynthia Rudin:
A user interface to communicate interpretable AI decisions to radiologists (Erratum). Image Perception, Observer Performance, and Technology Assessment 2023 - [c73]Jiachang Liu, Sam Rosen, Chudi Zhong, Cynthia Rudin:
OKRidge: Scalable Optimal k-Sparse Ridge Regression. NeurIPS 2023 - [c72]Jon Donnelly, Srikar Katta, Cynthia Rudin, Edward P. Browne:
The Rashomon Importance Distribution: Getting RID of Unstable, Single Model-based Variable Importance. NeurIPS 2023 - [c71]Chiyu Ma, Brandon Zhao, Chaofan Chen, Cynthia Rudin:
This Looks Like Those: Illuminating Prototypical Concepts Using Multiple Visualizations. NeurIPS 2023 - [c70]Lesia Semenova, Harry Chen, Ronald Parr, Cynthia Rudin:
A Path to Simpler Models Starts With Noise. NeurIPS 2023 - [c69]Chudi Zhong, Zhi Chen, Jiachang Liu, Margo I. Seltzer, Cynthia Rudin:
Exploring and Interacting with the Set of Good Sparse Generalized Additive Models. NeurIPS 2023 - [c68]Quinn Lanners, Harsh Parikh, Alexander Volfovsky, Cynthia Rudin, David Page:
Variable importance matching for causal inference. UAI 2023: 1174-1184 - [i98]Quinn Lanners, Harsh Parikh, Alexander Volfovsky, Cynthia Rudin, David Page:
From Feature Importance to Distance Metric: An Almost Exact Matching Approach for Causal Inference. CoRR abs/2302.11715 (2023) - [i97]Zhi Chen, Chudi Zhong, Margo I. Seltzer, Cynthia Rudin:
Understanding and Exploring the Whole Set of Good Sparse Generalized Additive Models. CoRR abs/2303.16047 (2023) - [i96]Jiachang Liu, Sam Rosen, Chudi Zhong, Cynthia Rudin:
OKRidge: Scalable Optimal k-Sparse Ridge Regression for Learning Dynamical Systems. CoRR abs/2304.06686 (2023) - [i95]Zhi Chen, Sarah Tan, Urszula Chajewska, Cynthia Rudin, Rich Caruana:
Missing Values and Imputation in Healthcare Data: Can Interpretable Machine Learning Help? CoRR abs/2304.11749 (2023) - [i94]Marco Morucci, Vittorio Orlandi, Harsh Parikh, Sudeepa Roy, Cynthia Rudin, Alexander Volfovsky:
A Double Machine Learning Approach to Combining Experimental and Observational Data. CoRR abs/2307.01449 (2023) - [i93]Pranay Jain, Cheng Ding, Cynthia Rudin, Xiao Hu:
A Self-Supervised Algorithm for Denoising Photoplethysmography Signals for Heart Rate Estimation from Wearables. CoRR abs/2307.05339 (2023) - [i92]Sully F. Chen
, Zhicheng Guo, Cheng Ding, Xiao Hu, Cynthia Rudin:
Learned Kernels for Interpretable and Efficient PPG Signal Quality Assessment and Artifact Segmentation. CoRR abs/2307.05385 (2023) - [i91]Jon Donnelly, Srikar Katta, Cynthia Rudin, Edward P. Browne:
The Rashomon Importance Distribution: Getting RID of Unstable, Single Model-based Variable Importance. CoRR abs/2309.13775 (2023) - [i90]Zhicheng Guo, Cheng Ding, Duc H. Do, Amit J. Shah, Randall J. Lee, Xiao Hu, Cynthia Rudin:
SiamAF: Learning Shared Information from ECG and PPG Signals for Robust Atrial Fibrillation Detection. CoRR abs/2310.09203 (2023) - [i89]Han Zhang, Rayehe Karimi Mahabadi, Cynthia Rudin, Johann Guilleminot, L. Catherine Brinson:
Uncertainty Quantification of Bandgaps in Acoustic Metamaterials with Stochastic Geometric Defects and Material Properties. CoRR abs/2310.12869 (2023) - [i88]Harsh Parikh, Quinn Lanners, Zade Akras, Sahar F. Zafar, M. Brandon Westover, Cynthia Rudin, Alexander Volfovsky:
Estimating Trustworthy and Safe Optimal Treatment Regimes. CoRR abs/2310.15333 (2023) - [i87]Chiyu Ma, Brandon Zhao, Chaofan Chen, Cynthia Rudin:
This Looks Like Those: Illuminating Prototypical Concepts Using Multiple Visualizations. CoRR abs/2310.18589 (2023) - [i86]Lesia Semenova, Harry Chen, Ronald Parr, Cynthia Rudin:
A Path to Simpler Models Starts With Noise. CoRR abs/2310.19726 (2023) - [i85]Chloe Qinyu Zhu, Muhang Tian, Lesia Semenova, Jiachang Liu, Jack Xu, Joseph Scarpa, Cynthia Rudin:
Fast and Interpretable Mortality Risk Scores for Critical Care Patients. CoRR abs/2311.13015 (2023) - [i84]Cheng Ding, Zhicheng Guo, Cynthia Rudin, Ran Xiao, Fadi B. Nahab, Xiao Hu:
Reconsideration on evaluation of machine learning models in continuous monitoring using wearables. CoRR abs/2312.02300 (2023) - [i83]Dennis Tang, Frank Willard, Ronan Tegerdine, Luke Triplett, Jon Donnelly, Luke Moffett, Lesia Semenova, Alina Jade Barnett
, Jin Jing, Cynthia Rudin, M. Brandon Westover:
ProtoEEGNet: An Interpretable Approach for Detecting Interictal Epileptiform Discharges. CoRR abs/2312.10056 (2023) - [i82]Srikar Katta, Harsh Parikh, Cynthia Rudin, Alexander Volfovsky:
Interpretable Causal Inference for Analyzing Wearable, Sensor, and Distributional Data. CoRR abs/2312.10569 (2023) - 2022
- [j47]Chaofan Chen
, Kangcheng Lin, Cynthia Rudin, Yaron Shaposhnik
, Sijia Wang, Tong Wang
:
A holistic approach to interpretability in financial lending: Models, visualizations, and summary-explanations. Decis. Support Syst. 152: 113647 (2022) - [j46]Tong Wang
, Cynthia Rudin
:
Causal Rule Sets for Identifying Subgroups with Enhanced Treatment Effects. INFORMS J. Comput. 34(3): 1626-1643 (2022) - [j45]Chunxiao Li, Cynthia Rudin, Tyler H. McCormick:
Rethinking Nonlinear Instrumental Variable Models through Prediction Validity. J. Mach. Learn. Res. 23: 96:1-96:55 (2022) - [j44]Harsh Parikh, Cynthia Rudin, Alexander Volfovsky:
MALTS: Matching After Learning to Stretch. J. Mach. Learn. Res. 23: 240:1-240:42 (2022) - [c67]Hayden McTavish
, Chudi Zhong, Reto Achermann, Ilias Karimalis
, Jacques Chen, Cynthia Rudin, Margo I. Seltzer:
Fast Sparse Decision Tree Optimization via Reference Ensembles. AAAI 2022: 9604-9613 - [c66]Jiachang Liu, Chudi Zhong, Margo I. Seltzer, Cynthia Rudin:
Fast Sparse Classification for Generalized Linear and Additive Models. AISTATS 2022: 9304-9333 - [c65]Ali Behrouz, Mathias Lécuyer, Cynthia Rudin, Mango I. Seltzer:
Fast optimization of weighted sparse decision trees for use in optimal treatment regimes and optimal policy design. CIKM Workshops 2022 - [c64]Lesia Semenova, Cynthia Rudin, Ronald Parr:
On the Existence of Simpler Machine Learning Models. FAccT 2022: 1827-1858 - [c63]Alina Jade Barnett
, Vaibhav Sharma, Neel Gajjar, Jerry Fang, Fides Regina Schwartz
, Chaofan Chen, Joseph Y. Lo, Cynthia Rudin:
Interpretable deep learning models for better clinician-AI communication in clinical mammography. Image Perception, Observer Performance, and Technology Assessment 2022 - [c62]Jiachang Liu, Chudi Zhong, Boxuan Li, Margo I. Seltzer, Cynthia Rudin:
FasterRisk: Fast and Accurate Interpretable Risk Scores. NeurIPS 2022 - [c61]Rui Xin, Chudi Zhong, Zhi Chen, Takuya Takagi, Margo I. Seltzer, Cynthia Rudin:
Exploring the Whole Rashomon Set of Sparse Decision Trees. NeurIPS 2022 - [c60]Elita A. Lobo, Harvineet Singh, Marek Petrik, Cynthia Rudin, Himabindu Lakkaraju:
Data poisoning attacks on off-policy policy evaluation methods. UAI 2022: 1264-1274 - [c59]Zijie J. Wang, Chudi Zhong, Rui Xin, Takuya Takagi, Zhi Chen, Duen Horng Chau, Cynthia Rudin, Margo I. Seltzer:
TimberTrek: Exploring and Curating Sparse Decision Trees with Interactive Visualization. IEEE VIS (Short Papers) 2022: 60-64 - [i81]Jiachang Liu, Chudi Zhong, Margo I. Seltzer, Cynthia Rudin:
Fast Sparse Classification for Generalized Linear and Additive Models. CoRR abs/2202.11389 (2022) - [i80]Harsh Parikh, Kentaro Hoffman, Haoqi Sun, Wendong Ge, Jin Jing, Rajesh Amerineni, Lin Liu, Jimeng Sun
, Sahar Zafar, Aaron Struck, Alexander Volfovsky, Cynthia Rudin, M. Brandon Westover:
Why Interpretable Causal Inference is Important for High-Stakes Decision Making for Critically Ill Patients and How To Do It. CoRR abs/2203.04920 (2022) - [i79]Haiyang Huang, Zhi Chen, Cynthia Rudin:
SegDiscover: Visual Concept Discovery via Unsupervised Semantic Segmentation. CoRR abs/2204.10926 (2022) - [i78]Yishay Mansour, Michal Moshkovitz, Cynthia Rudin:
There is no Accuracy-Interpretability Tradeoff in Reinforcement Learning for Mazes. CoRR abs/2206.04266 (2022) - [i77]Rui Xin, Chudi Zhong, Zhi Chen, Takuya Takagi, Margo I. Seltzer, Cynthia Rudin:
Exploring the Whole Rashomon Set of Sparse Decision Trees. CoRR abs/2209.08040 (2022) - [i76]Zijie J. Wang, Chudi Zhong, Rui Xin, Takuya Takagi, Zhi Chen, Duen Horng Chau, Cynthia Rudin, Margo I. Seltzer:
TimberTrek: Exploring and Curating Sparse Decision Trees with Interactive Visualization. CoRR abs/2209.09227 (2022) - [i75]Jiachang Liu, Chudi Zhong, Boxuan Li, Margo I. Seltzer, Cynthia Rudin:
FasterRisk: Fast and Accurate Interpretable Risk Scores. CoRR abs/2210.05846 (2022) - [i74]Ali Behrouz, Mathias Lécuyer, Cynthia Rudin, Margo I. Seltzer:
Fast Optimization of Weighted Sparse Decision Trees for use in Optimal Treatment Regimes and Optimal Policy Design. CoRR abs/2210.06825 (2022) - [i73]Alina Jade Barnett
, Zhicheng Guo, Jin Jing, Wendong Ge, Cynthia Rudin, M. Brandon Westover:
Mapping the Ictal-Interictal-Injury Continuum Using Interpretable Machine Learning. CoRR abs/2211.05207 (2022) - [i72]Rui Zhang, Rui Xin, Margo I. Seltzer, Cynthia Rudin:
Optimal Sparse Regression Trees. CoRR abs/2211.14980 (2022) - 2021
- [j43]Divya Koyyalagunta, Anna Y. Sun, Rachel Lea Draelos, Cynthia Rudin:
Playing Codenames with Language Graphs and Word Embeddings. J. Artif. Intell. Res. 71: 319-346 (2021) - [j42]Stefano Tracà, Cynthia Rudin, Weiyu Yan:
Regulating Greed Over Time in Multi-Armed Bandits. J. Mach. Learn. Res. 22: 3:1-3:99 (2021) - [j41]Tianyu Wang
, Marco Morucci, M. Usaid Awan, Yameng Liu, Sudeepa Roy, Cynthia Rudin, Alexander Volfovsky:
FLAME: A Fast Large-scale Almost Matching Exactly Approach to Causal Inference. J. Mach. Learn. Res. 22: 31:1-31:41 (2021) - [j40]Yingfan Wang, Haiyang Huang, Cynthia Rudin, Yaron Shaposhnik:
Understanding How Dimension Reduction Tools Work: An Empirical Approach to Deciphering t-SNE, UMAP, TriMap, and PaCMAP for Data Visualization. J. Mach. Learn. Res. 22: 201:1-201:73 (2021) - [j39]Beau Coker
, Cynthia Rudin
, Gary King
:
A Theory of Statistical Inference for Ensuring the Robustness of Scientific Results. Manag. Sci. 67(10): 6174-6197 (2021) - [j38]Alina Jade Barnett
, Fides Regina Schwartz
, Chaofan Tao, Chaofan Chen
, Yinhao Ren, Joseph Y. Lo, Cynthia Rudin
:
A case-based interpretable deep learning model for classification of mass lesions in digital mammography. Nat. Mach. Intell. 3(12): 1061-1070 (2021) - [j37]Jianyou Wang, Cynthia Rudin, Yuren Zhou, Christopher Suh, Xiaoxuan Zhang:
There Once Was a Really Bad Poet, It Was Automated but You Didn't Know It. Trans. Assoc. Comput. Linguistics 9: 605-620 (2021) - [c58]Michael Anis Mihdi Afnan, Cynthia Rudin, Vincent Conitzer, Julian Savulescu, Abhishek Mishra, Yanhe Liu, Masoud Afnan:
Ethical Implementation of Artificial Intelligence to Select Embryos in In Vitro Fertilization. AIES 2021: 316-326 - [d1]Alexander C. Ogren, Zhi Chen, L. Catherine Brinson, Mary Bastawrous, Cynthia Rudin, Chiara Daraio:
2D elastodynamic metamaterials. UCI Machine Learning Repository, 2021 - [i71]Neha R. Gupta, Vittorio Orlandi, Chia-Rui Chang, Tianyu Wang, Marco Morucci, Pritam Dey, Thomas J. Howell, Xian Sun, Angikar Ghosal, Sudeepa Roy, Cynthia Rudin, Alexander Volfovsky:
dame-flame: A Python Library Providing Fast Interpretable Matching for Causal Inference. CoRR abs/2101.01867 (2021) - [i70]Jianyou Wang, Xiaoxuan Zhang, Yuren Zhou, Christopher Suh, Cynthia Rudin:
There Once Was a Really Bad Poet, It Was Automated but You Didn't Know It. CoRR abs/2103.03775 (2021) - [i69]Cynthia Rudin, Chaofan Chen, Zhi Chen, Haiyang Huang, Lesia Semenova, Chudi Zhong:
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges. CoRR abs/2103.11251 (2021) - [i68]Alina Jade Barnett, Fides Regina Schwartz, Chaofan Tao, Chaofan Chen, Yinhao Ren, Joseph Y. Lo, Cynthia Rudin:
IAIA-BL: A Case-based Interpretable Deep Learning Model for Classification of Mass Lesions in Digital Mammography. CoRR abs/2103.12308 (2021) - [i67]Michael Anis Mihdi Afnan, Cynthia Rudin, Vincent Conitzer, Julian Savulescu, Abhishek Mishra, Yanhe Liu, Masoud Afnan:
Ethical Implementation of Artificial Intelligence to Select Embryos in In Vitro Fertilization. CoRR abs/2105.00060 (2021) - [i66]Divya Koyyalagunta, Anna Y. Sun, Rachel Lea Draelos, Cynthia Rudin:
Playing Codenames with Language Graphs and Word Embeddings. CoRR abs/2105.05885 (2021) - [i65]Chaofan Chen, Kangcheng Lin, Cynthia Rudin, Yaron Shaposhnik, Sijia Wang, Tong Wang:
A Holistic Approach to Interpretability in Financial Lending: Models, Visualizations, and Summary-Explanations. CoRR abs/2106.02605 (2021) - [i64]Alex Oesterling, Angikar Ghosal, Haoyang Yu, Rui Xin, Yasa Baig, Lesia Semenova, Cynthia Rudin:
Multitask Learning for Citation Purpose Classification. CoRR abs/2106.13275 (2021) - [i63]Alina Jade Barnett, Fides Regina Schwartz, Chaofan Tao, Chaofan Chen, Yinhao Ren, Joseph Y. Lo, Cynthia Rudin:
Interpretable Mammographic Image Classification using Cased-Based Reasoning and Deep Learning. CoRR abs/2107.05605 (2021) - [i62]Yunyao Zhu, Stephen Hahn, Simon Mak, Yue Jiang, Cynthia Rudin:
BacHMMachine: An Interpretable and Scalable Model for Algorithmic Harmonization for Four-part Baroque Chorales. CoRR abs/2109.07623 (2021) - [i61]Zhi Chen, Alexander C. Ogren, Chiara Daraio, L. Catherine Brinson, Cynthia Rudin:
How to See Hidden Patterns in Metamaterials with Interpretable Machine Learning. CoRR abs/2111.05949 (2021) - [i60]Hayden McTavish, Chudi Zhong, Reto Achermann, Ilias Karimalis, Jacques Chen, Cynthia Rudin, Margo I. Seltzer:
Fast Sparse Decision Tree Optimization via Reference Ensembles. CoRR abs/2112.00798 (2021) - 2020
- [j36]Alexander S. Rich, Cynthia Rudin, David M. P. Jacoby, Robin Freeman, Oliver R. Wearn, Henry Shevlin, Kanta Dihal, Seán S. ÓhÉigeartaigh, James Butcher, Marco Lippi, Przemyslaw Palka, Paolo Torroni
, Shannon Wongvibulsin, Edmon Begoli, Gisbert Schneider, Stephen Cave, Mona Sloane, Emanuel Moss, Iyad Rahwan, Ken Goldberg, David Howard, Luciano Floridi, Jack Stilgoe:
AI reflections in 2019. Nat. Mach. Intell. 2(1): 2-9 (2020) - [j35]Zhi Chen
, Yijie Bei
, Cynthia Rudin
:
Concept whitening for interpretable image recognition. Nat. Mach. Intell. 2(12): 772-782 (2020) - [j34]Jiayun Dong
, Cynthia Rudin
:
Exploring the cloud of variable importance for the set of all good models. Nat. Mach. Intell. 2(12): 810-824 (2020) - [c57]Jerry Liu, Nathan O'Hara, Alexander Rubin, Rachel Lea Draelos
, Cynthia Rudin:
Metaphor Detection Using Contextual Word Embeddings From Transformers.