


default search action
Journal of Machine Learning Research, Volume 11
Volume 11, 2010
- Erik Strumbelj, Igor Kononenko:

An Efficient Explanation of Individual Classifications using Game Theory. 1-18 - Julien Mairal, Francis R. Bach, Jean Ponce, Guillermo Sapiro:

Online Learning for Matrix Factorization and Sparse Coding. 19-60 - Isabelle Guyon, Amir Saffari, Gideon Dror, Gavin C. Cawley:

Model Selection: Beyond the Bayesian/Frequentist Divide. 61-87 - András György, Gábor Lugosi, György Ottucsák:

On-Line Sequential Bin Packing. 89-109 - Ming Yuan, Marten H. Wegkamp:

Classification Methods with Reject Option Based on Convex Risk Minimization. 111-130 - Yufeng Ding, Jeffrey S. Simonoff:

An Investigation of Missing Data Methods for Classification Trees Applied to Binary Response Data. 131-170 - Constantin F. Aliferis, Alexander R. Statnikov, Ioannis Tsamardinos, Subramani Mani, Xenofon D. Koutsoukos:

Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part I: Algorithms and Empirical Evaluation. 171-234 - Constantin F. Aliferis, Alexander R. Statnikov, Ioannis Tsamardinos, Subramani Mani, Xenofon D. Koutsoukos:

Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part II: Analysis and Extensions. 235-284 - Kaname Kojima, Eric Perrier, Seiya Imoto, Satoru Miyano:

Optimal Search on Clustered Structural Constraint for Learning Bayesian Network Structure. 285-310 - Choon Hui Teo, S. V. N. Vishwanathan, Alexander J. Smola, Quoc V. Le:

Bundle Methods for Regularized Risk Minimization. 311-365 - Dotan Di Castro, Ron Meir:

A Convergent Online Single Time Scale Actor Critic Algorithm. 367-410 - Philippos Mordohai, Gérard G. Medioni:

Dimensionality Estimation, Manifold Learning and Function Approximation using Tensor Voting. 411-450 - Jarkko Venna, Jaakko Peltonen, Kristian Nybo, Helena Aidos, Samuel Kaski:

Information Retrieval Perspective to Nonlinear Dimensionality Reduction for Data Visualization. 451-490 - Kush R. Varshney, Alan S. Willsky:

Classification Using Geometric Level Sets. 491-516 - Michel Journée, Yurii E. Nesterov, Peter Richtárik, Rodolphe Sepulchre:

Generalized Power Method for Sparse Principal Component Analysis. 517-553 - Konrad Rieck, Tammo Krueger, Ulf Brefeld, Klaus-Robert Müller:

Approximate Tree Kernels. 555-580 - Daniil Ryabko:

On Finding Predictors for Arbitrary Families of Processes. 581-602 - Patrick O. Perry, Art B. Owen:

A Rotation Test to Verify Latent Structure. 603-624 - Dumitru Erhan, Yoshua Bengio, Aaron C. Courville, Pierre-Antoine Manzagol, Pascal Vincent, Samy Bengio:

Why Does Unsupervised Pre-training Help Deep Learning? 625-660 - Sergio Escalera, Oriol Pujol, Petia Radeva:

Error-Correcting Ouput Codes Library. 661-664 - Christoforos Christoforou, Robert M. Haralick, Paul Sajda, Lucas C. Parra:

Second-Order Bilinear Discriminant Analysis. 665-685 - Gérard Biau, Frédéric Cérou, Arnaud Guyader:

On the Rate of Convergence of the Bagged Nearest Neighbor Estimate. 687-712 - Jianing Shi, Wotao Yin, Stanley J. Osher, Paul Sajda:

A Fast Hybrid Algorithm for Large-Scale l1-Regularized Logistic Regression. 713-741 - Tom Schaul, Justin Bayer, Daan Wierstra, Yi Sun, Martin Felder, Frank Sehnke, Thomas Rückstieß, Jürgen Schmidhuber:

PyBrain. 743-746 - Pannagadatta K. Shivaswamy, Tony Jebara:

Maximum Relative Margin and Data-Dependent Regularization. 747-788 - Mehryar Mohri, Afshin Rostamizadeh:

Stability Bounds for Stationary phi-mixing and beta-mixing Processes. 789-814 - Fang-Lan Huang, Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin:

Iterative Scaling and Coordinate Descent Methods for Maximum Entropy Models. 815-848 - Yael Ben-Haim, Elad Tom-Tov:

A Streaming Parallel Decision Tree Algorithm. 849-872 - Valero Laparra, Jaime Gutierrez, Gustavo Camps-Valls, Jesús Malo:

Image Denoising with Kernels Based on Natural Image Relations. 873-903 - Lorenzo Rosasco, Mikhail Belkin, Ernesto De Vito:

On Learning with Integral Operators. 905-934 - Andreas Argyriou, Charles A. Micchelli, Massimiliano Pontil:

On Spectral Learning. 935-953 - Gideon S. Mann, Andrew McCallum:

Generalized Expectation Criteria for Semi-Supervised Learning with Weakly Labeled Data. 955-984 - Jure Leskovec, Deepayan Chakrabarti, Jon M. Kleinberg, Christos Faloutsos

, Zoubin Ghahramani:
Kronecker Graphs: An Approach to Modeling Networks. 985-1042 - Pradeep Ravikumar, Alekh Agarwal, Martin J. Wainwright:

Message-passing for Graph-structured Linear Programs: Proximal Methods and Rounding Schemes. 1043-1080 - Tong Zhang:

Analysis of Multi-stage Convex Relaxation for Sparse Regularization. 1081-1107 - Gal Chechik, Varun Sharma, Uri Shalit, Samy Bengio:

Large Scale Online Learning of Image Similarity Through Ranking. 1109-1135 - Christian R. Shelton, Yu Fan, William Lam, Joon Lee, Jing Xu:

Continuous Time Bayesian Network Reasoning and Learning Engine. 1137-1140 - Andreas Krause:

SFO: A Toolbox for Submodular Function Optimization. 1141-1144 - Jin Yu, S. V. N. Vishwanathan, Simon Günter, Nicol N. Schraudolph:

A Quasi-Newton Approach to Nonsmooth Convex Optimization Problems in Machine Learning. 1145-1200 - S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, Karsten M. Borgwardt:

Graph Kernels. 1201-1242 - Miki Aoyagi:

Stochastic Complexity and Generalization Error of a Restricted Boltzmann Machine in Bayesian Estimation. 1243-1272 - Vicenç Gómez, Hilbert J. Kappen, Michael Chertkov:

Approximate Inference on Planar Graphs using Loop Calculus and Belief Propagation. 1273-1296 - Vikas C. Raykar, Shipeng Yu, Linda H. Zhao, Gerardo Hermosillo Valadez, Charles Florin, Luca Bogoni, Linda Moy:

Learning From Crowds. 1297-1322 - Pinar Donmez, Guy Lebanon, Krishnakumar Balasubramanian:

Unsupervised Supervised Learning I: Estimating Classification and Regression Errors without Labels. 1323-1351 - Sayed Kamaledin Ghiasi Shirazi, Reza Safabakhsh, Mostafa Shamsi:

Learning Translation Invariant Kernels for Classification. 1353-1390 - Arthur Gretton, László Györfi:

Consistent Nonparametric Tests of Independence. 1391-1423 - Gunnar E. Carlsson, Facundo Mémoli:

Characterization, Stability and Convergence of Hierarchical Clustering Methods. 1425-1470 - Yin-Wen Chang, Cho-Jui Hsieh, Kai-Wei Chang, Michael Ringgaard, Chih-Jen Lin:

Training and Testing Low-degree Polynomial Data Mappings via Linear SVM. 1471-1490 - Irene Rodríguez-Luján, Ramón Huerta, Charles Elkan, Carlos Santa Cruz:

Quadratic Programming Feature Selection. 1491-1516 - Bharath K. Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf, Gert R. G. Lanckriet:

Hilbert Space Embeddings and Metrics on Probability Measures. 1517-1561 - Thomas Jaksch, Ronald Ortner, Peter Auer:

Near-optimal Regret Bounds for Reinforcement Learning. 1563-1600 - Albert Bifet, Geoff Holmes, Richard Kirkby, Bernhard Pfahringer:

MOA: Massive Online Analysis. 1601-1604 - Ran El-Yaniv, Yair Wiener:

On the Foundations of Noise-free Selective Classification. 1605-1641 - Peter Spirtes:

Introduction to Causal Inference. 1643-1662 - Pedro A. Forero, Alfonso Cano, Georgios B. Giannakis:

Consensus-Based Distributed Support Vector Machines. 1663-1707 - Aapo Hyvärinen, Kun Zhang, Shohei Shimizu, Patrik O. Hoyer:

Estimation of a Structural Vector Autoregression Model Using Non-Gaussianity. 1709-1731 - Ariel Jaimovich, Ofer Meshi, Ian McGraw, Gal Elidan:

FastInf: An Efficient Approximate Inference Library. 1733-1736 - Phillip Verbancsics, Kenneth O. Stanley:

Evolving Static Representations for Task Transfer. 1737-1769 - Ryo Yoshida, Mike West:

Bayesian Learning in Sparse Graphical Factor Models via Variational Mean-Field Annealing. 1771-1798 - Sören Sonnenburg, Gunnar Rätsch, Sebastian Henschel, Christian Widmer, Jonas Behr, Alexander Zien, Fabio De Bona, Alexander Binder, Christian Gehl, Vojtech Franc:

The SHOGUN Machine Learning Toolbox. 1799-1802 - David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja Hansen, Klaus-Robert Müller:

How to Explain Individual Classification Decisions. 1803-1831 - Markus Ojala, Gemma C. Garriga:

Permutation Tests for Studying Classifier Performance. 1833-1863 - Miguel Lázaro-Gredilla, Joaquin Quiñonero Candela, Carl Edward Rasmussen, Aníbal R. Figueiras-Vidal:

Sparse Spectrum Gaussian Process Regression. 1865-1881 - Nicola Segata, Enrico Blanzieri:

Fast and Scalable Local Kernel Machines. 1883-1926 - Liva Ralaivola, Marie Szafranski, Guillaume Stempfel:

Chromatic PAC-Bayes Bounds for Non-IID Data: Applications to Ranking and Stationary β-Mixing Processes. 1927-1956 - Alexander Ilin, Tapani Raiko:

Practical Approaches to Principal Component Analysis in the Presence of Missing Values. 1957-2000 - Kuzman Ganchev, João Graça, Jennifer Gillenwater, Ben Taskar:

Posterior Regularization for Structured Latent Variable Models. 2001-2049 - Dirk Gorissen, Ivo Couckuyt, Piet Demeester, Tom Dhaene, Karel Crombecq:

A Surrogate Modeling and Adaptive Sampling Toolbox for Computer Based Design. 2051-2055 - Raghunandan H. Keshavan, Andrea Montanari, Sewoong Oh:

Matrix Completion from Noisy Entries. 2057-2078 - Gavin C. Cawley, Nicola L. C. Talbot:

On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation. 2079-2107 - Torsten Hothorn, Peter Bühlmann, Thomas Kneib, Matthias Schmid, Benjamin Hofner:

Model-based Boosting 2.0. 2109-2113 - Yu Fan, Jing Xu, Christian R. Shelton:

Importance Sampling for Continuous Time Bayesian Networks. 2115-2140 - Guoqiang Yu, Yuanjian Feng, David J. Miller, Jianhua Xuan, Eric P. Hoffman, Robert Clarke, Ben Davidson, Ie-Ming Shih, Yue Joseph Wang:

Matched Gene Selection and Committee Classifier for Molecular Classification of Heterogeneous Diseases. 2141-2167 - Joris M. Mooij:

libDAI: A Free and Open Source C++ Library for Discrete Approximate Inference in Graphical Models. 2169-2173 - Qiang Wu, Justin Guinney, Mauro Maggioni, Sayan Mukherjee:

Learning Gradients: Predictive Models that Infer Geometry and Statistical Dependence. 2175-2198 - Zhihua Zhang, Guang Dai, Congfu Xu, Michael I. Jordan:

Regularized Discriminant Analysis, Ridge Regression and Beyond. 2199-2228 - Antoine Bordes, Léon Bottou, Patrick Gallinari, Jonathan D. Chang, S. Alex Smith:

Erratum: SGDQN is Less Careful than Expected. 2229-2240 - Garvesh Raskutti, Martin J. Wainwright, Bin Yu:

Restricted Eigenvalue Properties for Correlated Gaussian Designs. 2241-2259 - Ming Yuan:

High Dimensional Inverse Covariance Matrix Estimation via Linear Programming. 2261-2286 - Rahul Mazumder, Trevor Hastie, Robert Tibshirani:

Spectral Regularization Algorithms for Learning Large Incomplete Matrices. 2287-2322 - Franz Pernkopf, Jeff A. Bilmes:

Efficient Heuristics for Discriminative Structure Learning of Bayesian Network Classifiers. 2323-2360 - Dapo Omidiran, Martin J. Wainwright:

High-dimensional Variable Selection with Sparse Random Projections: Measurement Sparsity and Statistical Efficiency. 2361-2386 - Mark D. Reid, Robert C. Williamson:

Composite Binary Losses. 2387-2422 - Shiliang Sun, John Shawe-Taylor:

Sparse Semi-supervised Learning Using Conjugate Functions. 2423-2455 - Vladimir Koltchinskii:

Rademacher Complexities and Bounding the Excess Risk in Active Learning. 2457-2485 - Milos Radovanovic, Alexandros Nanopoulos, Mirjana Ivanovic:

Hubs in Space: Popular Nearest Neighbors in High-Dimensional Data. 2487-2531 - Remco R. Bouckaert, Eibe Frank, Mark A. Hall, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, Ian H. Witten:

WEKA - Experiences with a Java Open-Source Project. 2533-2541 - Lin Xiao:

Dual Averaging Methods for Regularized Stochastic Learning and Online Optimization. 2543-2596 - Joshua V. Dillon, Guy Lebanon:

Stochastic Composite Likelihood. 2597-2633 - Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, Karthik Sridharan:

Learnability, Stability and Uniform Convergence. 2635-2670 - Jitkomut Songsiri, Lieven Vandenberghe:

Topology Selection in Graphical Models of Autoregressive Processes. 2671-2705 - Alexander Clark, Rémi Eyraud, Amaury Habrard:

Using Contextual Representations to Efficiently Learn Context-Free Languages. 2707-2744 - Ido Cohn, Tal El-Hay, Nir Friedman, Raz Kupferman:

Mean Field Variational Approximation for Continuous-Time Bayesian Networks. 2745-2783 - Jean-Yves Audibert, Sébastien Bubeck:

Regret Bounds and Minimax Policies under Partial Monitoring. 2785-2836 - Xuan Vinh Nguyen, Julien Epps, James Bailey:

Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance. 2837-2854 - Jörg Lücke, Julian Eggert:

Expectation Truncation and the Benefits of Preselection In Training Generative Models. 2855-2900 - Giovanni Cavallanti, Nicolò Cesa-Bianchi, Claudio Gentile:

Linear Algorithms for Online Multitask Classification. 2901-2934 - Fu Chang, Chien-Yang Guo, Xiao-Rong Lin, Chi-Jen Lu:

Tree Decomposition for Large-Scale SVM Problems. 2935-2972 - Gilles Blanchard, Gyemin Lee, Clayton Scott:

Semi-Supervised Novelty Detection. 2973-3009 - Carl Edward Rasmussen, Hannes Nickisch:

Gaussian Processes for Machine Learning (GPML) Toolbox. 3011-3015 - Shay B. Cohen, Noah A. Smith:

Covariance in Unsupervised Learning of Probabilistic Grammars. 3017-3051 - Trevor Cohn, Phil Blunsom, Sharon Goldwater:

Inducing Tree-Substitution Grammars. 3053-3096 - Rahul Gupta, Sunita Sarawagi, Ajit A. Diwan:

Collective Inference for Extraction MRFs Coupled with Symmetric Clique Potentials. 3097-3135 - Evangelos A. Theodorou, Jonas Buchli, Stefan Schaal:

A Generalized Path Integral Control Approach to Reinforcement Learning. 3137-3181 - Guo-Xun Yuan, Kai-Wei Chang, Cho-Jui Hsieh, Chih-Jen Lin:

A Comparison of Optimization Methods and Software for Large-scale L1-regularized Linear Classification. 3183-3234 - Antti Honkela, Tapani Raiko, Mikael Kuusela, Matti Tornio, Juha Karhunen:

Approximate Riemannian Conjugate Gradient Learning for Fixed-Form Variational Bayes. 3235-3268 - Chunping Wang, Xuejun Liao, Lawrence Carin, David B. Dunson:

Classification with Incomplete Data Using Dirichlet Process Priors. 3269-3311 - Jacek P. Dmochowski, Paul Sajda, Lucas C. Parra:

Maximum Likelihood in Cost-Sensitive Learning: Model Specification, Approximations, and Upper Bounds. 3313-3332 - Shyam Visweswaran, Gregory F. Cooper:

Learning Instance-Specific Predictive Models. 3333-3369 - Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine Manzagol:

Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. 3371-3408 - Fabian H. Sinz, Matthias Bethge:

Lp-Nested Symmetric Distributions. 3409-3451 - Remco R. Bouckaert, Raymond Hemmecke, Silvia Lindner, Milan Studený:

Efficient Algorithms for Conditional Independence Inference. 3453-3479 - Marina Meila, Le Bao:

An Exponential Model for Infinite Rankings. 3481-3518 - Fei Ye, Cun-Hui Zhang:

Rate Minimaxity of the Lasso and Dantzig Selector for the lq Loss in lr Balls. 3519-3540 - James Henderson, Ivan Titov:

Incremental Sigmoid Belief Networks for Grammar Learning. 3541-3570 - Sumio Watanabe:

Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory. 3571-3594 - Yevgeny Seldin, Naftali Tishby:

PAC-Bayesian Analysis of Co-clustering and Beyond. 3595-3646 - Joshua W. Robinson, Alexander J. Hartemink:

Learning Non-Stationary Dynamic Bayesian Networks. 3647-3680

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














