default search action
Bolin Ding
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j49]Bolin Ding, Rong Zhu, Jingren Zhou:
Learned Query Optimizers. Found. Trends Databases 13(4): 250-310 (2024) - [j48]Jiajun Li, Runlin Lei, Sibo Wang, Zhewei Wei, Bolin Ding:
Learning-based Property Estimation with Polynomials. Proc. ACM Manag. Data 2(3): 148 (2024) - [j47]Lianggui Weng, Rong Zhu, Di Wu, Bolin Ding, Bolong Zheng, Jingren Zhou:
Eraser: Eliminating Performance Regression on Learned Query Optimizer. Proc. VLDB Endow. 17(5): 926-938 (2024) - [j46]Rong Zhu, Lianggui Weng, Wenqing Wei, Di Wu, Jiazhen Peng, Yifan Wang, Bolin Ding, Defu Lian, Bolong Zheng, Jingren Zhou:
PilotScope: Steering Databases with Machine Learning Drivers. Proc. VLDB Endow. 17(5): 980-993 (2024) - [j45]Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, Jingren Zhou:
Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation. Proc. VLDB Endow. 17(5): 1132-1145 (2024) - [j44]Zitao Li, Bolin Ding, Liuyi Yao, Yaliang Li, Xiaokui Xiao, Jingren Zhou:
Performance-Based Pricing of Federated Learning via Auction. Proc. VLDB Endow. 17(6): 1269-1282 (2024) - [j43]Fei Wei, Ergute Bao, Xiaokui Xiao, Yin Yang, Bolin Ding:
AAA: an Adaptive Mechanism for Locally Differential Private Mean Estimation. Proc. VLDB Endow. 17(8): 1843-1855 (2024) - [j42]Weirui Kuang, Zhen Wang, Zhewei Wei, Yaliang Li, Bolin Ding:
When Transformer Meets Large Graphs: An Expressive and Efficient Two-View Architecture. IEEE Trans. Knowl. Data Eng. 36(10): 5440-5452 (2024) - [j41]Xingguang Chen, Rong Zhu, Bolin Ding, Sibo Wang, Jingren Zhou:
Lero: applying learning-to-rank in query optimizer. VLDB J. 33(5): 1307-1331 (2024) - [c109]Shuchang Tao, Liuyi Yao, Hanxing Ding, Yuexiang Xie, Qi Cao, Fei Sun, Jinyang Gao, Huawei Shen, Bolin Ding:
When to Trust LLMs: Aligning Confidence with Response Quality. ACL (Findings) 2024: 5984-5996 - [c108]Yin Lin, Bolin Ding, H. V. Jagadish, Jingren Zhou:
SMARTFEAT: Efficient Feature Construction through Feature-Level Foundation Model Interactions. CIDR 2024 - [c107]Peiyu Liu, Zikang Liu, Ze-Feng Gao, Dawei Gao, Wayne Xin Zhao, Yaliang Li, Bolin Ding, Ji-Rong Wen:
Do Emergent Abilities Exist in Quantized Large Language Models: An Empirical Study. LREC/COLING 2024: 5174-5190 - [c106]Youbang Sun, Zitao Li, Yaliang Li, Bolin Ding:
Improving LoRA in Privacy-preserving Federated Learning. ICLR 2024 - [c105]Xue Wang, Tian Zhou, Qingsong Wen, Jinyang Gao, Bolin Ding, Rong Jin:
CARD: Channel Aligned Robust Blend Transformer for Time Series Forecasting. ICLR 2024 - [c104]Yanxi Chen, Xuchen Pan, Yaliang Li, Bolin Ding, Jingren Zhou:
EE-LLM: Large-Scale Training and Inference of Early-Exit Large Language Models with 3D Parallelism. ICML 2024 - [c103]Kexin Huang, Ziqian Chen, Xue Wang, Chongming Gao, Jinyang Gao, Bolin Ding, Xiang Wang:
Auctionformer: A Unified Deep Learning Algorithm for Solving Equilibrium Strategies in Auction Games. ICML 2024 - [c102]Zhen Qin, Daoyuan Chen, Bingchen Qian, Bolin Ding, Yaliang Li, Shuiguang Deng:
Federated Full-Parameter Tuning of Billion-Sized Language Models with Communication Cost under 18 Kilobytes. ICML 2024 - [c101]Feijie Wu, Zitao Li, Yaliang Li, Bolin Ding, Jing Gao:
FedBiOT: LLM Local Fine-tuning in Federated Learning without Full Model. KDD 2024: 3345-3355 - [c100]Fangyuan Zhao, Zitao Li, Xuebin Ren, Bolin Ding, Shusen Yang, Yaliang Li:
VertiMRF: Differentially Private Vertical Federated Data Synthesis. KDD 2024: 4431-4442 - [c99]Weirui Kuang, Bingchen Qian, Zitao Li, Daoyuan Chen, Dawei Gao, Xuchen Pan, Yuexiang Xie, Yaliang Li, Bolin Ding, Jingren Zhou:
FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large Language Models in Federated Learning. KDD 2024: 5260-5271 - [c98]Daoyuan Chen, Yaliang Li, Bolin Ding:
Multi-modal Data Processing for Foundation Models: Practical Guidances and Use Cases. KDD 2024: 6414-6415 - [c97]Yichen Qian, Yongyi He, Rong Zhu, Jintao Huang, Zhijian Ma, Haibin Wang, Yaohua Wang, Xiuyu Sun, Defu Lian, Bolin Ding, Jingren Zhou:
UniDM: A Unified Framework for Data Manipulation with Large Language Models. MLSys 2024 - [c96]Ke Zhang, Lichao Sun, Bolin Ding, Siu Ming Yiu, Carl Yang:
Deep Efficient Private Neighbor Generation for Subgraph Federated Learning. SDM 2024: 806-814 - [c95]Daoyuan Chen, Yilun Huang, Zhijian Ma, Hesen Chen, Xuchen Pan, Ce Ge, Dawei Gao, Yuexiang Xie, Zhaoyang Liu, Jinyang Gao, Yaliang Li, Bolin Ding, Jingren Zhou:
Data-Juicer: A One-Stop Data Processing System for Large Language Models. SIGMOD Conference Companion 2024: 120-134 - [c94]Rong Zhu, Lianggui Weng, Bolin Ding, Jingren Zhou:
Learned Query Optimizer: What is New and What is Next. SIGMOD Conference Companion 2024: 561-569 - [c93]Yuzheng Hu, Fan Wu, Qinbin Li, Yunhui Long, Gonzalo Munilla Garrido, Chang Ge, Bolin Ding, David A. Forsyth, Bo Li, Dawn Song:
SoK: Privacy-Preserving Data Synthesis. SP 2024: 4696-4713 - [c92]Zhen Wang, Yaliang Li, Bolin Ding, Yule Li, Zhewei Wei:
Exploring Neural Scaling Law and Data Pruning Methods For Node Classification on Large-scale Graphs. WWW 2024: 780-791 - [i85]Ke Zhang, Lichao Sun, Bolin Ding, Siu Ming Yiu, Carl Yang:
Deep Efficient Private Neighbor Generation for Subgraph Federated Learning. CoRR abs/2401.04336 (2024) - [i84]Xuchen Pan, Yanxi Chen, Yaliang Li, Bolin Ding, Jingren Zhou:
EE-Tuning: An Economical yet Scalable Solution for Tuning Early-Exit Large Language Models. CoRR abs/2402.00518 (2024) - [i83]Yue Cui, Liuyi Yao, Yaliang Li, Ziqian Chen, Bolin Ding, Xiaofang Zhou:
An Auction-based Marketplace for Model Trading in Federated Learning. CoRR abs/2402.01802 (2024) - [i82]Yuan Gao, Haokun Chen, Xiang Wang, Zhicai Wang, Xue Wang, Jinyang Gao, Bolin Ding:
DiffsFormer: A Diffusion Transformer on Stock Factor Augmentation. CoRR abs/2402.06656 (2024) - [i81]Dawei Gao, Zitao Li, Weirui Kuang, Xuchen Pan, Daoyuan Chen, Zhijian Ma, Bingchen Qian, Liuyi Yao, Lin Zhu, Chen Cheng, Hongzhu Shi, Yaliang Li, Bolin Ding, Jingren Zhou:
AgentScope: A Flexible yet Robust Multi-Agent Platform. CoRR abs/2402.14034 (2024) - [i80]Yue Cui, Liuyi Yao, Zitao Li, Yaliang Li, Bolin Ding, Xiaofang Zhou:
A Bargaining-based Approach for Feature Trading in Vertical Federated Learning. CoRR abs/2402.15247 (2024) - [i79]Youbang Sun, Zitao Li, Yaliang Li, Bolin Ding:
Improving LoRA in Privacy-preserving Federated Learning. CoRR abs/2403.12313 (2024) - [i78]Fei Wei, Ergute Bao, Xiaokui Xiao, Yin Yang, Bolin Ding:
AAA: an Adaptive Mechanism for Locally Differential Private Mean Estimation. CoRR abs/2404.01625 (2024) - [i77]Shuchang Tao, Liuyi Yao, Hanxing Ding, Yuexiang Xie, Qi Cao, Fei Sun, Jinyang Gao, Huawei Shen, Bolin Ding:
When to Trust LLMs: Aligning Confidence with Response Quality. CoRR abs/2404.17287 (2024) - [i76]Yichen Qian, Yongyi He, Rong Zhu, Jintao Huang, Zhijian Ma, Haibin Wang, Yaohua Wang, Xiuyu Sun, Defu Lian, Bolin Ding, Jingren Zhou:
UniDM: A Unified Framework for Data Manipulation with Large Language Models. CoRR abs/2405.06510 (2024) - [i75]Ce Ge, Zhijian Ma, Daoyuan Chen, Yaliang Li, Bolin Ding:
Data Mixing Made Efficient: A Bivariate Scaling Law for Language Model Pretraining. CoRR abs/2405.14908 (2024) - [i74]Tianjing Zeng, Junwei Lan, Jiahong Ma, Wenqing Wei, Rong Zhu, Pengfei Li, Bolin Ding, Defu Lian, Zhewei Wei, Jingren Zhou:
PRICE: A Pretrained Model for Cross-Database Cardinality Estimation. CoRR abs/2406.01027 (2024) - [i73]Feijie Wu, Zitao Li, Yaliang Li, Bolin Ding, Jing Gao:
FedBiOT: LLM Local Fine-tuning in Federated Learning without Full Model. CoRR abs/2406.17706 (2024) - [i72]Fangyuan Zhao, Zitao Li, Xuebin Ren, Bolin Ding, Shusen Yang, Yaliang Li:
VertiMRF: Differentially Private Vertical Federated Data Synthesis. CoRR abs/2406.19008 (2024) - [i71]Junkang Wu, Yuexiang Xie, Zhengyi Yang, Jiancan Wu, Jiawei Chen, Jinyang Gao, Bolin Ding, Xiang Wang, Xiangnan He:
Towards Robust Alignment of Language Models: Distributionally Robustifying Direct Preference Optimization. CoRR abs/2407.07880 (2024) - [i70]Zhen Qin, Daoyuan Chen, Wenhao Zhang, Liuyi Yao, Yilun Huang, Bolin Ding, Yaliang Li, Shuiguang Deng:
The Synergy between Data and Multi-Modal Large Language Models: A Survey from Co-Development Perspective. CoRR abs/2407.08583 (2024) - [i69]Junkang Wu, Yuexiang Xie, Zhengyi Yang, Jiancan Wu, Jinyang Gao, Bolin Ding, Xiang Wang, Xiangnan He:
β-DPO: Direct Preference Optimization with Dynamic β. CoRR abs/2407.08639 (2024) - [i68]Daoyuan Chen, Haibin Wang, Yilun Huang, Ce Ge, Yaliang Li, Bolin Ding, Jingren Zhou:
Data-Juicer Sandbox: A Comprehensive Suite for Multimodal Data-Model Co-development. CoRR abs/2407.11784 (2024) - [i67]Yanxi Chen, Yaliang Li, Bolin Ding, Jingren Zhou:
On the Design and Analysis of LLM-Based Algorithms. CoRR abs/2407.14788 (2024) - [i66]Xuchen Pan, Dawei Gao, Yuexiang Xie, Zhewei Wei, Yaliang Li, Bolin Ding, Ji-Rong Wen, Jingren Zhou:
Very Large-Scale Multi-Agent Simulation in AgentScope. CoRR abs/2407.17789 (2024) - [i65]Fangyuan Zhao, Yuexiang Xie, Xuebin Ren, Bolin Ding, Shusen Yang, Yaliang Li:
Understanding Byzantine Robustness in Federated Learning with A Black-box Server. CoRR abs/2408.06042 (2024) - [i64]Yuchang Sun, Yuexiang Xie, Bolin Ding, Yaliang Li, Jun Zhang:
Exploring Selective Layer Fine-Tuning in Federated Learning. CoRR abs/2408.15600 (2024) - 2023
- [j40]Yuexiang Xie, Zhen Wang, Dawei Gao, Daoyuan Chen, Liuyi Yao, Weirui Kuang, Yaliang Li, Bolin Ding, Jingren Zhou:
FederatedScope: A Flexible Federated Learning Platform for Heterogeneity. Proc. VLDB Endow. 16(5): 1059-1072 (2023) - [j39]Rong Zhu, Wei Chen, Bolin Ding, Xingguang Chen, Andreas Pfadler, Ziniu Wu, Jingren Zhou:
Lero: A Learning-to-Rank Query Optimizer. Proc. VLDB Endow. 16(6): 1466-1479 (2023) - [j38]Xu Chen, Zhen Wang, Shuncheng Liu, Yaliang Li, Kai Zeng, Bolin Ding, Jingren Zhou, Han Su, Kai Zheng:
BASE: Bridging the Gap between Cost and Latency for Query Optimization. Proc. VLDB Endow. 16(8): 1958-1966 (2023) - [j37]Pengfei Li, Hua Lu, Rong Zhu, Bolin Ding, Long Yang, Gang Pan:
DILI: A Distribution-Driven Learned Index. Proc. VLDB Endow. 16(9): 2212-2224 (2023) - [j36]Dawei Gao, Daoyuan Chen, Zitao Li, Yuexiang Xie, Xuchen Pan, Yaliang Li, Bolin Ding, Jingren Zhou:
FS-Real: A Real-World Cross-Device Federated Learning Platform. Proc. VLDB Endow. 16(12): 4046-4049 (2023) - [j35]Pengfei Li, Wenqing Wei, Rong Zhu, Bolin Ding, Jingren Zhou, Hua Lu:
ALECE: An Attention-based Learned Cardinality Estimator for SPJ Queries on Dynamic Workloads. Proc. VLDB Endow. 17(2): 197-210 (2023) - [j34]Yexuan Shi, Yongxin Tong, Yuxiang Zeng, Zimu Zhou, Bolin Ding, Lei Chen:
Efficient Approximate Range Aggregation Over Large-Scale Spatial Data Federation. IEEE Trans. Knowl. Data Eng. 35(1): 418-430 (2023) - [j33]Hengtong Zhang, Yaliang Li, Bolin Ding, Jing Gao:
LOKI: A Practical Data Poisoning Attack Framework Against Next Item Recommendations. IEEE Trans. Knowl. Data Eng. 35(5): 5047-5059 (2023) - [j32]Yang Deng, Yaliang Li, Bolin Ding, Wai Lam:
Leveraging Long Short-Term User Preference in Conversational Recommendation via Multi-agent Reinforcement Learning. IEEE Trans. Knowl. Data Eng. 35(11): 11541-11555 (2023) - [j31]Ziqian Chen, Fei Sun, Yifan Tang, Haokun Chen, Jinyang Gao, Bolin Ding:
Studying the Impact of Data Disclosure Mechanism in Recommender Systems via Simulation. ACM Trans. Inf. Syst. 41(3): 60:1-60:26 (2023) - [c91]Chenhe Dong, Yuexiang Xie, Bolin Ding, Ying Shen, Yaliang Li:
Tunable Soft Prompts are Messengers in Federated Learning. EMNLP (Findings) 2023: 14665-14675 - [c90]Cong Zhang, Weiran Liu, Bolin Ding, Dongdai Lin:
Efficient Private Multiset ID Protocols. ICICS 2023: 351-369 - [c89]Daoyuan Chen, Wuchao Li, Yaliang Li, Bolin Ding, Kai Zeng, Defu Lian, Jingren Zhou:
Learned Index with Dynamic $\epsilon$. ICLR 2023 - [c88]Daoyuan Chen, Liuyi Yao, Dawei Gao, Bolin Ding, Yaliang Li:
Efficient Personalized Federated Learning via Sparse Model-Adaptation. ICML 2023: 5234-5256 - [c87]Zhen Wang, Weirui Kuang, Ce Zhang, Bolin Ding, Yaliang Li:
FedHPO-Bench: A Benchmark Suite for Federated Hyperparameter Optimization. ICML 2023: 35908-35948 - [c86]Daoyuan Chen, Dawei Gao, Yuexiang Xie, Xuchen Pan, Zitao Li, Yaliang Li, Bolin Ding, Jingren Zhou:
FS-REAL: Towards Real-World Cross-Device Federated Learning. KDD 2023: 3829-3841 - [c85]Zeyu Qin, Liuyi Yao, Daoyuan Chen, Yaliang Li, Bolin Ding, Minhao Cheng:
Revisiting Personalized Federated Learning: Robustness Against Backdoor Attacks. KDD 2023: 4743-4755 - [c84]Bolin Ding, Yiding Feng, Chien-Ju Ho, Wei Tang, Haifeng Xu:
Competitive Information Design for Pandora's Box. SODA 2023: 353-381 - [c83]Liuyi Yao, Yaliang Li, Bolin Ding, Jingren Zhou, Jinduo Liu, Mengdi Huai, Jing Gao:
Path-specific Causal Fair Prediction via Auxiliary Graph Structure Learning. WWW 2023: 3680-3688 - [i63]Zeyu Qin, Liuyi Yao, Daoyuan Chen, Yaliang Li, Bolin Ding, Minhao Cheng:
Revisiting Personalized Federated Learning: Robustness Against Backdoor Attacks. CoRR abs/2302.01677 (2023) - [i62]Rong Zhu, Wei Chen, Bolin Ding, Xingguang Chen, Andreas Pfadler, Ziniu Wu, Jingren Zhou:
Lero: A Learning-to-Rank Query Optimizer. CoRR abs/2302.06873 (2023) - [i61]Daoyuan Chen, Dawei Gao, Yuexiang Xie, Xuchen Pan, Zitao Li, Yaliang Li, Bolin Ding, Jingren Zhou:
FS-Real: Towards Real-World Cross-Device Federated Learning. CoRR abs/2303.13363 (2023) - [i60]Pengfei Li, Hua Lu, Rong Zhu, Bolin Ding, Long Yang, Gang Pan:
DILI: A Distribution-Driven Learned Index. CoRR abs/2304.08817 (2023) - [i59]Daoyuan Chen, Liuyi Yao, Dawei Gao, Bolin Ding, Yaliang Li:
Efficient Personalized Federated Learning via Sparse Model-Adaptation. CoRR abs/2305.02776 (2023) - [i58]Xue Wang, Tian Zhou, Qingsong Wen, Jinyang Gao, Bolin Ding, Rong Jin:
Make Transformer Great Again for Time Series Forecasting: Channel Aligned Robust Dual Transformer. CoRR abs/2305.12095 (2023) - [i57]Yuzheng Hu, Fan Wu, Qinbin Li, Yunhui Long, Gonzalo Munilla Garrido, Chang Ge, Bolin Ding, David A. Forsyth, Bo Li, Dawn Song:
SoK: Privacy-Preserving Data Synthesis. CoRR abs/2307.02106 (2023) - [i56]Peiyu Liu, Zikang Liu, Ze-Feng Gao, Dawei Gao, Wayne Xin Zhao, Yaliang Li, Bolin Ding, Ji-Rong Wen:
Do Emergent Abilities Exist in Quantized Large Language Models: An Empirical Study. CoRR abs/2307.08072 (2023) - [i55]Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, Jingren Zhou:
Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation. CoRR abs/2308.15363 (2023) - [i54]Weirui Kuang, Bingchen Qian, Zitao Li, Daoyuan Chen, Dawei Gao, Xuchen Pan, Yuexiang Xie, Yaliang Li, Bolin Ding, Jingren Zhou:
FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large Language Models in Federated Learning. CoRR abs/2309.00363 (2023) - [i53]Daoyuan Chen, Yilun Huang, Zhijian Ma, Hesen Chen, Xuchen Pan, Ce Ge, Dawei Gao, Yuexiang Xie, Zhaoyang Liu, Jinyang Gao, Yaliang Li, Bolin Ding, Jingren Zhou:
Data-Juicer: A One-Stop Data Processing System for Large Language Models. CoRR abs/2309.02033 (2023) - [i52]Yin Lin, Bolin Ding, H. V. Jagadish, Jingren Zhou:
SMARTFEAT: Efficient Feature Construction through Feature-Level Foundation Model Interactions. CoRR abs/2309.07856 (2023) - [i51]Pengfei Li, Wenqing Wei, Rong Zhu, Bolin Ding, Jingren Zhou, Hua Lu:
ALECE: An Attention-based Learned Cardinality Estimator for SPJ Queries on Dynamic Workloads (Extended). CoRR abs/2310.05349 (2023) - [i50]Chenhe Dong, Yuexiang Xie, Bolin Ding, Ying Shen, Yaliang Li:
Tunable Soft Prompts are Messengers in Federated Learning. CoRR abs/2311.06805 (2023) - [i49]Yanxi Chen, Xuchen Pan, Yaliang Li, Bolin Ding, Jingren Zhou:
EE-LLM: Large-Scale Training and Inference of Early-Exit Large Language Models with 3D Parallelism. CoRR abs/2312.04916 (2023) - [i48]Zhen Qin, Daoyuan Chen, Bingchen Qian, Bolin Ding, Yaliang Li, Shuiguang Deng:
Federated Full-Parameter Tuning of Billion-Sized Language Models with Communication Cost under 18 Kilobytes. CoRR abs/2312.06353 (2023) - [i47]Cong Zhang, Weiran Liu, Bolin Ding, Dongdai Lin:
Efficient Private Multiset ID Protocols. IACR Cryptol. ePrint Arch. 2023: 986 (2023) - 2022
- [j30]Siqing Li, Yaliang Li, Wayne Xin Zhao, Bolin Ding, Ji-Rong Wen:
Interpretable Aspect-Aware Capsule Network for Peer Review Based Citation Count Prediction. ACM Trans. Inf. Syst. 40(1): 11:1-11:29 (2022) - [j29]Yang Deng, Yaliang Li, Wenxuan Zhang, Bolin Ding, Wai Lam:
Toward Personalized Answer Generation in E-Commerce via Multi-perspective Preference Modeling. ACM Trans. Inf. Syst. 40(4): 87:1-87:28 (2022) - [c82]Shanlei Mu, Yupeng Hou, Wayne Xin Zhao, Yaliang Li, Bolin Ding:
ID-Agnostic User Behavior Pre-training for Sequential Recommendation. CCIR 2022: 16-27 - [c81]Amrita Roy Chowdhury, Bolin Ding, Somesh Jha, Weiran Liu, Jingren Zhou:
Strengthening Order Preserving Encryption with Differential Privacy. CCS 2022: 2519-2533 - [c80]Jinjia Feng, Zhen Wang, Yaliang Li, Bolin Ding, Zhewei Wei, Hongteng Xu:
MGMAE: Molecular Representation Learning by Reconstructing Heterogeneous Graphs with A High Mask Ratio. CIKM 2022: 509-519 - [c79]Rong Zhu, Ziniu Wu, Chengliang Chai, Andreas Pfadler, Bolin Ding, Guoliang Li, Jingren Zhou:
Learned Query Optimizer: At the Forefront of AI-Driven Databases. EDBT 2022: 1-4 - [c78]Xu Xie, Fei Sun, Zhaoyang Liu, Shiwen Wu, Jinyang Gao, Jiandong Zhang, Bolin Ding, Bin Cui:
Contrastive Learning for Sequential Recommendation. ICDE 2022: 1259-1273 - [c77]Yexuan Shi, Yongxin Tong, Yuxiang Zeng, Zimu Zhou, Bolin Ding, Lei Chen:
Efficient Approximate Range Aggregation over Large-scale Spatial Data Federation (Extended Abstract). ICDE 2022: 1559-1560 - [c76]Yuexiang Xie, Zhen Wang, Yaliang Li, Ce Zhang, Jingren Zhou, Bolin Ding:
iFlood: A Stable and Effective Regularizer. ICLR 2022 - [c75]Dawei Gao, Yuexiang Xie, Zimu Zhou, Zhen Wang, Yaliang Li, Bolin Ding:
Finding Meta Winning Ticket to Train Your MAML. KDD 2022: 411-420 - [c74]Yupeng Hou, Shanlei Mu, Wayne Xin Zhao, Yaliang Li, Bolin Ding, Ji-Rong Wen:
Towards Universal Sequence Representation Learning for Recommender Systems. KDD 2022: 585-593 - [c73]Jiajun Li, Zhewei Wei, Bolin Ding, Xiening Dai, Lu Lu, Jingren Zhou:
Sampling-based Estimation of the Number of Distinct Values in Distributed Environment. KDD 2022: 893-903 - [c72]Zhen Wang, Zhewei Wei, Yaliang Li, Weirui Kuang, Bolin Ding:
Graph Neural Networks with Node-wise Architecture. KDD 2022: 1949-1958 - [c71]Zhen Wang, Weirui Kuang, Yuexiang Xie, Liuyi Yao, Yaliang Li, Bolin Ding, Jingren Zhou:
FederatedScope-GNN: Towards a Unified, Comprehensive and Efficient Package for Federated Graph Learning. KDD 2022: 4110-4120 - [c70]Yaliang Li, Bolin Ding, Jingren Zhou:
A Practical Introduction to Federated Learning. KDD 2022: 4802-4803 - [c69]Daoyuan Chen, Dawei Gao, Weirui Kuang, Yaliang Li, Bolin Ding:
pFL-Bench: A Comprehensive Benchmark for Personalized Federated Learning. NeurIPS 2022 - [c68]Jiawei Jiang, Lukas Burkhalter, Fangcheng Fu, Bolin Ding, Bo Du, Anwar Hithnawi, Bo Li, Ce Zhang:
VF-PS: How to Select Important Participants in Vertical Federated Learning, Efficiently and Securely? NeurIPS 2022 - [c67]Runlin Lei, Zhen Wang, Yaliang Li, Bolin Ding, Zhewei Wei:
EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural Networks. NeurIPS 2022 - [c66]Shanlei Mu, Yaliang Li, Wayne Xin Zhao, Jingyuan Wang, Bolin Ding, Ji-Rong Wen:
Alleviating Spurious Correlations in Knowledge-aware Recommendations through Counterfactual Generator. SIGIR 2022: 1401-1411 - [c65]Jinglin Peng, Bolin Ding, Jiannan Wang, Kai Zeng, Jingren Zhou:
One Size Does Not Fit All: A Bandit-Based Sampler Combination Framework with Theoretical Guarantees. SIGMOD Conference 2022: 531-544 - [c64]Yiqing Xie, Zhen Wang, Carl Yang, Yaliang Li, Bolin Ding, Hongbo Deng, Jiawei Han:
KoMen: Domain Knowledge Guided Interaction Recommendation for Emerging Scenarios. WWW 2022: 1301-1310 - [c63]Chong Chen, Fei Sun, Min Zhang, Bolin Ding:
Recommendation Unlearning. WWW 2022: 2768-2777 - [c62]Shaoyun Shi, Yuexiang Xie, Zhen Wang, Bolin Ding, Yaliang Li, Min Zhang:
Explainable Neural Rule Learning. WWW 2022: 3031-3041 - [i46]Chong Chen, Fei Sun, Min Zhang, Bolin Ding:
Recommendation Unlearning. CoRR abs/2201.06820 (2022) - [i45]Renzhi Wu, Bolin Ding, Xu Chu, Zhewei Wei, Xiening Dai, Tao Guan, Jingren Zhou:
Learning to be a Statistician: Learned Estimator for Number of Distinct Values. CoRR abs/2202.02800 (2022) - [i44]