default search action
Clint Schow
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j8]Ghazal Movaghar, Viviana Arrunategui, Junqian Liu, Aaron Maharry, Stephen Misak, Xinhong Du, Clint L. Schow, James F. Buckwalter:
A Monolithic O-Band Coherent Optical Receiver for Energy-Efficient Links. IEEE J. Solid State Circuits 59(5): 1409-1420 (2024) - [c36]Stephen Misak, Aaron Wissing, Jinsong Zhang, Zixian Wei, Junqian Liu, Hector Andrade, Aaron Maharry, Giovanni Gilardi, Ranjeet Kumar, Guan-Lin Su, Ansheng Liu, Yuliya Akulova, James F. Buckwalter, Adel A. M. Saleh, Larry Coldren, David V. Plant, Clint L. Schow:
400 Gbps/λ DP-16QAM O-band Link with SiP TX and RX PICs using only Heterogeneously Integrated Lasers and SOAs for Optical Gain. OFC 2024: 1-3 - [c35]Jinsong Zhang, Zixian Wei, Stephen Misak, Aaron Wissing, Junqian Liu, Hector Andrade, Aaron Maharry, Giovanni Gilardi, Ranjeet Kumar, Guan-Lin Su, Ansheng Liu, Yuliya Akulova, James F. Buckwaiter, Adel A. M. Saleh, Larry Coldren, Clint L. Schow, David V. Plant:
First Demonstration of 200-G Coherent PON at O-band with Heterogeneously-Integrated SiP Tx and Rx with Lasers. OFC 2024: 1-3 - 2023
- [c34]Aaron Maharry, Stephen Misak, Hector Andrade, Junqian Liu, Giovanni Gilardi, Sean Liao, Ansheng Liu, Yuliya Akulova, Larry Coldren, James F. Buckwalter, Clint L. Schow:
A 224 Gbps/λ O-Band Coherent Link for Intra-Data Center Applications. OFC 2023: 1-3 - [c33]Ghazal Movaghar, Viviana Arrunategui, Aaron Maharry, Evan D. Chansky, Junqian Liu, Hector Andrade, Clint Schow, James F. Buckwalter:
First Monolithically-Integrated Silicon CMOS Coherent Optical Receiver. OFC 2023: 1-3 - 2022
- [c32]Ghazal Movaghar, Junqian Liu, James Dalton, Luis A. Valenzuela, Clint L. Schow, James F. Buckwalter:
Improved Signal Integrity at 64 Gbps in a 130-nm SiGe Optical Receiver With Through-Silicon Vias. BCICTS 2022: 132-135 - [c31]Evan D. Chansky, Viviana Arrunategui-Norvick, Takako Hirokawa, L. Alberto Campos, Haipeng Zhang, Mu Xu, Zhensheng Jia, Clint L. Schow:
Edge Wavelength Selective Switch for Optical Access Networks. OFC 2022: 1-3 - 2021
- [j7]Adel A. M. Saleh, Katharine Schmidtke, Robert J. Stone, James F. Buckwalter, Larry A. Coldren, Clint L. Schow:
INTREPID program: technology and architecture for next-generation, energy-efficient, hyper-scale data centers [Invited]. JOCN 13(12): 347-359 (2021) - [c30]Hector Andrade, Aaron Maharry, Luis A. Valenzuela, Navid Hosseinzadeh, Clint Schow, James F. Buckwalter:
An 8.2-pJ/bit, 56 Gb/s Traveling-wave Modulator Driver with Large Reverse Terminations. BCICTS 2021: 1-4 - [c29]Hector Andrade, Yujie Xia, Aaron Maharry, Luis A. Valenzuela, James F. Buckwalter, Clint L. Schow:
50 GBaud QPSK 0.98 pJ/bit Receiver in 45 nm CMOS and 90 nm Silicon Photonics. ECOC 2021: 1-4 - [c28]Steven B. Estrella, Thomas P. Dorch, Trevor M. Cooper, Aaron Maharry, Takako Hirokawa, Daniel S. Renner, Clint L. Schow:
Novel Link Architecture Minimizing Thermal Energy Dissipation for Cryogenic Optical Interconnects. OFC 2021: 1-3 - 2020
- [c27]Luis A. Valenzuela, Aaron Maharry, Hector Andrade, Clint L. Schow, James F. Buckwalter:
A 108-Gbps, 162-mW Cherry-Hooper Transimpedance Amplifier. BCICTS 2020: 1-4
2010 – 2019
- 2019
- [c26]Hector Andrade, Takako Hirokawa, Aaron Maharry, Alexander V. Rylyakov, Clint L. Schow, James F. Buckwalter:
Monolithically-Integrated 50 Gbps 2pJ/bit Photoreceiver with Cherry-Hooper TIA in 250nm BiCMOS Technology. OFC 2019: 1-3 - [c25]Clint L. Schow, Katharine Schmidtke:
INTREPID: Developing Power Efficient Analog Coherent Interconnects to Transform Data Center Networks. OFC 2019: 1-3 - [c24]Takako Hirokawa, Aaron Maharry, Roger J. Helkey, John E. Bowers, Adel A. M. Saleh, Clint L. Schow:
Demonstration of a Spectrally-Partitioned $4\mathrm{x}4$ Crossbar Switch with 3 Drops per Cross-point. OECC/PSC 2019: 1-3 - 2017
- [c23]Rui Wu, Yuyang Wang, Zeyu Zhang, Chong Zhang, Clint L. Schow, John E. Bowers, Kwang-Ting Cheng:
Compact modeling and circuit-level simulation of silicon nanophotonic interconnects. DATE 2017: 602-605 - 2016
- [c22]Laurent Schares, Tam N. Huynh, M. G. Wood, Russell A. Budd, Fuad E. Doany, Daniel M. Kuchta, Nicolas Dupuis, Benjamin G. Lee, Clint L. Schow, Martin Moehrle, Ariane Sigmund, W. Rehbein, Tsung-Yang Liow, L. W. Luo, G. Q. Lo:
A gain-integrated silicon photonic carrier with SOA-array for scalable optical switch fabrics. OFC 2016: 1-3 - 2015
- [j6]Alexander V. Rylyakov, Jonathan E. Proesel, Sergey V. Rylov, Benjamin G. Lee, John F. Bulzacchelli, Abhijeet Ardey, Benjamin D. Parker, Michael P. Beakes, Christian W. Baks, Clint Schow, Mounir Meghelli:
A 25 Gb/s Burst-Mode Receiver for Low Latency Photonic Switch Networks. IEEE J. Solid State Circuits 50(12): 3120-3132 (2015) - [c21]Laurent Schares, Russell A. Budd, Daniel M. Kuchta, Fuad E. Doany, Clint Schow, Martin Möhrle, Ariane Sigmund, W. Rehbein:
Etched-facet semiconductor optical amplifiers for gain-integrated photonic switch fabrics. ECOC 2015: 1-3 - [c20]Clint L. Schow:
Next generation data centres: How will optics be employed? ECOC 2015: 1-3 - [c19]Alexander V. Rylyakov, Jonathan E. Proesel, Sergey V. Rylov, Benjamin G. Lee, John F. Bulzacchelli, Abhijeet Ardey, Benjamin D. Parker, Michael P. Beakes, Christian W. Baks, Clint Schow, Mounir Meghelli:
22.1 A 25Gb/s burst-mode receiver for rapidly reconfigurable optical networks. ISSCC 2015: 1-3 - [c18]Daniel M. Kuchta, Tam N. Huynh, Fuad E. Doany, Alexander V. Rylyakov, Clint L. Schow, Petar K. Pepeljugoski, D. Gazula, Edward Shaw, Jim Tatum:
A 4-λ, 40Gb/s/λ bandwidth extension of multimode fiber in the 850nm range. OFC 2015: 1-3 - [c17]Benjamin G. Lee, Renato Rimolo-Donadio, Alexander V. Rylyakov, Jonathan E. Proesel, John F. Bulzacchelli, Christian W. Baks, Mounir Meghelli, Clint L. Schow, Anand Ramaswamy, Jonathan E. Roth, Jae-Hyuk Shin, Brian R. Koch, Daniel K. Sparacin, Gregory A. Fish:
A WDM-Compatible 4 × 32-Gb/s CMOS-driven electro-absorption modulator array. OFC 2015: 1-3 - [c16]Anand Ramaswamy, Jonathan E. Roth, Erik J. Norberg, Robert S. Guzzon, Jae-Hyuk Shin, J. T. Imamura, Brian R. Koch, Daniel K. Sparacin, Gregory A. Fish, Benjamin G. Lee, Renato Rimolo-Donadio, Christian W. Baks, Alexander V. Rylyakov, Jonathan E. Proesel, Mounir Meghelli, Clint L. Schow:
A WDM 4×28Gbps integrated silicon photonic transmitter driven by 32nm CMOS driver ICs. OFC 2015: 1-3 - [c15]Alexander V. Rylyakov, Jonathan E. Proesel, Sergey V. Rylov, Benjamin G. Lee, John F. Bulzacchelli, Abhijeet Ardey, Clint Schow, Mounir Meghelli:
A 25 Gb/s burst-mode receiver for low latency photonic switch networks. OFC 2015: 1-3 - 2014
- [j5]Laurent Schares, Benjamin G. Lee, Fabio Checconi, Russell A. Budd, Alexander V. Rylyakov, Nicolas Dupuis, Fabrizio Petrini, Clint Schow, Pablo Fuentes, Oliver Mattes, Cyriel Minkenberg:
A Throughput-Optimized Optical Network for Data-Intensive Computing. IEEE Micro 34(5): 52-63 (2014) - [c14]Nicolas Dupuis, Daniel M. Kuchta, Fuad E. Doany, Alexander V. Rylyakov, Jonathan E. Proesel, Christian W. Baks, Clint L. Schow, S. Luong, C. Xie, L. Wang, S. Huang, K. Jackson, N. Y. Li:
Exploring the limits of high-speed receivers for multimode VCSEL-based optical links. OFC 2014: 1-3 - [c13]Nicolas Dupuis, Benjamin G. Lee, Jonathan E. Proesel, Alexander V. Rylyakov, Renato Rimolo-Donadio, Christian W. Baks, Clint L. Schow, Anand Ramaswamy, Jonathan E. Roth, Robert S. Guzzon, Brian R. Koch, Daniel K. Sparacin, Gregory A. Fish:
30Gbps optical link utilizing heterogeneously integrated III-V/Si photonics and CMOS circuits. OFC 2014: 1-3 - [c12]Jean Benoit Héroux, Tomofumi Kise, Masaki Funabashi, Toyohiro Aoki, Clint Schow, Alexander V. Rylyakov, Shigeru Nakagawa:
Low power CMOS-driven 1060 nm multimode optical link. OFC 2014: 1-3 - [c11]Daniel M. Kuchta, Alexander V. Rylyakov, Clint L. Schow, Jonathan E. Proesel, Christian W. Baks, Petter Westbergh, Johan S. Gustavsson, Anders Larsson:
64Gb/s transmission over 57m MMF using an NRZ modulated 850nm VCSEL. OFC 2014: 1-3 - [c10]Petar K. Pepeljugoski, Fuad E. Doany, Daniel M. Kuchta, Benjamin G. Lee, Clint Schow, Laurent Schares:
Connector performance analysis for D-shaped multi-core multi mode fiber. OFC 2014: 1-3 - 2013
- [c9]Jonathan E. Proesel, Alexander V. Rylyakov, Clint Schow:
Optical receivers using DFE-IIR equalization. ISSCC 2013: 130-131 - [c8]Solomon Assefa, Huapu Pan, Steven Shank, William M. J. Green, Alexander V. Rylyakov, Clint Schow, Marwan Khater, Swetha Kamlapurkar, Edward Kiewra, Carol Reinholm, Teya Topuria, Philip Rice, Christian W. Baks, Yurii A. Vlasov:
Monolithically integrated silicon nanophotonics receiver in 90nm CMOS technology node. OFC/NFOEC 2013: 1-3 - [c7]Daniel M. Kuchta, Clint L. Schow, Alexander V. Rylyakov, Jonathan E. Proesel, Fuad E. Doany, Christian W. Baks, B. H. Hamel-Bissell, Chris Kocot, L. Graham, R. Johnson, Gary Landry, E. Shaw, A. MacInnes, Jim Tatum:
A 56.1Gb/s NRZ modulated 850nm VCSEL-based optical link. OFC/NFOEC 2013: 1-3 - [c6]Benjamin G. Lee, Alexander V. Rylyakov, William M. J. Green, Solomon Assefa, Christian W. Baks, Renato Rimolo-Donadio, Daniel M. Kuchta, Marwan H. Khater, Tymon Barwicz, Carol Reinholm, Edward Kiewra, Steven M. Shank, Clint L. Schow, Yurii A. Vlasov:
Four- and eight-port photonic switches monolithically integrated with digital CMOS logic and driver circuits. OFC/NFOEC 2013: 1-3 - [c5]Jonathan E. Proesel, Benjamin G. Lee, Christian W. Baks, Clint L. Schow:
35-Gb/s VCSEL-Based optical link using 32-nm SOI CMOS circuits. OFC/NFOEC 2013: 1-3 - 2012
- [j4]Jonathan E. Proesel, Benjamin G. Lee, Alexander V. Rylyakov, Christian W. Baks, Clint L. Schow:
Ultra-Low-Power 10 to 285 Gb/s CMOS-Driven VCSEL-Based Optical Links [Invited]. JOCN 4(11): B114-B123 (2012) - [j3]Alexander V. Rylyakov, Clint Schow, Benjamin G. Lee, William M. J. Green, Solomon Assefa, Fuad E. Doany, Min Yang, Joris Van Campenhout, Christopher V. Jahnes, Jeffrey A. Kash, Yurii A. Vlasov:
Silicon Photonic Switches Hybrid-Integrated With CMOS Drivers. IEEE J. Solid State Circuits 47(1): 345-354 (2012) - [c4]Jonathan E. Proesel, Clint Schow, Alexander V. Rylyakov:
25Gb/s 3.6pJ/b and 15Gb/s 1.37pJ/b VCSEL-based optical links in 90nm CMOS. ISSCC 2012: 418-420 - 2011
- [j2]Madeleine Glick, Ashok V. Krishnamoorthy, Clint Schow:
Optics in the Data Center: Introduction to the Feature Issue. JOCN 3(8): OD1 (2011) - [c3]Solomon Assefa, William M. J. Green, Alexander V. Rylyakov, Clint Schow, Folkert Horst, Yurii A. Vlasov:
Deeply-scaled CMOS-integrated nanophotonic devices for next generation supercomputers. ACM Great Lakes Symposium on VLSI 2011: 475-476 - [c2]Alexander V. Rylyakov, Clint Schow, Benjamin G. Lee, William M. J. Green, Joris Van Campenhout, Min Yang, Fuad E. Doany, Solomon Assefa, Christopher V. Jahnes, Jeffrey A. Kash, Yurii A. Vlasov:
A 3.9ns 8.9mW 4×4 silicon photonic switch hybrid integrated with CMOS driver. ISSCC 2011: 222-224
2000 – 2009
- 2009
- [j1]Clint L. Schow, Fuad E. Doany, Chen Chen, Alexander V. Rylyakov, Christian W. Baks, Daniel M. Kuchta, Richard A. John, Jeffrey A. Kash:
Low-Power 16 x 10 Gb/s Bi-Directional Single Chip CMOS Optical Transceivers Operating at ≪ 5 mW/Gb/s/link. IEEE J. Solid State Circuits 44(1): 301-313 (2009) - 2008
- [c1]Clint Schow, Fuad E. Doany, Chen Chen, Alexander V. Rylyakov, Christian W. Baks, Daniel M. Kuchta, Richard A. John, Jeffrey A. Kash:
A ≪5mW/Gb/s/link, 16×10Gb/s Bi-Directional Single-Chip CMOS Optical Transceiver for Board-Level Optical Interconnects. ISSCC 2008: 294-295
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 21:22 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint