default search action
Adrian Sandu
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j65]Roland Pulch, Adrian Sandu:
Rosenbrock-W methods for stochastic Galerkin systems. J. Comput. Appl. Math. 438: 115527 (2024) - [i73]Abhinab Bhattacharjee, Andrey A. Popov, Arash Sarshar, Adrian Sandu:
Improving the Adaptive Moment Estimation (ADAM) stochastic optimizer through an Implicit-Explicit (IMEX) time-stepping approach. CoRR abs/2403.13704 (2024) - [i72]Amit N. Subrahmanya, Andrey A. Popov, Reid Gomillion, Adrian Sandu:
Preserving Nonlinear Constraints in Variational Flow Filtering Data Assimilation. CoRR abs/2405.04380 (2024) - 2023
- [i71]Ali Haisam Muhammad Rafid, Adrian Sandu:
Neural Network Reduction with Guided Regularizers. CoRR abs/2305.18448 (2023) - [i70]Kevin Schäfers, Michael Günther, Adrian Sandu:
Symplectic multirate generalized additive Runge-Kutta methods for Hamiltonian systems. CoRR abs/2306.04389 (2023) - [i69]Ali Haisam Muhammad Rafid, Adrian Sandu:
Adversarial Training Using Feedback Loops. CoRR abs/2308.11881 (2023) - [i68]Adwait Verulkar, Corina Sandu, Adrian Sandu, Daniel Dopico:
Simultaneous Optimal System and Controller Design for Multibody Systems with Joint Friction using Direct Sensitivities. CoRR abs/2312.15771 (2023) - 2022
- [j64]Andrey A. Popov, Adrian Sandu:
Multifidelity Ensemble Kalman Filtering Using Surrogate Models Defined by Theory-Guided Autoencoders. Frontiers Appl. Math. Stat. 8: 904687 (2022) - [j63]Severiano González-Pinto, Domingo Hernández-Abreu, Maria Soledad Pérez-Rodríguez, Arash Sarshar, Steven Roberts, Adrian Sandu:
A unified formulation of splitting-based implicit time integration schemes. J. Comput. Phys. 448: 110766 (2022) - [j62]Steven Roberts, Andrey A. Popov, Arash Sarshar, Adrian Sandu:
A Fast Time-Stepping Strategy for Dynamical Systems Equipped with a Surrogate Model. SIAM J. Sci. Comput. 44(3): 1405- (2022) - [j61]Steven R. Glandon, Mahesh Narayanamurthi, Adrian Sandu:
Linearly Implicit Multistep Methods for Time Integration. SIAM J. Sci. Comput. 44(6): 3437- (2022) - [i67]Steven Roberts, Adrian Sandu:
Eliminating Order Reduction on Linear, Time-Dependent ODEs with GARK Methods. CoRR abs/2201.07940 (2022) - [i66]Jostein Barry-Straume, Arash Sarshar, Andrey A. Popov, Adrian Sandu:
Physics-informed neural networks for PDE-constrained optimization and control. CoRR abs/2205.03377 (2022) - [i65]Andrey A. Popov, Arash Sarshar, Austin Chennault, Adrian Sandu:
A Meta-learning Formulation of the Autoencoder Problem for Non-linear Dimensionality Reduction. CoRR abs/2207.06676 (2022) - [i64]Andrey A. Popov, Adrian Sandu:
The Model Forest Ensemble Kalman Filter. CoRR abs/2210.11971 (2022) - [i63]Dylan Park, Changhong Mou, Honghu Liu, Adrian Sandu, Traian Iliescu:
A Two-Level Galerkin Reduced Order Model for the Steady Navier-Stokes Equations. CoRR abs/2211.12968 (2022) - 2021
- [j60]Paul Tranquilli, Ross Glandon, Adrian Sandu:
Subspace adaptivity in Rosenbrock-Krylov methods for the time integration of initial value problems. J. Comput. Appl. Math. 385: 113188 (2021) - [j59]Christoph Hachtel, Andreas Bartel, Michael Günther, Adrian Sandu:
Multirate implicit Euler schemes for a class of differential-algebraic equations of index-1. J. Comput. Appl. Math. 387: 112499 (2021) - [j58]Arash Sarshar, Steven Roberts, Adrian Sandu:
Alternating directions implicit integration in a general linear method framework. J. Comput. Appl. Math. 387: 112619 (2021) - [j57]Azam S. Zavar Moosavi, Vishwas Rao, Adrian Sandu:
Machine learning based algorithms for uncertainty quantification in numerical weather prediction models. J. Comput. Sci. 50: 101295 (2021) - [j56]Steven Roberts, John Loffeld, Arash Sarshar, Carol S. Woodward, Adrian Sandu:
Implicit Multirate GARK Methods. J. Sci. Comput. 87(1): 4 (2021) - [j55]Adrian Sandu, Vladimir Z. Tomov, Lenka Cervená, Tzanio V. Kolev:
Conservative High-Order Time Integration for Lagrangian Hydrodynamics. SIAM J. Sci. Comput. 43(1): A221-A241 (2021) - [j54]Andrey A. Popov, Changhong Mou, Adrian Sandu, Traian Iliescu:
A Multifidelity Ensemble Kalman Filter with Reduced Order Control Variates. SIAM J. Sci. Comput. 43(2): A1134-A1162 (2021) - [i62]Michael Günther, Adrian Sandu:
Multirate Linearly-Implicit GARK Schemes. CoRR abs/2102.10203 (2021) - [i61]Andrey A. Popov, Adrian Sandu:
Multifidelity Ensemble Kalman Filtering using surrogate models defined by Physics-Informed Autoencoders. CoRR abs/2102.13025 (2021) - [i60]Severiano González-Pinto, Domingo Hernández-Abreu, Maria Soledad Pérez-Rodríguez, Arash Sarshar, Steven Roberts, Adrian Sandu:
A unified formulation of splitting-based implicit time integration schemes. CoRR abs/2103.00757 (2021) - [i59]Michael Günther, Adrian Sandu, Antonella Zanna:
Symplectic GARK methods for Hamiltonian systems. CoRR abs/2103.04110 (2021) - [i58]Rachel Cooper, Andrey A. Popov, Adrian Sandu:
Investigation of Nonlinear Model Order Reduction of the Quasigeostrophic Equations through a Physics-Informed Convolutional Autoencoder. CoRR abs/2108.12344 (2021) - [i57]Andrey A. Popov, Amit N. Subrahmanya, Adrian Sandu:
A Stochastic Covariance Shrinkage Approach to Particle Rejuvenation in the Ensemble Transform Particle Filter. CoRR abs/2109.09673 (2021) - [i56]Austin Chennault, Andrey A. Popov, Amit N. Subrahmanya, Rachel Cooper, Anuj Karpatne, Adrian Sandu:
Adjoint-Matching Neural Network Surrogates for Fast 4D-Var Data Assimilation. CoRR abs/2111.08626 (2021) - [i55]Amit N. Subrahmanya, Andrey A. Popov, Adrian Sandu:
An Ensemble Variational Fokker-Planck Method for Data Assimilation. CoRR abs/2111.13926 (2021) - 2020
- [j53]Steven Roberts, Arash Sarshar, Adrian Sandu:
Coupled Multirate Infinitesimal GARK Schemes for Stiff Systems with Multiple Time Scales. SIAM J. Sci. Comput. 42(3): A1609-A1638 (2020) - [i54]Mahesh Narayanamurthi, Ulrich Römer, Adrian Sandu:
Goal-oriented a posteriori estimation of numerical errors in the solution of multiphysics systems. CoRR abs/2001.08824 (2020) - [i53]Steven Roberts, Arash Sarshar, Adrian Sandu:
Parallel implicit-explicit general linear methods. CoRR abs/2002.00868 (2020) - [i52]Andrey A. Popov, Adrian Sandu, Elias David Niño Ruiz, Geir Evensen:
A Stochastic Covariance Shrinkage Approach in Ensemble Transform Kalman Filtering. CoRR abs/2003.00354 (2020) - [i51]Andrey A. Popov, Adrian Sandu:
An Explicit Probabilistic Derivation of Inflation in a Scalar Ensemble Kalman Filter for Finite Step, Finite Ensemble Convergence. CoRR abs/2003.13162 (2020) - [i50]Adrian Sandu:
Convergence Results for Implicit-Explicit General Linear Methods. CoRR abs/2004.04274 (2020) - [i49]Andrey A. Popov, Changhong Mou, Traian Iliescu, Adrian Sandu:
A Multifidelity Ensemble Kalman Filter with Reduced Order Control Variates. CoRR abs/2007.00793 (2020) - [i48]Adrian Sandu, Michael Günther, Steven Roberts:
Linearly implicit GARK schemes. CoRR abs/2008.01612 (2020) - [i47]Steven Roberts, Andrey A. Popov, Arash Sarshar, Adrian Sandu:
A fast time-stepping strategy for ODE systems equipped with a surrogate model. CoRR abs/2011.03688 (2020) - [i46]Ross Glandon, Mahesh Narayanamurthi, Adrian Sandu:
Linearly Implicit Multistep Methods for Time Integration. CoRR abs/2011.10685 (2020)
2010 – 2019
- 2019
- [j52]Elias David Niño Ruiz, Adrian Sandu:
Efficient parallel implementation of DDDAS inference using an ensemble Kalman filter with shrinkage covariance matrix estimation. Clust. Comput. 22(Suppl 1): 2211-2221 (2019) - [j51]John C. Little, Erich T. Hester, Sondoss ElSawah, George M. Filz, Adrian Sandu, Cayelan C. Carey, Takuya Iwanaga, Anthony J. Jakeman:
A tiered, system-of-systems modeling framework for resolving complex socio-environmental policy issues. Environ. Model. Softw. 112: 82-94 (2019) - [j50]Elias David Niño Ruiz, Adrian Sandu, Xinwei Deng:
A parallel implementation of the ensemble Kalman filter based on modified Cholesky decomposition. J. Comput. Sci. 36 (2019) - [j49]Mahesh Narayanamurthi, Paul Tranquilli, Adrian Sandu, Mayya Tokman:
EPIRK-W and EPIRK-K Time Discretization Methods. J. Sci. Comput. 78(1): 167-201 (2019) - [j48]Adrian Sandu:
A Class of Multirate Infinitesimal GARK Methods. SIAM J. Numer. Anal. 57(5): 2300-2327 (2019) - [j47]Arash Sarshar, Steven Roberts, Adrian Sandu:
Design of High-Order Decoupled Multirate GARK Schemes. SIAM J. Sci. Comput. 41(2): A816-A847 (2019) - [c53]Azam S. Zavar Moosavi, Vishwas Rao, Adrian Sandu:
A Learning-Based Approach for Uncertainty Analysis in Numerical Weather Prediction Models. ICCS (4) 2019: 126-140 - [c52]Azam S. Zavar Moosavi, Ahmed Attia, Adrian Sandu:
Tuning Covariance Localization Using Machine Learning. ICCS (4) 2019: 199-212 - [i45]Steven Roberts, Andrey A. Popov, Adrian Sandu:
ODE Test Problems: a MATLAB suite of initial value problems. CoRR abs/1901.04098 (2019) - [i44]Arash Sarshar, Adrian Sandu:
Alternating Directions Implicit Integration in a General Linear Method Framework. CoRR abs/1902.00622 (2019) - [i43]Mahesh Narayanamurthi, Adrian Sandu:
Partitioned Exponential Methods for Coupled Multiphysics Systems. CoRR abs/1908.09434 (2019) - [i42]Ross Glandon, Paul Tranquilli, Adrian Sandu:
Biorthogonal Rosenbrock-Krylov time discretization methods. CoRR abs/1908.10531 (2019) - [i41]Paul Tranquilli, Ross Glandon, Adrian Sandu:
Adaptive Krylov-Type Time Integration Methods. CoRR abs/1910.02514 (2019) - [i40]Steven Roberts, John Loffeld, Arash Sarshar, Carol S. Woodward, Adrian Sandu:
Implicit multirate GARK methods. CoRR abs/1910.14079 (2019) - [i39]Mahesh Narayanamurthi, Adrian Sandu:
Efficient implementation of partitioned stiff exponential Runge-Kutta methods. CoRR abs/1912.01044 (2019) - 2018
- [j46]Razvan Stefanescu, Azam S. Zavar Moosavi, Adrian Sandu:
Parametric domain decomposition for accurate reduced order models: Applications of MP-LROM methodology. J. Comput. Appl. Math. 340: 629-644 (2018) - [j45]Ulrich Römer, Mahesh Narayanamurthi, Adrian Sandu:
Solving parameter estimation problems with discrete adjoint exponential integrators. Optim. Methods Softw. 33(4-6): 750-770 (2018) - [j44]Elias David Niño Ruiz, Adrian Sandu, Xinwei Deng:
An Ensemble Kalman Filter Implementation Based on Modified Cholesky Decomposition for Inverse Covariance Matrix Estimation. SIAM J. Sci. Comput. 40(2) (2018) - [i38]Azam S. Zavar Moosavi, Ahmed Attia, Adrian Sandu:
A Machine Learning Approach to Adaptive Covariance Localization. CoRR abs/1801.00548 (2018) - [i37]Azam S. Zavar Moosavi, Vishwas Rao, Adrian Sandu:
A Learning Based Approach for Uncertainty Analysis in Numerical Weather Prediction Models. CoRR abs/1802.08055 (2018) - [i36]Arash Sarshar, Steven Roberts, Adrian Sandu:
Design of High-Order Decoupled Multirate GARK Schemes. CoRR abs/1804.07716 (2018) - [i35]Adrian Sandu:
A Class of Multirate Infinitesimal GARK Methods. CoRR abs/1808.02759 (2018) - [i34]Andrey A. Popov, Adrian Sandu:
A Bayesian Approach to Multivariate Adaptive Localization in Ensemble-Based Data Assimilation with Time-Dependent Extensions. CoRR abs/1809.08984 (2018) - [i33]Steven Roberts, Arash Sarshar, Adrian Sandu:
Coupled Multirate Infinitesimal GARK Schemes for Stiff Systems with Multiple Time Scales. CoRR abs/1812.00808 (2018) - 2017
- [j43]Paul Tranquilli, Ross Glandon, Arash Sarshar, Adrian Sandu:
Analytical Jacobian-vector products for the matrix-free time integration of partial differential equations. J. Comput. Appl. Math. 310: 213-223 (2017) - [j42]Vishwas Rao, Adrian Sandu, Michael Ng, Elias David Niño Ruiz:
Robust Data Assimilation Using L1 and Huber Norms. SIAM J. Sci. Comput. 39(3) (2017) - [i32]Azam S. Zavar Moosavi, Razvan Stefanescu, Adrian Sandu:
Multivariate predictions of local reduced-order-model errors and dimensions. CoRR abs/1701.03720 (2017) - [i31]Mahesh Narayanamurthi, Paul Tranquilli, Adrian Sandu, Mayya Tokman:
EPIRK-W and EPIRK-K time discretization methods. CoRR abs/1701.06528 (2017) - [i30]Ulrich Römer, Mahesh Narayanamurthi, Adrian Sandu:
Solving Parameter Estimation Problems with Discrete Adjoint Exponential Integrators. CoRR abs/1704.02549 (2017) - [i29]Ahmed Attia, Adrian Sandu:
DATeS: A Highly-Extensible Data Assimilation Testing Suite. CoRR abs/1704.05594 (2017) - 2016
- [j41]Adrian Sandu:
Rosenbrock methods with an explicit first stage. Int. J. Comput. Math. 93(6): 995-1010 (2016) - [j40]Elias David Niño Ruiz, Adrian Sandu:
A derivative-free trust region framework for variational data assimilation. J. Comput. Appl. Math. 293: 164-179 (2016) - [j39]Vishwas Rao, Adrian Sandu:
A time-parallel approach to strong-constraint four-dimensional variational data assimilation. J. Comput. Phys. 313: 583-593 (2016) - [j38]Michael Günther, Adrian Sandu:
Multirate generalized additive Runge Kutta methods. Numerische Mathematik 133(3): 497-524 (2016) - [j37]Hong Zhang, Adrian Sandu, Sébastien Blaise:
High Order Implicit-explicit General Linear Methods with Optimized Stability Regions. SIAM J. Sci. Comput. 38(3) (2016) - [i28]Ahmed Attia, Razvan Stefanescu, Adrian Sandu:
The Reduced-Order Hybrid Monte Carlo Sampling Smoother. CoRR abs/1601.00129 (2016) - [i27]Elias D. Niño, Adrian Sandu, Xinwei Deng:
A Parallel Implementation of the Ensemble Kalman Filter Based on Modified Cholesky Decomposition. CoRR abs/1606.00807 (2016) - [i26]Ahmed Attia, Azam S. Zavar Moosavi, Adrian Sandu:
Cluster Sampling Filters for Non-Gaussian Data Assimilation. CoRR abs/1607.03592 (2016) - [i25]Arash Sarshar, Paul Tranquilli, Brent Pickering, Andrew McCall, Adrian Sandu, Christopher J. Roy:
A Numerical Investigation of Matrix-Free Implicit Time-Stepping Methods for Large CFD Simulations. CoRR abs/1607.06834 (2016) - 2015
- [j36]Tae-Hyuk Ahn, Adrian Sandu, Layne T. Watson, Clifford A. Shaffer, Yang Cao, William T. Baumann:
A Framework to Analyze the Performance of Load Balancing Schemes for Ensembles of Stochastic Simulations. Int. J. Parallel Program. 43(4): 597-630 (2015) - [j35]Hong Zhang, Adrian Sandu, Paul Tranquilli:
Application of approximate matrix factorization to high order linearly implicit Runge-Kutta methods. J. Comput. Appl. Math. 286: 196-210 (2015) - [j34]Razvan Stefanescu, Adrian Sandu, Ionel Michael Navon:
POD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation. J. Comput. Phys. 295: 569-595 (2015) - [j33]Vishwas Rao, Adrian Sandu:
A Posteriori Error Estimates for the Solution of Variational Inverse Problems. SIAM/ASA J. Uncertain. Quantification 3(1): 737-761 (2015) - [j32]Elias David Niño Ruiz, Adrian Sandu, Jeffrey L. Anderson:
An efficient implementation of the ensemble Kalman filter based on an iterative Sherman-Morrison formula. Stat. Comput. 25(3): 561-577 (2015) - [j31]Adrian Sandu, Michael Günther:
A Generalized-Structure Approach to Additive Runge-Kutta Methods. SIAM J. Numer. Anal. 53(1): 17-42 (2015) - [j30]Evgeniy Zharovsky, Adrian Sandu, Hong Zhang:
A Class Of Implicit-Explicit Two-Step Runge-Kutta Methods. SIAM J. Numer. Anal. 53(1): 321-341 (2015) - [c51]Aniruddha S. Gokhale, Salim Hariri, Adrian Sandu, Vaidy S. Sunderam:
Introduction to HiPC Workshops 3 and 4. HiPC Workshops 2015: 52 - [c50]Vishwas Rao, Adrian Sandu:
Parallel Solution of DDDAS Variational Inference Problems. ICCS 2015: 2474-2482 - [c49]Elias David Niño Ruiz, Adrian Sandu, Xinwei Deng:
A parallel ensemble Kalman filter implementation based on modified Cholesky decomposition. ScalA@SC 2015: 4:1-4:8 - [p3]Corina Sandu, Lin Li, Adrian Sandu:
Treatment of Uncertainties in Multibody Dynamic Systems using a Generalized Polynomial Chaos Approach; Case Study on a Full Vehicle. Advanced Autonomous Vehicle Design for Severe Environments 2015: 184-199 - [p2]Corina Sandu, Emmanuel Blanchard, Adrian Sandu:
Application of the Generalized Polynomial Chaos to the LQR Control Problem with Uncertain Parameters in the Formulation. Advanced Autonomous Vehicle Design for Severe Environments 2015: 200-220 - [e1]Sai Ravela, Adrian Sandu:
Dynamic Data-Driven Environmental Systems Science - First International Conference, DyDESS 2014, Cambridge, MA, USA, November 5-7, 2014, Revised Selected Papers. Lecture Notes in Computer Science 8964, Springer 2015, ISBN 978-3-319-25137-0 [contents] - [i24]Vishwas Rao, Adrian Sandu:
A Time-parallel Approach to Strong-constraint Four-dimensional Variational Data Assimilation. CoRR abs/1505.04515 (2015) - [i23]Ahmed Attia, Vishwas Rao, Adrian Sandu:
A Hybrid Monte-Carlo Sampling Smoother for Four Dimensional Data Assimilation. CoRR abs/1505.04724 (2015) - [i22]Vishwas Rao, Adrian Sandu, Michael Ng, Elias David Niño Ruiz:
Robust data assimilation using L1 and Huber norms. CoRR abs/1511.01593 (2015) - [i21]Azam S. Zavar Moosavi, Razvan Stefanescu, Adrian Sandu:
Efficient Construction of Local Parametric Reduced Order Models Using Machine Learning Techniques. CoRR abs/1511.02909 (2015) - 2014
- [j29]Alexandru Cioaca, Adrian Sandu:
Low-rank approximations for computing observation impact in 4D-Var data assimilation. Comput. Math. Appl. 67(12): 2112-2126 (2014) - [j28]Mihai Alexe, Adrian Sandu:
Space-time adaptive solution of inverse problems with the discrete adjoint method. J. Comput. Phys. 270: 21-39 (2014) - [j27]Alexandru Cioaca, Adrian Sandu:
An optimization framework to improve 4D-Var data assimilation system performance. J. Comput. Phys. 275: 377-389 (2014) - [j26]Paul Tranquilli, Adrian Sandu:
Exponential-Krylov methods for ordinary differential equations. J. Comput. Phys. 278: 31-46 (2014) - [j25]Vishwas Rao, Adrian Sandu:
An adjoint-based scalable algorithm for time-parallel integration. J. Comput. Sci. 5(2): 76-84 (2014) - [j24]Hong Zhang, Adrian Sandu, Sébastien Blaise:
Partitioned and Implicit-Explicit General Linear Methods for Ordinary Differential Equations. J. Sci. Comput. 61(1): 119-144 (2014) - [j23]Angelamaria Cardone, Zdzislaw Jackiewicz, Adrian Sandu, Hong Zhang:
Extrapolation-based implicit-explicit general linear methods. Numer. Algorithms 65(3): 377-399 (2014) - [j22]Adrian Sandu:
A new look at the chemical master equation. Numer. Algorithms 65(3): 485-498 (2014) - [j21]Paul Tranquilli, Adrian Sandu:
Rosenbrock-Krylov Methods for Large Systems of Differential Equations. SIAM J. Sci. Comput. 36(3) (2014) - [j20]Hong Zhang, Adrian Sandu:
FATODE: A Library for Forward, Adjoint, and Tangent Linear Integration of ODEs. SIAM J. Sci. Comput. 36(5) (2014) - [c48]Ahmed Attia, Vishwas Rao, Adrian Sandu:
A Sampling Approach for Four Dimensional Data Assimilation. DyDESS 2014: 215-226 - [c47]Elias D. Niño, Adrian Sandu:
Variational Data Assimilation Based on Derivative-Free Optimization. DyDESS 2014: 239-250 - [c46]Vishwas Rao, Adrian Sandu:
A Posteriori Error Estimates for DDDAS Inference Problems. ICCS 2014: 1256-1265 - [i20]Paul Tranquilli, Adrian Sandu:
Lightly Implicit Krylov-Exponential (LIKE) Methods. CoRR abs/1401.2125 (2014) - [i19]Razvan Stefanescu, Adrian Sandu, Ionel Michael Navon:
Comparison of POD reduced order strategies for the nonlinear 2D Shallow Water Equations. CoRR abs/1402.2018 (2014) - [i18]Razvan Stefanescu, Adrian Sandu, Ionel Michael Navon:
POD/DEIM Strategies for reduced data assimilation systems. CoRR abs/1402.5992 (2014) - [i17]Ahmed Attia, Adrian Sandu:
A Sampling Filter for Non-Gaussian Data Assimilation. CoRR abs/1403.7137 (2014) - [i16]Elias D. Niño, Adrian Sandu:
A Derivative-Free Trust Region Framework for Variational Data Assimilation. CoRR abs/1403.7692 (2014) - [i15]Hong Zhang, Adrian Sandu, Sébastien Blaise:
High Order Implicit-Explicit General Linear Methods with Optimized Stability Regions. CoRR abs/1407.2337 (2014) - [i14]Hong Zhang, Adrian Sandu, Paul Tranquilli:
Application of approximate matrix factorization to high order linearly implicit Runge-Kutta methods. CoRR abs/1408.3622 (2014) - [i13]Razvan Stefanescu, Adrian Sandu:
Efficient approximation of sparse Jacobians for time-implicit reduced order models. CoRR abs/1409.5506 (2014) - [i12]Azam S. Zavar Moosavi, Adrian Sandu:
Approximate Exponential Algorithms to Solve the Chemical Master Equation. CoRR abs/1410.1934 (2014) - [i11]Azam S. Zavar Moosavi, Paul Tranquilli, Adrian Sandu:
Solving stochastic chemical kinetics by Metropolis Hastings sampling. CoRR abs/1410.8155 (2014) - [i10]