default search action
Peter V. Gehler
Person information
- affiliation: University of Tübingen, Bernstein Center for Computational Neuroscience, Germany
- affiliation: Max Planck Institute for Intelligent Systems, Tübingen, Germany
- affiliation: ETH Zurich, Computer Vision Laboratory, Switzerland
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2023
- [c54]Matthias Tangemann, Steffen Schneider, Julius von Kügelgen, Francesco Locatello, Peter Vincent Gehler, Thomas Brox, Matthias Kümmerer, Matthias Bethge, Bernhard Schölkopf:
Unsupervised Object Learning via Common Fate. CLeaR 2023: 281-327 - [c53]Samarth Sinha, Peter V. Gehler, Francesco Locatello, Bernt Schiele:
TeST: Test-time Self-Training under Distribution Shift. WACV 2023: 2758-2768 - 2022
- [j6]Evgenia Rusak, Steffen Schneider, George Pachitariu, Luisa Eck, Peter Vincent Gehler, Oliver Bringmann, Wieland Brendel, Matthias Bethge:
If your data distribution shifts, use self-learning. Trans. Mach. Learn. Res. 2022 (2022) - [c52]Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard Schölkopf, Thomas Brox, Peter V. Gehler:
Towards Total Recall in Industrial Anomaly Detection. CVPR 2022: 14298-14308 - [c51]Osama Makansi, Julius von Kügelgen, Francesco Locatello, Peter Vincent Gehler, Dominik Janzing, Thomas Brox, Bernhard Schölkopf:
You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory Prediction. ICLR 2022 - [c50]Lukas Schott, Julius von Kügelgen, Frederik Träuble, Peter Vincent Gehler, Chris Russell, Matthias Bethge, Bernhard Schölkopf, Francesco Locatello, Wieland Brendel:
Visual Representation Learning Does Not Generalize Strongly Within the Same Domain. ICLR 2022 - [c49]Frederik Träuble, Andrea Dittadi, Manuel Wuthrich, Felix Widmaier, Peter Vincent Gehler, Ole Winther, Francesco Locatello, Olivier Bachem, Bernhard Schölkopf, Stefan Bauer:
The Role of Pretrained Representations for the OOD Generalization of RL Agents. ICLR 2022 - [c48]Florian Wenzel, Andrea Dittadi, Peter V. Gehler, Carl-Johann Simon-Gabriel, Max Horn, Dominik Zietlow, David Kernert, Chris Russell, Thomas Brox, Bernt Schiele, Bernhard Schölkopf, Francesco Locatello:
Assaying Out-Of-Distribution Generalization in Transfer Learning. NeurIPS 2022 - [i28]Florian Wenzel, Andrea Dittadi, Peter Vincent Gehler, Carl-Johann Simon-Gabriel, Max Horn, Dominik Zietlow, David Kernert, Chris Russell, Thomas Brox, Bernt Schiele, Bernhard Schölkopf, Francesco Locatello:
Assaying Out-Of-Distribution Generalization in Transfer Learning. CoRR abs/2207.09239 (2022) - [i27]Samarth Sinha, Peter V. Gehler, Francesco Locatello, Bernt Schiele:
TeST: Test-time Self-Training under Distribution Shift. CoRR abs/2209.11459 (2022) - 2021
- [c47]Mohammadreza Zolfaghari, Yi Zhu, Peter V. Gehler, Thomas Brox:
CrossCLR: Cross-modal Contrastive Learning For Multi-modal Video Representations. ICCV 2021: 1430-1439 - [c46]Frederik Träuble, Julius von Kügelgen, Matthäus Kleindessner, Francesco Locatello, Bernhard Schölkopf, Peter V. Gehler:
Backward-Compatible Prediction Updates: A Probabilistic Approach. NeurIPS 2021: 116-128 - [c45]Nasim Rahaman, Muhammad Waleed Gondal, Shruti Joshi, Peter V. Gehler, Yoshua Bengio, Francesco Locatello, Bernhard Schölkopf:
Dynamic Inference with Neural Interpreters. NeurIPS 2021: 10985-10998 - [i26]Evgenia Rusak, Steffen Schneider, Peter V. Gehler, Oliver Bringmann, Wieland Brendel, Matthias Bethge:
Adapting ImageNet-scale models to complex distribution shifts with self-learning. CoRR abs/2104.12928 (2021) - [i25]Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard Schölkopf, Thomas Brox, Peter V. Gehler:
Towards Total Recall in Industrial Anomaly Detection. CoRR abs/2106.08265 (2021) - [i24]Frederik Träuble, Julius von Kügelgen, Matthäus Kleindessner, Francesco Locatello, Bernhard Schölkopf, Peter V. Gehler:
Backward-Compatible Prediction Updates: A Probabilistic Approach. CoRR abs/2107.01057 (2021) - [i23]Andrea Dittadi, Frederik Träuble, Manuel Wüthrich, Felix Widmaier, Peter V. Gehler, Ole Winther, Francesco Locatello, Olivier Bachem, Bernhard Schölkopf, Stefan Bauer:
Representation Learning for Out-Of-Distribution Generalization in Reinforcement Learning. CoRR abs/2107.05686 (2021) - [i22]Lukas Schott, Julius von Kügelgen, Frederik Träuble, Peter V. Gehler, Chris Russell, Matthias Bethge, Bernhard Schölkopf, Francesco Locatello, Wieland Brendel:
Visual Representation Learning Does Not Generalize Strongly Within the Same Domain. CoRR abs/2107.08221 (2021) - [i21]Mohammadreza Zolfaghari, Yi Zhu, Peter V. Gehler, Thomas Brox:
CrossCLR: Cross-modal Contrastive Learning For Multi-modal Video Representations. CoRR abs/2109.14910 (2021) - [i20]Osama Makansi, Julius von Kügelgen, Francesco Locatello, Peter V. Gehler, Dominik Janzing, Thomas Brox, Bernhard Schölkopf:
You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory Prediction. CoRR abs/2110.05304 (2021) - [i19]Nasim Rahaman, Muhammad Waleed Gondal, Shruti Joshi, Peter V. Gehler, Yoshua Bengio, Francesco Locatello, Bernhard Schölkopf:
Dynamic Inference with Neural Interpreters. CoRR abs/2110.06399 (2021) - [i18]Matthias Tangemann, Steffen Schneider, Julius von Kügelgen, Francesco Locatello, Peter V. Gehler, Thomas Brox, Matthias Kümmerer, Matthias Bethge, Bernhard Schölkopf:
Unsupervised Object Learning via Common Fate. CoRR abs/2110.06562 (2021) - 2020
- [j5]Ghalia Hemrit, Graham D. Finlayson, Arjan Gijsenij, Peter V. Gehler, Simone Bianco, Mark S. Drew, Brian V. Funt, Lilong Shi:
Providing a Single Ground-Truth for Illuminant Estimation for the ColorChecker Dataset. IEEE Trans. Pattern Anal. Mach. Intell. 42(5): 1286-1287 (2020) - [i17]Julius von Kügelgen, Ivan Ustyuzhaninov, Peter V. Gehler, Matthias Bethge, Bernhard Schölkopf:
Towards causal generative scene models via competition of experts. CoRR abs/2004.12906 (2020)
2010 – 2019
- 2019
- [c44]Anne S. Wannenwetsch, Martin Kiefel, Peter V. Gehler, Stefan Roth:
Learning Task-Specific Generalized Convolutions in the Permutohedral Lattice. GCPR 2019: 345-359 - [c43]Stepan Tulyakov, François Fleuret, Martin Kiefel, Peter V. Gehler, Michael Hirsch:
Learning an Event Sequence Embedding for Dense Event-Based Deep Stereo. ICCV 2019: 1527-1537 - [i16]Anne S. Wannenwetsch, Martin Kiefel, Peter V. Gehler, Stefan Roth:
Learning Task-Specific Generalized Convolutions in the Permutohedral Lattice. CoRR abs/1909.03677 (2019) - 2018
- [j4]Raghudeep Gadde, Varun Jampani, Renaud Marlet, Peter V. Gehler:
Efficient 2D and 3D Facade Segmentation Using Auto-Context. IEEE Trans. Pattern Anal. Mach. Intell. 40(5): 1273-1280 (2018) - [c42]Mohamed Omran, Christoph Lassner, Gerard Pons-Moll, Peter V. Gehler, Bernt Schiele:
Neural Body Fitting: Unifying Deep Learning and Model Based Human Pose and Shape Estimation. 3DV 2018: 484-494 - [c41]Sergey Prokudin, Peter V. Gehler, Sebastian Nowozin:
Deep Directional Statistics: Pose Estimation with Uncertainty Quantification. ECCV (9) 2018: 542-559 - [c40]Ghalia Hemrit, Graham D. Finlayson, Arjan Gijsenij, Peter V. Gehler, Simone Bianco, Brian V. Funt, Mark S. Drew, Lilong Shi:
Rehabilitating the ColorChecker Dataset for Illuminant Estimation. CIC 2018: 350-353 - [i15]Sergey Prokudin, Peter V. Gehler, Sebastian Nowozin:
Deep Directional Statistics: Pose Estimation with Uncertainty Quantification. CoRR abs/1805.03430 (2018) - [i14]Ghalia Hemrit, Graham D. Finlayson, Arjan Gijsenij, Peter V. Gehler, Simone Bianco, Mark S. Drew:
Rehabilitating the Color Checker Dataset for Illuminant Estimation. CoRR abs/1805.12262 (2018) - [i13]Mohamed Omran, Christoph Lassner, Gerard Pons-Moll, Peter V. Gehler, Bernt Schiele:
Neural Body Fitting: Unifying Deep Learning and Model-Based Human Pose and Shape Estimation. CoRR abs/1808.05942 (2018) - 2017
- [c39]Thomas Nestmeyer, Peter V. Gehler:
Reflectance Adaptive Filtering Improves Intrinsic Image Estimation. CVPR 2017: 1771-1780 - [c38]Varun Jampani, Raghudeep Gadde, Peter V. Gehler:
Video Propagation Networks. CVPR 2017: 3154-3164 - [c37]Christoph Lassner, Javier Romero, Martin Kiefel, Federica Bogo, Michael J. Black, Peter V. Gehler:
Unite the People: Closing the Loop Between 3D and 2D Human Representations. CVPR 2017: 4704-4713 - [c36]Sergey Prokudin, Daniel Kappler, Sebastian Nowozin, Peter V. Gehler:
Learning to Filter Object Detections. GCPR 2017: 52-62 - [c35]Christoph Lassner, Gerard Pons-Moll, Peter V. Gehler:
A Generative Model of People in Clothing. ICCV 2017: 853-862 - [c34]Raghudeep Gadde, Varun Jampani, Peter V. Gehler:
Semantic Video CNNs Through Representation Warping. ICCV 2017: 4463-4472 - [c33]Graham D. Finlayson, Ghalia Hemrit, Arjan Gijsenij, Peter V. Gehler:
A Curious Problem with Using the Colour Checker Dataset for Illuminant Estimation. CIC 2017: 64-69 - [i12]Christoph Lassner, Javier Romero, Martin Kiefel, Federica Bogo, Michael J. Black, Peter V. Gehler:
Unite the People: Closing the Loop Between 3D and 2D Human Representations. CoRR abs/1701.02468 (2017) - [i11]Christoph Lassner, Gerard Pons-Moll, Peter V. Gehler:
A Generative Model of People in Clothing. CoRR abs/1705.04098 (2017) - [i10]Raghudeep Gadde, Varun Jampani, Peter V. Gehler:
Semantic Video CNNs through Representation Warping. CoRR abs/1708.03088 (2017) - 2016
- [c32]Varun Jampani, Martin Kiefel, Peter V. Gehler:
Learning Sparse High Dimensional Filters: Image Filtering, Dense CRFs and Bilateral Neural Networks. CVPR 2016: 4452-4461 - [c31]Leonid Pishchulin, Eldar Insafutdinov, Siyu Tang, Bjoern Andres, Mykhaylo Andriluka, Peter V. Gehler, Bernt Schiele:
DeepCut: Joint Subset Partition and Labeling for Multi Person Pose Estimation. CVPR 2016: 4929-4937 - [c30]Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter V. Gehler, Javier Romero, Michael J. Black:
Keep It SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image. ECCV (5) 2016: 561-578 - [c29]Raghudeep Gadde, Varun Jampani, Martin Kiefel, Daniel Kappler, Peter V. Gehler:
Superpixel Convolutional Networks Using Bilateral Inceptions. ECCV (1) 2016: 597-613 - [c28]Christoph Lassner, Daniel Kappler, Martin Kiefel, Peter V. Gehler:
Barrista: Caffe Well-Served. ACM Multimedia 2016: 1210-1213 - [i9]Raghudeep Gadde, Varun Jampani, Renaud Marlet, Peter V. Gehler:
Efficient 2D and 3D Facade Segmentation using Auto-Context. CoRR abs/1606.06437 (2016) - [i8]Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter V. Gehler, Javier Romero, Michael J. Black:
Keep it SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image. CoRR abs/1607.08128 (2016) - [i7]Thomas Nestmeyer, Peter V. Gehler:
Reflectance Adaptive Filtering Improves Intrinsic Image Estimation. CoRR abs/1612.05062 (2016) - [i6]Varun Jampani, Raghudeep Gadde, Peter V. Gehler:
Video Propagation Networks. CoRR abs/1612.05478 (2016) - 2015
- [j3]Varun Jampani, Sebastian Nowozin, Matthew Loper, Peter V. Gehler:
The informed sampler: A discriminative approach to Bayesian inference in generative computer vision models. Comput. Vis. Image Underst. 136: 32-44 (2015) - [j2]Bojan Pepik, Michael Stark, Peter V. Gehler, Bernt Schiele:
Multi-View and 3D Deformable Part Models. IEEE Trans. Pattern Anal. Mach. Intell. 37(11): 2232-2245 (2015) - [c27]Bojan Pepik, Michael Stark, Peter V. Gehler, Tobias Ritschel, Bernt Schiele:
3D object class detection in the wild. CVPR Workshops 2015: 1-10 - [c26]Varun Jampani, Raghudeep Gadde, Peter V. Gehler:
Efficient Facade Segmentation Using Auto-context. WACV 2015: 1038-1045 - [c25]Martin Kiefel, Varun Jampani, Peter V. Gehler:
Permutohedral Lattice CNNs. ICLR (Workshop) 2015 - [e1]Juergen Gall, Peter V. Gehler, Bastian Leibe:
Pattern Recognition - 37th German Conference, GCPR 2015, Aachen, Germany, October 7-10, 2015, Proceedings. Lecture Notes in Computer Science 9358, Springer 2015, ISBN 978-3-319-24946-9 [contents] - [i5]Martin Kiefel, Varun Jampani, Peter V. Gehler:
Sparse Convolutional Networks using the Permutohedral Lattice. CoRR abs/1503.04949 (2015) - [i4]Bojan Pepik, Michael Stark, Peter V. Gehler, Tobias Ritschel, Bernt Schiele:
3D Object Class Detection in the Wild. CoRR abs/1503.05038 (2015) - [i3]Leonid Pishchulin, Eldar Insafutdinov, Siyu Tang, Bjoern Andres, Mykhaylo Andriluka, Peter V. Gehler, Bernt Schiele:
DeepCut: Joint Subset Partition and Labeling for Multi Person Pose Estimation. CoRR abs/1511.06645 (2015) - [i2]Raghudeep Gadde, Varun Jampani, Martin Kiefel, Peter V. Gehler:
Superpixel Convolutional Networks using Bilateral Inceptions. CoRR abs/1511.06739 (2015) - 2014
- [j1]Alain D. Lehmann, Peter V. Gehler, Luc Van Gool:
Branch&Rank for Efficient Object Detection. Int. J. Comput. Vis. 106(3): 252-268 (2014) - [c24]Andreas M. Lehrmann, Peter V. Gehler, Sebastian Nowozin:
Efficient Nonlinear Markov Models for Human Motion. CVPR 2014: 1314-1321 - [c23]Mykhaylo Andriluka, Leonid Pishchulin, Peter V. Gehler, Bernt Schiele:
2D Human Pose Estimation: New Benchmark and State of the Art Analysis. CVPR 2014: 3686-3693 - [c22]Martin Kiefel, Peter Vincent Gehler:
Human Pose Estimation with Fields of Parts. ECCV (5) 2014: 331-346 - [c21]Naejin Kong, Peter V. Gehler, Michael J. Black:
Intrinsic Video. ECCV (2) 2014: 360-375 - [c20]Bojan Pepik, Michael Stark, Peter V. Gehler, Bernt Schiele:
Multi-View Priors for Learning Detectors from Sparse Viewpoint Data. ICLR (Poster) 2014 - [i1]Varun Jampani, Sebastian Nowozin, Matthew Loper, Peter V. Gehler:
The Informed Sampler: A Discriminative Approach to Bayesian Inference in Generative Computer Vision Models. CoRR abs/1402.0859 (2014) - 2013
- [c19]Leonid Pishchulin, Mykhaylo Andriluka, Peter V. Gehler, Bernt Schiele:
Poselet Conditioned Pictorial Structures. CVPR 2013: 588-595 - [c18]Bojan Pepik, Michael Stark, Peter V. Gehler, Bernt Schiele:
Occlusion Patterns for Object Class Detection. CVPR 2013: 3286-3293 - [c17]Andreas M. Lehrmann, Peter V. Gehler, Sebastian Nowozin:
A Non-parametric Bayesian Network Prior of Human Pose. ICCV 2013: 1281-1288 - [c16]Leonid Pishchulin, Mykhaylo Andriluka, Peter V. Gehler, Bernt Schiele:
Strong Appearance and Expressive Spatial Models for Human Pose Estimation. ICCV 2013: 3487-3494 - 2012
- [c15]Bojan Pepik, Michael Stark, Peter V. Gehler, Bernt Schiele:
Teaching 3D geometry to deformable part models. CVPR 2012: 3362-3369 - [c14]Christoph Dann, Peter V. Gehler, Stefan Roth, Sebastian Nowozin:
Pottics - The Potts Topic Model for Semantic Image Segmentation. DAGM/OAGM Symposium 2012: 397-407 - [c13]Bojan Pepik, Peter V. Gehler, Michael Stark, Bernt Schiele:
3D2PM - 3D Deformable Part Models. ECCV (6) 2012: 356-370 - 2011
- [c12]Alain D. Lehmann, Peter V. Gehler, Luc Van Gool:
Branch&Rank: Non-Linear Object Detection. BMVC 2011: 1-11 - [c11]Francesco Dinuzzo, Cheng Soon Ong, Peter V. Gehler, Gianluigi Pillonetto:
Learning Output Kernels with Block Coordinate Descent. ICML 2011: 49-56 - [c10]Peter V. Gehler, Carsten Rother, Martin Kiefel, Lumin Zhang, Bernhard Schölkopf:
Recovering Intrinsic Images with a Global Sparsity Prior on Reflectance. NIPS 2011: 765-773 - 2010
- [c9]Sebastian Nowozin, Peter V. Gehler, Christoph H. Lampert:
On Parameter Learning in CRF-Based Approaches to Object Class Image Segmentation. ECCV (6) 2010: 98-111 - [c8]Alex Mansfield, Peter V. Gehler, Luc Van Gool, Carsten Rother:
Visibility Maps for Improving Seam Carving. ECCV Workshops (1) 2010: 131-144 - [c7]Alex Mansfield, Peter V. Gehler, Luc Van Gool, Carsten Rother:
Scene Carving: Scene Consistent Image Retargeting. ECCV (1) 2010: 143-156
2000 – 2009
- 2009
- [b1]Peter Vincent Gehler:
Kernel learning approaches for image classification. Saarland University, 2009 - [c6]Peter V. Gehler, Sebastian Nowozin:
Let the kernel figure it out; Principled learning of pre-processing for kernel classifiers. CVPR 2009: 2836-2843 - [c5]Peter V. Gehler, Sebastian Nowozin:
On feature combination for multiclass object classification. ICCV 2009: 221-228 - 2008
- [c4]Peter V. Gehler, Carsten Rother, Andrew Blake, Thomas P. Minka, Toby Sharp:
Bayesian color constancy revisited. CVPR 2008 - 2007
- [c3]Peter V. Gehler, Olivier Chapelle:
Deterministic Annealing for Multiple-Instance Learning. AISTATS 2007: 123-130 - 2006
- [c2]Peter V. Gehler, Alex Holub, Max Welling:
The rate adapting poisson model for information retrieval and object recognition. ICML 2006: 337-344 - 2005
- [c1]Peter V. Gehler, Max Welling:
Products of Edge-perts. NIPS 2005: 419-426
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 21:19 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint