


default search action
Journal of Machine Learning Research, Volume 15
Volume 15, Number 1, January 2014
- Jüri Lember, Alexey A. Koloydenko:

Bridging Viterbi and posterior decoding: a generalized risk approach to hidden path inference based on hidden Markov models. 1-58 - Manu Nandan, Pramod P. Khargonekar, Sachin S. Talathi:

Fast SVM training using approximate extreme points. 59-98 - Richard Jayadi Oentaryo, Ee-Peng Lim, Michael Finegold, David Lo, Feida Zhu, Clifton Phua, Eng-Yeow Cheu, Ghim-Eng Yap, Kelvin Sim, Minh Nhut Nguyen, Kasun S. Perera, Bijay Neupane, Mustafa Amir Faisal, Zeyar Aung, Wei Lee Woon, Wei Chen, Dhaval Patel, Daniel Berrar:

Detecting click fraud in online advertising: a data mining approach. 99-140 - Marc Claesen, Frank De Smet, Johan A. K. Suykens, Bart De Moor:

EnsembleSVM: a library for ensemble learning using support vector machines. 141-145 - Divyanshu Vats, Robert D. Nowak:

A junction tree framework for undirected graphical model selection. 147-191 - Twan van Laarhoven, Elena Marchiori:

Axioms for graph clustering quality functions. 193-215 - Aleksandr Y. Aravkin, James V. Burke, Alessandro Chiuso, Gianluigi Pillonetto:

Convex vs non-convex estimators for regression and sparse estimation: the mean squared error properties of ARD and GLasso. 217-252 - Aaron Wilson, Alan Fern, Prasad Tadepalli

:
Using trajectory data to improve bayesian optimization for reinforcement learning. 253-282 - Zoltán Szabó:

Information theoretical estimators toolbox. 283-287 - Matthieu Geist, Bruno Scherrer:

Off-policy learning with eligibility traces: a survey. 289-333 - Garvesh Raskutti, Martin J. Wainwright, Bin Yu:

Early stopping and non-parametric regression: an optimal data-dependent stopping rule. 335-366 - Patrick Fox-Roberts, Edward Rosten:

Unbiased generative semi-supervised learning. 367-443 - Karthik Mohan, Palma London, Maryam Fazel, Daniela M. Witten, Su-In Lee:

Node-based learning of multiple Gaussian graphical models. 445-488 - Haotian Pang, Han Liu, Robert J. Vanderbei:

The fastclime package for linear programming and large-scale precision matrix estimation in R. 489-493 - Steven C. H. Hoi, Jialei Wang, Peilin Zhao:

LIBOL: a library for online learning algorithms. 495-499 - Daniel Lowd, Jesse Davis:

Improving Markov network structure learning using decision trees. 501-532 - Marco Cuturi, David Avis:

Ground metric learning. 533-564 - Emile Richard, Stéphane Gaïffas, Nicolas Vayatis:

Link prediction in graphs with autoregressive features. 565-593 - Francis R. Bach:

Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression. 595-627 - Rajen Dinesh Shah, Nicolai Meinshausen:

Random intersection trees. 629-654 - Brett L. Moore, Larry D. Pyeatt, Vivekanand Kulkarni, Periklis Panousis, Kevin Padrez, Anthony G. Doufas:

Reinforcement learning for closed-loop propofol anesthesia: a study in human volunteers. 655-696 - Emanuele Coviello, Antoni B. Chan, Gert R. G. Lanckriet:

Clustering hidden Markov models with variational HEM. 697-747 - Teng Zhang, Gilad Lerman:

A novel M-estimator for robust PCA. 749-808 - Christoph Dann, Gerhard Neumann, Jan Peters:

Policy evaluation with temporal differences: a survey and comparison. 809-883 - Nir Ailon, Ron Begleiter, Esther Ezra:

Active learning using smooth relative regret approximations with applications. 885-920 - Henning Sprekeler, Tiziano Zito, Laurenz Wiskott:

An extension of slow feature analysis for nonlinear blind source separation. 921-947 - Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, Jürgen Schmidhuber:

Natural evolution strategies. 949-980 - Viet Cuong Nguyen, Nan Ye, Wee Sun Lee, Hai Leong Chieu:

Conditional random field with high-order dependencies for sequence labeling and segmentation. 981-1009 - Tomohiko Mizutani:

Ellipsoidal rounding for nonnegative matrix factorization under noisy separability. 1011-1039 - Sara Wade, David B. Dunson, Sonia Petrone, Lorenzo Trippa:

Improving prediction from dirichlet process mixtures via enrichment. 1041-1071 - Jun Zhu, Ning Chen, Hugh Perkins, Bo Zhang:

Gibbs max-margin topic models with data augmentation. 1073-1110 - Alekh Agarwal, Olivier Chapelle, Miroslav Dudík, John Langford:

A reliable effective terascale linear learning system. 1111-1133 - Maksims Volkovs, Richard S. Zemel:

New learning methods for supervised and unsupervised preference aggregation. 1135-1176 - Kai-Yang Chiang, Cho-Jui Hsieh, Nagarajan Natarajan, Inderjit S. Dhillon, Ambuj Tewari:

Prediction and clustering in signed networks: a local to global perspective. 1177-1213 - Francisco J. R. Ruiz, Isabel Valera, Carlos Blanco, Fernando Pérez-Cruz:

Bayesian nonparametric comorbidity analysis of psychiatric disorders. 1215-1247 - Nicolas Gillis, Robert Luce:

Robust near-separable nonnegative matrix factorization using linear optimization. 1249-1280 - Steven de Rooij, Tim van Erven, Peter D. Grünwald, Wouter M. Koolen:

Follow the leader if you can, hedge if you must. 1281-1316 - Janardhan Rao Doppa, Alan Fern, Prasad Tadepalli

:
Structured prediction via output space search. 1317-1350 - Matt P. Wand:

Fully simplified multivariate normal updates in non-conjugate variational message passing. 1351-1369 - Mingkui Tan, Ivor W. Tsang, Li Wang:

Towards ultrahigh dimensional feature selection for big data. 1371-1429 - Charles Dubout, François Fleuret:

Adaptive sampling for large scale boosting. 1431-1453 - Nicolas Boumal, Bamdev Mishra, Pierre-Antoine Absil, Rodolphe Sepulchre:

Manopt, a matlab toolbox for optimization on manifolds. 1455-1459 - Maya R. Gupta, Samy Bengio, Jason Weston:

Training highly multiclass classifiers. 1461-1492 - Daniele Durante, Bruno Scarpa, David B. Dunson:

Locally adaptive factor processes for multivariate time series. 1493-1522 - Po-Wei Wang, Chih-Jen Lin:

Iteration complexity of feasible descent methods for convex optimization. 1523-1548 - Majid Janzamin, Animashree Anandkumar:

High-dimensional covariance decomposition into sparse Markov and independence models. 1549-1591 - Matthew D. Hoffman, Andrew Gelman:

The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. 1593-1623 - Stefan Wager, Trevor Hastie, Bradley Efron:

Confidence intervals for random forests: the jackknife and the infinitesimal jackknife. 1625-1651 - Shivani Agarwal:

Surrogate regret bounds for bipartite ranking via strongly proper losses. 1653-1674 - Zhan Wang, Sandra Paterlini, Fuchang Gao, Yuhong Yang:

Adaptive minimax regression estimation over sparse lq-hulls. 1675-1711 - Mladen Kolar, Han Liu, Eric P. Xing:

Graph estimation from multi-attribute data. 1713-1750 - Ulrike von Luxburg, Agnes Radl, Matthias Hein:

Hitting and commute times in large random neighborhood graphs. 1751-1798 - Jun Zhu, Ning Chen, Eric P. Xing:

Bayesian inference with posterior regularization and applications to infinite latent SVMs. 1799-1847 - Pasi Jylänki, Aapo Nummenmaa, Aki Vehtari:

Expectation propagation for neural networks with sparsity-promoting priors. 1849-1901 - Nicolas Städler, Daniel J. Stekhoven, Peter Bühlmann:

Pattern alternating maximization algorithm for missing data in high-dimensional problems. 1903-1928 - Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov:

Dropout: a simple way to prevent neural networks from overfitting. 1929-1958 - Andrew S. Lan, Andrew E. Waters, Christoph Studer, Richard G. Baraniuk:

Sparse factor analysis for learning and content analytics. 1959-2008 - Jonas Peters, Joris M. Mooij, Dominik Janzing, Bernhard Schölkopf:

Causal discovery with continuous additive noise models. 2009-2053 - Andreas C. Müller, Sven Behnke:

PyStruct: learning structured prediction in python. 2055-2060 - Aäron van den Oord, Benjamin Schrauwen:

The student-t mixture as a natural image patch prior with application to image compression. 2061-2086 - Robert Nishihara, Iain Murray, Ryan P. Adams:

Parallel MCMC with generalized elliptical slice sampling. 2087-2112 - Zhixiang Eddie Xu, Matt J. Kusner, Kilian Q. Weinberger, Minmin Chen, Olivier Chapelle:

Classifier cascades and trees for minimizing feature evaluation cost. 2113-2144 - Fredrik Lindsten, Michael I. Jordan, Thomas B. Schön:

Particle gibbs with ancestor sampling. 2145-2184 - Xiaolin Huang, Lei Shi, Johan A. K. Suykens:

Ramp loss linear programming support vector machine. 2185-2211 - Yudong Chen, Ali Jalali, Sujay Sanghavi, Huan Xu:

Clustering partially observed graphs via convex optimization. 2213-2238 - Animashree Anandkumar, Rong Ge, Daniel J. Hsu, Sham M. Kakade:

A tensor approach to learning mixed membership community models. 2239-2312 - Nikolaos Tziortziotis, Christos Dimitrakakis, Konstantinos Blekas:

Cover tree Bayesian reinforcement learning. 2313-2335 - Steven Reece, Siddhartha Ghosh, Alex Rogers, Stephen J. Roberts, Nicholas R. Jennings:

Efficient state-space inference of periodic latent force models. 2337-2397 - Shay B. Cohen, Karl Stratos, Michael Collins, Dean P. Foster, Lyle H. Ungar:

Spectral learning of latent-variable PCFGs: algorithms and sample complexity. 2399-2449 - Claudio Gentile, Francesco Orabona:

On multilabel classification and ranking with bandit feedback. 2451-2487 - Elad Hazan, Satyen Kale:

Beyond the regret minimization barrier: optimal algorithms for stochastic strongly-convex optimization. 2489-2512 - Jakub Konecný, Michal Hagara:

One-shot-learning gesture recognition using HOG-HOF features. 2513-2532 - Aleksandrs Slivkins:

Contextual bandits with similarity information. 2533-2568 - Mohammad J. Saberian, Nuno Vasconcelos:

Boosting algorithms for detector cascade learning. 2569-2605 - Amit Dhurandhar, Marek Petrik:

Efficient and accurate methods for updating generalized linear models with multiple feature additions. 2607-2627 - Shohei Shimizu, Kenneth Bollen:

Bayesian estimation of causal direction in acyclic structural equation models with individual-specific confounder variables and non-Gaussian distributions. 2629-2652 - Abdul-Saboor Sheikh, Jacquelyn A. Shelton, Jörg Lücke:

A truncated EM approach for spike-and-slab sparse coding. 2653-2687 - Marc Henniges, Richard E. Turner, Maneesh Sahani, Julian Eggert, Jörg Lücke:

Efficient occlusive components analysis. 2689-2722 - Jiashun Jin, Cun-Hui Zhang, Qi Zhang:

Optimality of graphlet screening in high dimensional variable selection. 2723-2772 - Animashree Anandkumar, Rong Ge, Daniel J. Hsu, Sham M. Kakade, Matus Telgarsky:

Tensor decompositions for learning latent variable models. 2773-2832 - Evan Archer, Il Memming Park, Jonathan W. Pillow:

Bayesian entropy estimation for countable discrete distributions. 2833-2868 - Adel Javanmard, Andrea Montanari:

Confidence intervals and hypothesis testing for high-dimensional regression. 2869-2909 - Cho-Jui Hsieh, Mátyás A. Sustik, Inderjit S. Dhillon, Pradeep Ravikumar:

QUIC: quadratic approximation for sparse inverse covariance estimation. 2911-2947 - Nitish Srivastava, Ruslan Salakhutdinov:

Multimodal learning with deep Boltzmann machines. 2949-2980 - Braxton Osting, Christoph Brune, Stanley J. Osher:

Optimal data collection for informative rankings expose well-connected graphs. 2981-3012 - Jiaxiang Wu, Jian Cheng:

Bayesian co-boosting for multi-modal gesture recognition. 3013-3036 - Wei-Sheng Chin, Yong Zhuang, Yu-Chin Juan, Felix Wu, Hsiao-Yu Tung, Tong Yu, Jui-Pin Wang, Cheng-Xia Chang, Chun-Pai Yang, Wei-Cheng Chang, Kuan-Hao Huang, Tzu-Ming Kuo, Shan-Wei Lin, Young-San Lin, Yu-Chen Lu, Yu-Chuan Su, Cheng-Kuang Wei, Tu-Chun Yin, Chun-Liang Li, Ting-Wei Lin, Cheng-Hao Tsai, Shou-De Lin, Hsuan-Tien Lin, Chih-Jen Lin:

Effective string processing and matching for author disambiguation. 3037-3064 - Po-Ling Loh, Peter Bühlmann:

High-dimensional learning of linear causal networks via inverse covariance estimation. 3065-3105 - Thorsten Doliwa, Gaojian Fan, Hans Ulrich Simon, Sandra Zilles:

Recursive teaching dimension, VC-dimension and sample compression. 3107-3131 - Manuel Fernández Delgado, Eva Cernadas, Senén Barro, Dinani Gomes Amorim:

Do we need hundreds of classifiers to solve real world classification problems? 3133-3181 - Ivo Couckuyt, Tom Dhaene, Piet Demeester:

ooDACE toolbox: a flexible object-oriented Kriging implementation. 3183-3186 - Long-Van Nguyen-Dinh, Alberto Calatroni, Gerhard Tröster:

Robust online gesture recognition with crowdsourced annotations. 3187-3220 - Laurens van der Maaten:

Accelerating t-SNE using tree-based algorithms. 3221-3245 - Shie Mannor, Vianney Perchet, Gilles Stoltz:

Set-valued approachability and online learning with partial monitoring. 3247-3295 - Kean Ming Tan, Palma London, Karthik Mohan, Su-In Lee, Maryam Fazel, Daniela M. Witten:

Learning graphical models with hubs. 3297-3331 - Jeffrey W. Miller, Matthew T. Harrison:

Inconsistency of Pitman-Yor process mixtures for the number of components. 3333-3370 - Alexander Fabisch, Jan Hendrik Metzen:

Active contextual policy search. 3371-3399 - Ohad Shamir, Shai Shalev-Shwartz:

Matrix completion with the trace norm: learning, bounding, and transducing. 3401-3423 - Fabrizio Lecci, Alessandro Rinaldo, Larry A. Wasserman:

Statistical analysis of metric graph reconstruction. 3425-3446 - Xiaodong Lin, Minh Pham, Andrzej Ruszczynski:

Alternating linearization for structured regularization problems. 3447-3481 - Nicholas Edward Gillian, Joseph A. Paradiso:

The gesture recognition toolkit. 3483-3487 - Camille Couprie, Clément Farabet, Laurent Najman, Yann LeCun:

Convolutional nets and watershed cuts for real-time semantic Labeling of RGBD videos. 3489-3511 - Willem Waegeman, Krzysztof Dembczynski, Arkadiusz Jachnik, Weiwei Cheng, Eyke Hüllermeier:

On the bayes-optimality of F-measure maximizers. 3333-3388 - Philippe Fournier-Viger, Antonio Gomariz, Ted Gueniche, Azadeh Soltani, Cheng-Wei Wu, Vincent S. Tseng:

SPMF: a Java open-source pattern mining library. 3389-3393 - William L. Hamilton, Mahdi Milani Fard, Joelle Pineau:

Efficient learning and planning with compressed predictive states. 3395-3439 - Sergey Feldman, Maya R. Gupta, Bela A. Frigyik:

Revisiting Stein's paradox: multi-task averaging. 3441-3482 - Kristof Van Moffaert, Ann Nowé:

Multi-objective reinforcement learning using sets of pareto dominating policies. 3483-3512 - Vince Lyzinski, Donniell E. Fishkind, Carey E. Priebe:

Seeded graph matching for correlated Erdös-Rényi graphs. 3513-3540 - Keisuke Yamazaki:

Asymptotic accuracy of distribution-based estimation of latent variables. 3541-3562 - Guillaume Alain, Yoshua Bengio:

What regularized auto-encoders learn from the data-generating distribution. 3563-3593 - David P. Wipf, Haichao Zhang:

Revisiting Bayesian blind deconvolution. 3595-3634 - Jeffrey C. Jackson, Karl Wimmer:

New results for random walk learning. 3635-3666 - Norberto A. Goussies, Sebastián Ubalde, Marta Mejail:

Transfer learning decision forests for gesture recognition. 3667-3690 - Toke Jansen Hansen, Michael W. Mahoney:

Semi-supervised eigenvectors for large-scale locally-biased learning. 3691-3734 - Ruben Martinez-Cantin:

BayesOpt: a Bayesian optimization library for nonlinear optimization, experimental design and bandits. 3735-3739 - Diego Colombo, Marloes H. Maathuis:

Order-independent constraint-based causal structure learning. 3741-3782 - Tyler Lu, Craig Boutilier:

Effective sampling and learning for mallows models with pairwise-preference data. 3783-3829 - Maria-Florina Balcan, Yingyu Liang, Pramod Gupta:

Robust hierarchical clustering. 3831-3871 - Thomas Desautels, Andreas Krause, Joel W. Burdick:

Parallelizing exploration-exploitation tradeoffs in Gaussian process bandit optimization. 3873-3923 - Kshitij Judah, Alan Paul Fern, Thomas G. Dietterich, Prasad Tadepalli

:
Active lmitation learning: formal and practical reductions to I.I.D. learning. 3925-3963

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














