


default search action
Machine Learning, Volume 108
Volume 108, Number 1, January 2019
- Daniel Berrar

, Philippe Lopes
, Jesse Davis
, Werner Dubitzky:
Guest editorial: special issue on machine learning for soccer. 1-7 - Werner Dubitzky, Philippe Lopes

, Jesse Davis
, Daniel Berrar:
The Open International Soccer Database for machine learning. 9-28 - Ondrej Hubácek

, Gustav Sourek
, Filip Zelezný
:
Learning to predict soccer results from relational data with gradient boosted trees. 29-47 - Anthony C. Constantinou

:
Dolores: a model that predicts football match outcomes from all over the world. 49-75 - Alkeos Tsokos

, Santhosh Narayanan, Ioannis Kosmidis, Gianluca Baio, Mihai Cucuringu, Gavin Whitaker, Franz J. Király
:
Modeling outcomes of soccer matches. 77-95 - Daniel Berrar, Philippe Lopes

, Werner Dubitzky:
Incorporating domain knowledge in machine learning for soccer outcome prediction. 97-126 - Ulf Brefeld, Jan Lasek

, Sebastian Mair
:
Probabilistic movement models and zones of control. 127-147
Volume 108, Number 2, February 2019
- Ioannis Tsamardinos

, Giorgos Borboudakis
, Pavlos Katsogridakis, Polyvios Pratikakis, Vassilis Christophides:
A greedy feature selection algorithm for Big Data of high dimensionality. 149-202 - Muhammad Farooq

, Ingo Steinwart:
Learning rates for kernel-based expectile regression. 203-227 - Marc Boullé, Clément Charnay, Nicolas Lachiche

:
A scalable robust and automatic propositionalization approach for Bayesian classification of large mixed numerical and categorical data. 229-266 - Han-Jia Ye, De-Chuan Zhan

, Yuan Jiang:
Fast generalization rates for distance metric learning. 267-295 - Martin Mozina, Janez Demsar, Ivan Bratko, Jure Zabkar:

Extreme value correction: a method for correcting optimistic estimations in rule learning. 297-329 - Kai Ming Ting, Ye Zhu

, Mark J. Carman
, Yue Zhu, Takashi Washio, Zhi-Hua Zhou:
Lowest probability mass neighbour algorithms: relaxing the metric constraint in distance-based neighbourhood algorithms. 331-376 - Alkeos Tsokos

, Santhosh Narayanan, Ioannis Kosmidis, Gianluca Baio, Mihai Cucuringu, Gavin Whitaker, Franz J. Király
:
Correction to: Modeling outcomes of soccer matches. 377-378
Volume 108, Number 3, March 2019
- Alexander Gammerman

, Vladimir Vovk, Henrik Boström, Lars Carlsson:
Conformal and probabilistic prediction with applications: editorial. 379-380 - Vladimir Vapnik, Rauf Izmailov

:
Rethinking statistical learning theory: learning using statistical invariants. 381-423 - Vladimir V'yugin

, Vladimir G. Trunov:
Online aggregation of unbounded losses using shifting experts with confidence. 425-444 - Vladimir Vovk

, Jieli Shen, Valery Manokhin
, Min-ge Xie:
Nonparametric predictive distributions based on conformal prediction. 445-474 - Giovanni Cherubin

:
Majority vote ensembles of conformal predictors. 475-488 - Paolo Toccaceli

, Alexander Gammerman:
Combination of inductive mondrian conformal predictors. 489-510 - Charalambos Eliades, Ladislav Lenc, Pavel Král

, Harris Papadopoulos
:
Automatic face recognition with well-calibrated confidence measures. 511-534 - Ulf Johansson

, Tuve Löfström
, Henrik Linusson, Henrik Boström:
Efficient Venn predictors using random forests. 535-550
Volume 108, Number 4, April 2019
- Antonio Vergari

, Nicola Di Mauro
, Floriana Esposito:
Visualizing and understanding Sum-Product Networks. 551-573 - Kshiteej Sheth, Dinesh Garg, Anirban Dasgupta

:
Improved linear embeddings via Lagrange duality. 575-594 - Xenophon Evangelopoulos

, Austin J. Brockmeier
, Tingting Mu
, John Yannis Goulermas:
Continuation methods for approximate large scale object sequencing. 595-626 - Aditya Krishna Menon:

The risk of trivial solutions in bipartite top ranking. 627-658 - Ronghua Shang, Yang Meng

, Chiyang Liu, Licheng Jiao
, Amir Masoud Ghalamzan Esfahani
, Rustam Stolkin:
Unsupervised feature selection based on kernel fisher discriminant analysis and regression learning. 659-686 - Sayash Kapoor

, Kumar Kshitij Patel
, Purushottam Kar
:
Corruption-tolerant bandit learning. 687-715
Volume 108, Number 5, May 2019
- Masashi Sugiyama

, Yung-Kyun Noh
:
Foreword: special issue for the journal track of the 10th Asian Conference on Machine Learning (ACML 2018). 717-719 - Hideaki Kano

, Junya Honda, Kentaro Sakamaki, Kentaro Matsuura, Atsuyoshi Nakamura, Masashi Sugiyama
:
Good arm identification via bandit feedback. 721-745 - Ming Huang, Fuzhen Zhuang

, Xiao Zhang, Xiang Ao, Zhengyu Niu, Min-Ling Zhang
, Qing He:
Supervised representation learning for multi-label classification. 747-763 - Kanghoon Lee, Geon-hyeong Kim

, Pedro A. Ortega, Daniel D. Lee, Kee-Eung Kim:
Bayesian optimistic Kullback-Leibler exploration. 765-783 - Yu-Lin Tsou

, Hsuan-Tien Lin
:
Annotation cost-sensitive active learning by tree sampling. 785-807 - Joey Tianyi Zhou

, Ivor W. Tsang
, Shen-Shyang Ho
, Klaus-Robert Müller
:
N-ary decomposition for multi-class classification. 809-830 - Bo Han

, Quanming Yao
, Yuangang Pan
, Ivor W. Tsang
, Xiaokui Xiao
, Qiang Yang, Masashi Sugiyama
:
Millionaire: a hint-guided approach for crowdsourcing. 831-858 - Jingchang Liu, Linli Xu, Shuheng Shen, Qing Ling:

An accelerated variance reducing stochastic method with Douglas-Rachford splitting. 859-878
Volume 108, Number 6, June 2019
- Ralf Eggeling

, Ivo Grosse, Mikko Koivisto
:
Algorithms for learning parsimonious context trees. 879-911 - Vítor Cerqueira

, Luís Torgo
, Fábio Pinto, Carlos Soares
:
Arbitrage of forecasting experts. 913-944 - Onur Atan, William R. Zame, Qiaojun Feng

, Mihaela van der Schaar
:
Constructing effective personalized policies using counterfactual inference from biased data sets with many features. 945-970 - Gérard Biau

, Benoît Cadre, Laurent Rouvìère:
Accelerated gradient boosting. 971-992 - He Yan, Qiaolin Ye, Dong-Jun Yu:

Efficient and robust TWSVM classification via a minimum L1-norm distance metric criterion. 993-1018 - Tianbao Yang

, Lijun Zhang, Rong Jin, Shenghuo Zhu, Zhi-Hua Zhou:
A simple homotopy proximal mapping algorithm for compressive sensing. 1019-1056
Volume 108, Number 7, July 2019
- Nicolas Lachiche

, Christel Vrain, Fabrizio Riguzzi, Elena Bellodi, Riccardo Zese
:
Preface to special issue on Inductive Logic Programming, ILP 2017 and 2018. 1057-1059 - Guest editors' note. 1061

- Andrew Cropper, Stephen H. Muggleton:

Learning efficient logic programs. 1063-1083 - Evangelos Michelioudakis

, Alexander Artikis, Georgios Paliouras:
Semi-supervised online structure learning for composite event recognition. 1085-1110 - Arnaud Nguembang Fadja

, Fabrizio Riguzzi
:
Lifted discriminative learning of probabilistic logic programs. 1111-1135 - Pascal Welke

, Tamás Horváth
, Stefan Wrobel:
Probabilistic and exact frequent subtree mining in graphs beyond forests. 1137-1164 - Victor Guimarães, Aline Paes

, Gerson Zaverucha:
Online probabilistic theory revision from examples with ProPPR. 1165-1189
Volume 108, Numbers 8-9, September 2019
- Karsten M. Borgwardt, Po-Ling Loh

, Evimaria Terzi, Antti Ukkonen:
Introduction to the special issue for the ECML PKDD 2019 journal track. 1191-1192 - Hong-Min Chu, Kuan-Hao Huang

, Hsuan-Tien Lin
:
Dynamic principal projection for cost-sensitive online multi-label classification. 1193-1230 - Dmitry Adamskiy, Anthony Bellotti

, Raisa Dzhamtyrova, Yuri Kalnishkan
:
Aggregating Algorithm for prediction of packs. 1231-1260 - Konstantinos Sechidis

, Laura Azzimonti
, Adam Craig Pocock, Giorgio Corani
, James Weatherall, Gavin Brown
:
Efficient feature selection using shrinkage estimators. 1261-1286 - Astrid Dahl

, Edwin V. Bonilla:
Grouped Gaussian processes for solar power prediction. 1287-1306 - Benjamin Cowen

, Apoorva Nandini Saridena, Anna Choromanska:
LSALSA: accelerated source separation via learned sparse coding. 1307-1327 - Rohit Babbar

, Bernhard Schölkopf:
Data scarcity, robustness and extreme multi-label classification. 1329-1351 - Paul Prasse

, René Knaebel, Lukás Machlica, Tomás Pevný
, Tobias Scheffer:
Joint detection of malicious domains and infected clients. 1353-1368 - Archit Sharma, Siddhartha Saxena

, Piyush Rai:
A flexible probabilistic framework for large-margin mixture of experts. 1369-1393 - Ragunathan Mariappan, Vaibhav Rajan

:
Deep collective matrix factorization for augmented multi-view learning. 1395-1420 - Shun-Yao Shih

, Fan-Keng Sun, Hung-Yi Lee:
Temporal pattern attention for multivariate time series forecasting. 1421-1441 - Joni Pajarinen

, Hong Linh Thai, Riad Akrour, Jan Peters, Gerhard Neumann:
Compatible natural gradient policy search. 1443-1466 - Simone Parisi

, Voot Tangkaratt, Jan Peters, Mohammad Emtiyaz Khan:
TD-regularized actor-critic methods. 1467-1501 - Stephan Sloth Lorenzen

, Christian Igel
, Yevgeny Seldin
:
On PAC-Bayesian bounds for random forests. 1503-1522 - Matthew J. Holland, Kazushi Ikeda:

Efficient learning with robust gradient descent. 1523-1560 - Tom J. Viering

, Jesse H. Krijthe
, Marco Loog
:
Nuclear discrepancy for single-shot batch active learning. 1561-1599 - Alex Mansbridge

, Roberto Fierimonte, Ilya Feige, David Barber
:
Improving latent variable descriptiveness by modelling rather than ad-hoc factors. 1601-1611 - Cyrus Cousins, Matteo Riondato

:
CaDET: interpretable parametric conditional density estimation with decision trees and forests. 1613-1634 - Ievgen Redko

, Amaury Habrard, Marc Sebban:
On the analysis of adaptability in multi-source domain adaptation. 1635-1652 - Jan Arne Telle, José Hernández-Orallo, Cèsar Ferri

:
The teaching size: computable teachers and learners for universal languages. 1653-1675 - Balázs Csanád Csáji

, Krisztián Balázs Kis
:
Distribution-free uncertainty quantification for kernel methods by gradient perturbations. 1677-1699 - Zhize Li, Tianyi Zhang, Shuyu Cheng, Jun Zhu, Jian Li:

Stochastic gradient Hamiltonian Monte Carlo with variance reduction for Bayesian inference. 1701-1727
Volume 108, Number 10, October 2019
- Lionel Tabourier, Daniel Faria Bernardes, Anne-Sophie Libert

, Renaud Lambiotte
:
RankMerging: a supervised learning-to-rank framework to predict links in large social networks. 1729-1756 - Kien Do

, Truyen Tran, Thin Nguyen
, Svetha Venkatesh:
Attentional multilabel learning over graphs: a message passing approach. 1757-1781 - Bamdev Mishra

, Hiroyuki Kasai, Pratik Jawanpuria, Atul Saroop:
A Riemannian gossip approach to subspace learning on Grassmann manifold. 1783-1803 - Xiangju Qin

, Paul Blomstedt, Eemeli Leppäaho, Pekka Parviainen, Samuel Kaski:
Distributed Bayesian matrix factorization with limited communication. 1805-1830 - Asso Hamzehei

, Raymond K. Wong, Danai Koutra
, Fang Chen
:
Collaborative topic regression for predicting topic-based social influence. 1831-1850 - Lemei Zhang

, Peng Liu, Jon Atle Gulla:
Dynamic attention-integrated neural network for session-based news recommendation. 1851-1875 - Heitor Murilo Gomes

, Albert Bifet
, Jesse Read, Jean Paul Barddal
, Fabrício Enembreck
, Bernhard Pfahringer, Geoff Holmes, Talel Abdessalem:
Correction to: Adaptive random forests for evolving data stream classification. 1877-1878
Volume 108, Number 11, November 2019
- Ehsan Sadrfaridpour

, Talayeh Razzaghi
, Ilya Safro
:
Engineering fast multilevel support vector machines. 1879-1917 - Alexander Luedtke

, Emilie Kaufmann, Antoine Chambaz
:
Asymptotically optimal algorithms for budgeted multiple play bandits. 1919-1949 - Aleksandr Y. Aravkin

, Giulio Bottegal, Gianluigi Pillonetto:
Boosting as a kernel-based method. 1951-1974 - Wataru Kumagai

, Takafumi Kanamori:
Risk bound of transfer learning using parametric feature mapping and its application to sparse coding. 1975-2008 - Aida Brankovic

, Luigi Piroddi:
A distributed feature selection scheme with partial information sharing. 2009-2034
Volume 108, Number 12, December 2019
- Di Ma, Songcan Chen:

2D compressed learning: support matrix machine with bilinear random projections. 2035-2060 - Kshitij Khare, Sang-Yun Oh

, Syed Rahman, Bala Rajaratnam:
A scalable sparse Cholesky based approach for learning high-dimensional covariance matrices in ordered data. 2061-2086 - Eric Bax, Lingjie Weng, Xu Tian:

Speculate-correct error bounds for k-nearest neighbor classifiers. 2087-2111 - Gregor H. W. Gebhardt

, Andras Gabor Kupcsik, Gerhard Neumann:
The kernel Kalman rule - Efficient nonparametric inference by recursive least-squares and subspace projections. 2113-2157 - Qidi Peng

, Nan Rao
, Ran Zhao
:
Covariance-based dissimilarity measures applied to clustering wide-sense stationary ergodic processes. 2159-2195

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














