default search action
Michael Elad
Person information
- affiliation: Technion - Israel Institute of Technology, Haifa, Israel
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j125]Omer Belhasin, Yaniv Romano, Daniel Freedman, Ehud Rivlin, Michael Elad:
Principal Uncertainty Quantification With Spatial Correlation for Image Restoration Problems. IEEE Trans. Pattern Anal. Mach. Intell. 46(5): 3321-3333 (2024) - [j124]Bahjat Kawar, Noam Elata, Tomer Michaeli, Michael Elad:
GSURE-Based Diffusion Model Training with Corrupted Data. Trans. Mach. Learn. Res. 2024 (2024) - [c83]Noam Elata, Tomer Michaeli, Michael Elad:
Adaptive Compressed Sensing with Diffusion-Based Posterior Sampling. ECCV (78) 2024: 290-308 - [c82]Roi Benita, Michael Elad, Joseph Keshet:
DiffAR: Denoising Diffusion Autoregressive Model for Raw Speech Waveform Generation. ICLR 2024 - [c81]Guy Ohayon, Tomer Michaeli, Michael Elad:
The Perception-Robustness Tradeoff in Deterministic Image Restoration. ICML 2024 - [c80]Liran Ringel, Regev Cohen, Daniel Freedman, Michael Elad, Yaniv Romano:
Early Time Classification with Accumulated Accuracy Gap Control. ICML 2024 - [c79]Roy Ganz, Michael Elad:
CLIPAG: Towards Generator-Free Text-to-Image Generation. WACV 2024: 3831-3841 - [c78]Noam Elata, Bahjat Kawar, Tomer Michaeli, Michael Elad:
Nested Diffusion Processes for Anytime Image Generation. WACV 2024: 4995-5004 - [c77]Guy Bar-Shalom, George Leifman, Michael Elad:
Weakly-Supervised Representation Learning for Video Alignment and Analysis. WACV 2024: 6895-6904 - [i99]Liran Ringel, Regev Cohen, Daniel Freedman, Michael Elad, Yaniv Romano:
Early Time Classification with Accumulated Accuracy Gap Control. CoRR abs/2402.00857 (2024) - [i98]Omer Belhasin, Idan Kligvasser, George Leifman, Regev Cohen, Erin Rainaldi, Li-Fang Cheng, Nishant Verma, Paul Varghese, Ehud Rivlin, Michael Elad:
Uncertainty-Aware PPG-2-ECG for Enhanced Cardiovascular Diagnosis using Diffusion Models. CoRR abs/2405.11566 (2024) - [i97]Guy Ohayon, Michael Elad, Tomer Michaeli:
Perceptual Fairness in Image Restoration. CoRR abs/2405.13805 (2024) - [i96]Shelly Golan, Roy Ganz, Michael Elad:
Enhancing Consistency-Based Image Generation via Adversarialy-Trained Classification and Energy-Based Discrimination. CoRR abs/2405.16260 (2024) - [i95]Noam Elata, Tomer Michaeli, Michael Elad:
Adaptive Compressed Sensing with Diffusion-Based Posterior Sampling. CoRR abs/2407.08256 (2024) - [i94]Noam Elata, Tomer Michaeli, Michael Elad:
Zero-Shot Image Compression with Diffusion-Based Posterior Sampling. CoRR abs/2407.09896 (2024) - [i93]Idan Kligvasser, Regev Cohen, George Leifman, Ehud Rivlin, Michael Elad:
Anchored Diffusion for Video Face Reenactment. CoRR abs/2407.15153 (2024) - [i92]Roy Ganz, Michael Elad:
Text-to-Image Generation Via Energy-Based CLIP. CoRR abs/2408.17046 (2024) - 2023
- [j123]Michael Elad, Bahjat Kawar, Gregory Vaksman:
Image Denoising: The Deep Learning Revolution and Beyond - A Survey Paper. SIAM J. Imaging Sci. 16(3): 1594-1654 (2023) - [j122]Roy Ganz, Michael Elad:
BIGRoC: Boosting Image Generation via a Robust Classifier. Trans. Mach. Learn. Res. 2023 (2023) - [j121]Bahjat Kawar, Roy Ganz, Michael Elad:
Enhancing Diffusion-Based Image Synthesis with Robust Classifier Guidance. Trans. Mach. Learn. Res. 2023 (2023) - [c76]Sean Man, Guy Ohayon, Theo Adrai, Michael Elad:
High-Perceptual Quality JPEG Decoding via Posterior Sampling. CVPR Workshops 2023: 1272-1282 - [c75]Gregory Vaksman, Michael Elad:
PatchCraft Self-Supervised Training for Correlated Image Denoising. CVPR 2023: 5795-5804 - [c74]Idan Kligvasser, George Leifman, Roman Goldenberg, Ehud Rivlin, Michael Elad:
Semi-supervised Quality Evaluation of Colonoscopy Procedures. ICCV (Workshops) 2023: 2347-2355 - [c73]Nadav Torem, Roi Ronen, Yoav Y. Schechner, Michael Elad:
Complex-Valued Retrievals From Noisy Images Using Diffusion Models. ICCV (Workshops) 2023: 3812-3822 - [c72]Roy Ganz, Bahjat Kawar, Michael Elad:
Do Perceptually Aligned Gradients Imply Robustness? ICML 2023: 10628-10648 - [c71]Guy Ohayon, Theo Joseph Adrai, Michael Elad, Tomer Michaeli:
Reasons for the Superiority of Stochastic Estimators over Deterministic Ones: Robustness, Consistency and Perceptual Quality. ICML 2023: 26474-26494 - [c70]George Leifman, Idan Kligvasser, Roman Goldenberg, Ehud Rivlin, Michael Elad:
Colonoscopy Coverage Revisited: Identifying Scanning Gaps in Real-Time. CaPTion@MICCAI 2023: 107-118 - [c69]Niranjan Sridhar, Michael Elad, Carson McNeil, Ehud Rivlin, Daniel Freedman:
Diffusion Models for Generative Histopathology. DGM4MICCAI 2023: 154-163 - [c68]Theo Adrai, Guy Ohayon, Michael Elad, Tomer Michaeli:
Deep Optimal Transport: A Practical Algorithm for Photo-realistic Image Restoration. NeurIPS 2023 - [c67]Gilad Kutiel, Regev Cohen, Michael Elad, Daniel Freedman, Ehud Rivlin:
Conformal Prediction Masks: Visualizing Uncertainty in Medical Imaging. TML4H 2023: 163-176 - [i91]Michael Elad, Bahjat Kawar, Gregory Vaksman:
Image Denoising: The Deep Learning Revolution and Beyond - A Survey Paper -. CoRR abs/2301.03362 (2023) - [i90]Guy Bar-Shalom, George Leifman, Michael Elad, Ehud Rivlin:
Weakly-supervised Representation Learning for Video Alignment and Analysis. CoRR abs/2302.04064 (2023) - [i89]Tsachi Blau, Roy Ganz, Chaim Baskin, Michael Elad, Alexander M. Bronstein:
Classifier Robustness Enhancement Via Test-Time Transformation. CoRR abs/2303.15409 (2023) - [i88]George Leifman, Idan Kligvasser, Roman Goldenberg, Michael Elad, Ehud Rivlin:
Colonoscopy Coverage Revisited: Identifying Scanning Gaps in Real-Time. CoRR abs/2305.10026 (2023) - [i87]Idan Kligvasser, George Leifman, Roman Goldenberg, Ehud Rivlin, Michael Elad:
Semi-supervised Quality Evaluation of Colonoscopy Procedures. CoRR abs/2305.10090 (2023) - [i86]Omer Belhasin, Yaniv Romano, Daniel Freedman, Ehud Rivlin, Michael Elad:
Principal Uncertainty Quantification with Spatial Correlation for Image Restoration Problems. CoRR abs/2305.10124 (2023) - [i85]Bahjat Kawar, Noam Elata, Tomer Michaeli, Michael Elad:
GSURE-Based Diffusion Model Training with Corrupted Data. CoRR abs/2305.13128 (2023) - [i84]Noam Elata, Bahjat Kawar, Tomer Michaeli, Michael Elad:
Nested Diffusion Processes for Anytime Image Generation. CoRR abs/2305.19066 (2023) - [i83]Theo Adrai, Guy Ohayon, Tomer Michaeli, Michael Elad:
Deep Optimal Transport: A Practical Algorithm for Photo-realistic Image Restoration. CoRR abs/2306.02342 (2023) - [i82]Roy Ganz, Michael Elad:
CLIPAG: Towards Generator-Free Text-to-Image Generation. CoRR abs/2306.16805 (2023) - [i81]Roi Benita, Michael Elad, Joseph Keshet:
DiffAR: Denoising Diffusion Autoregressive Model for Raw Speech Waveform Generation. CoRR abs/2310.01381 (2023) - [i80]Guy Ohayon, Tomer Michaeli, Michael Elad:
The Perception-Robustness Tradeoff in Deterministic Image Restoration. CoRR abs/2311.09253 (2023) - 2022
- [j120]Aviad Aberdam, Alona Golts, Michael Elad:
Ada-LISTA: Learned Solvers Adaptive to Varying Models. IEEE Trans. Pattern Anal. Mach. Intell. 44(12): 9222-9235 (2022) - [c66]Alona Golts, Ido Livneh, Yaniv Zohar, Aaron Ciechanover, Michael Elad:
Simultaneous Detection and Classification of Partially and Weakly Supervised Cells. ECCV Workshops (3) 2022: 313-329 - [c65]Bahjat Kawar, Michael Elad, Stefano Ermon, Jiaming Song:
Denoising Diffusion Restoration Models. NeurIPS 2022 - [i79]Bahjat Kawar, Michael Elad, Stefano Ermon, Jiaming Song:
Denoising Diffusion Restoration Models. CoRR abs/2201.11793 (2022) - [i78]Tsachi Blau, Roy Ganz, Bahjat Kawar, Alex M. Bronstein, Michael Elad:
Threat Model-Agnostic Adversarial Defense using Diffusion Models. CoRR abs/2207.08089 (2022) - [i77]Roy Ganz, Bahjat Kawar, Michael Elad:
Do Perceptually Aligned Gradients Imply Adversarial Robustness? CoRR abs/2207.11378 (2022) - [i76]Bahjat Kawar, Roy Ganz, Michael Elad:
Enhancing Diffusion-Based Image Synthesis with Robust Classifier Guidance. CoRR abs/2208.08664 (2022) - [i75]Bahjat Kawar, Jiaming Song, Stefano Ermon, Michael Elad:
JPEG Artifact Correction using Denoising Diffusion Restoration Models. CoRR abs/2209.11888 (2022) - [i74]Guy Ohayon, Theo Adrai, Michael Elad, Tomer Michaeli:
Reasons for the Superiority of Stochastic Estimators over Deterministic Ones: Robustness, Consistency and Perceptual Quality. CoRR abs/2211.08944 (2022) - [i73]Gregory Vaksman, Michael Elad:
Patch-Craft Self-Supervised Training for Correlated Image Denoising. CoRR abs/2211.09919 (2022) - [i72]Sean Man, Guy Ohayon, Theo Adrai, Michael Elad:
High-Perceptual Quality JPEG Decoding via Posterior Sampling. CoRR abs/2211.11827 (2022) - [i71]Gilad Kutiel, Regev Cohen, Michael Elad, Daniel Freedman:
What's Behind the Mask: Estimating Uncertainty in Image-to-Image Problems. CoRR abs/2211.15211 (2022) - [i70]Nadav Torem, Roi Ronen, Yoav Y. Schechner, Michael Elad:
Towards A Most Probable Recovery in Optical Imaging. CoRR abs/2212.03235 (2022) - 2021
- [j119]Alona Golts, Daniel Freedman, Michael Elad:
Deep Energy: Task Driven Training of Deep Neural Networks. IEEE J. Sel. Top. Signal Process. 15(2): 324-338 (2021) - [j118]Rajaei Khatib, Dror Simon, Michael Elad:
Learned Greedy Method (LGM): A novel neural architecture for sparse coding and beyond. J. Vis. Commun. Image Represent. 77: 103095 (2021) - [j117]Regev Cohen, Michael Elad, Peyman Milanfar:
Regularization by Denoising via Fixed-Point Projection (RED-PRO). SIAM J. Imaging Sci. 14(3): 1374-1406 (2021) - [j116]Meyer Scetbon, Michael Elad, Peyman Milanfar:
Deep K-SVD Denoising. IEEE Trans. Image Process. 30: 5944-5955 (2021) - [j115]Hossein Talebi Esfandarani, Damien Kelly, Xiyang Luo, Ignacio Garcia-Dorado, Feng Yang, Peyman Milanfar, Michael Elad:
Better Compression With Deep Pre-Editing. IEEE Trans. Image Process. 30: 6673-6685 (2021) - [c64]Xiyang Luo, Hossein Talebi, Feng Yang, Michael Elad, Peyman Milanfar:
The Rate-Distortion-Accuracy Tradeoff: JPEG Case Study. DCC 2021: 354 - [c63]Gregory Vaksman, Michael Elad, Peyman Milanfar:
Patch Craft: Video Denoising by Deep Modeling and Patch Matching. ICCV 2021: 2137-2146 - [c62]Guy Ohayon, Theo Adrai, Gregory Vaksman, Michael Elad, Peyman Milanfar:
High Perceptual Quality Image Denoising with a Posterior Sampling CGAN. ICCVW 2021: 1805-1813 - [c61]Bahjat Kawar, Gregory Vaksman, Michael Elad:
Stochastic Image Denoising by Sampling from the Posterior Distribution. ICCVW 2021: 1866-1875 - [c60]Bahjat Kawar, Gregory Vaksman, Michael Elad:
SNIPS: Solving Noisy Inverse Problems Stochastically. NeurIPS 2021: 21757-21769 - [e4]Yuxin Peng, Shi-Min Hu, Moncef Gabbouj, Kun Zhou, Michael Elad, Kun Xu:
Image and Graphics - 11th International Conference, ICIG 2021, Haikou, China, August 6-8, 2021, Proceedings, Part I. Lecture Notes in Computer Science 12888, Springer 2021, ISBN 978-3-030-87354-7 [contents] - [e3]Yuxin Peng, Shi-Min Hu, Moncef Gabbouj, Kun Zhou, Michael Elad, Kun Xu:
Image and Graphics - 11th International Conference, ICIG 2021, Haikou, China, August 6-8, 2021, Proceedings, Part II. Lecture Notes in Computer Science 12889, Springer 2021, ISBN 978-3-030-87357-8 [contents] - [e2]Yuxin Peng, Shi-Min Hu, Moncef Gabbouj, Kun Zhou, Michael Elad, Kun Xu:
Image and Graphics - 11th International Conference, ICIG 2021, Haikou, China, August 6-8, 2021, Proceedings, Part III. Lecture Notes in Computer Science 12890, Springer 2021, ISBN 978-3-030-87360-8 [contents] - [i69]Bahjat Kawar, Gregory Vaksman, Michael Elad:
Stochastic Image Denoising by Sampling from the Posterior Distribution. CoRR abs/2101.09552 (2021) - [i68]Guy Ohayon, Theo Adrai, Gregory Vaksman, Michael Elad, Peyman Milanfar:
High Perceptual Quality Image Denoising with a Posterior Sampling CGAN. CoRR abs/2103.04192 (2021) - [i67]Gregory Vaksman, Michael Elad, Peyman Milanfar:
Patch Craft: Video Denoising by Deep Modeling and Patch Matching. CoRR abs/2103.13767 (2021) - [i66]Roy Ganz, Michael Elad:
Improved Image Generation via Sparse Modeling. CoRR abs/2104.00464 (2021) - [i65]Bahjat Kawar, Gregory Vaksman, Michael Elad:
SNIPS: Solving Noisy Inverse Problems Stochastically. CoRR abs/2105.14951 (2021) - [i64]Roy Ganz, Michael Elad:
BIGRoC: Boosting Image Generation via a Robust Classifier. CoRR abs/2108.03702 (2021) - 2020
- [j114]Yaniv Romano, Aviad Aberdam, Jeremias Sulam, Michael Elad:
Adversarial Noise Attacks of Deep Learning Architectures: Stability Analysis via Sparse-Modeled Signals. J. Math. Imaging Vis. 62(3): 313-327 (2020) - [j113]Jeremias Sulam, Aviad Aberdam, Amir Beck, Michael Elad:
On Multi-Layer Basis Pursuit, Efficient Algorithms and Convolutional Neural Networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(8): 1968-1980 (2020) - [j112]Alona Golts, Daniel Freedman, Michael Elad:
Unsupervised Single Image Dehazing Using Dark Channel Prior Loss. IEEE Trans. Image Process. 29: 2692-2701 (2020) - [j111]Ives Rey-Otero, Jeremias Sulam, Michael Elad:
Variations on the Convolutional Sparse Coding Model. IEEE Trans. Signal Process. 68: 519-528 (2020) - [c59]Gregory Vaksman, Michael Elad, Peyman Milanfar:
LIDIA: Lightweight Learned Image Denoising with Instance Adaptation. CVPR Workshops 2020: 2220-2229 - [i63]Aviad Aberdam, Alona Golts, Michael Elad:
Ada-LISTA: Learned Solvers Adaptive to Varying Models. CoRR abs/2001.08456 (2020) - [i62]Hossein Talebi, Damien Kelly, Xiyang Luo, Ignacio Garcia-Dorado, Feng Yang, Peyman Milanfar, Michael Elad:
Better Compression with Deep Pre-Editing. CoRR abs/2002.00113 (2020) - [i61]Aviad Aberdam, Dror Simon, Michael Elad:
When and How Can Deep Generative Models be Inverted? CoRR abs/2006.15555 (2020) - [i60]Regev Cohen, Michael Elad, Peyman Milanfar:
Regularization by Denoising via Fixed-Point Projection (RED-PRO). CoRR abs/2008.00226 (2020) - [i59]Xiyang Luo, Hossein Talebi, Feng Yang, Michael Elad, Peyman Milanfar:
The Rate-Distortion-Accuracy Tradeoff: JPEG Case Study. CoRR abs/2008.00605 (2020) - [i58]Rajaei Khatib, Dror Simon, Michael Elad:
Learned Greedy Method (LGM): A Novel Neural Architecture for Sparse Coding and Beyond. CoRR abs/2010.07069 (2020)
2010 – 2019
- 2019
- [j110]Tao Hong, Yaniv Romano, Michael Elad:
Acceleration of RED via vector extrapolation. J. Vis. Commun. Image Represent. 63 (2019) - [j109]Aviad Aberdam, Jeremias Sulam, Michael Elad:
Multi-Layer Sparse Coding: The Holistic Way. SIAM J. Math. Data Sci. 1(1): 46-77 (2019) - [j108]Alon Brifman, Yaniv Romano, Michael Elad:
Unified Single-Image and Video Super-Resolution via Denoising Algorithms. IEEE Trans. Image Process. 28(12): 6063-6076 (2019) - [j107]Yael Yankelevsky, Michael Elad:
Finding GEMS: Multi-Scale Dictionaries For High-Dimensional Graph Signals. IEEE Trans. Signal Process. 67(7): 1889-1901 (2019) - [j106]Dror Simon, Jeremias Sulam, Yaniv Romano, Yue M. Lu, Michael Elad:
MMSE Approximation For Sparse Coding Algorithms Using Stochastic Resonance. IEEE Trans. Signal Process. 67(17): 4597-4610 (2019) - [c58]Ev Zisselman, Jeremias Sulam, Michael Elad:
A Local Block Coordinate Descent Algorithm for the CSC Model. CVPR 2019: 8208-8217 - [c57]Shahar Romem Peled, Yaniv Romano, Michael Elad:
SOS Boosting for Image Deblurring Algorithms. EUSIPCO 2019: 1-5 - [c56]Dror Simon, Michael Elad:
Rethinking the CSC Model for Natural Images. NeurIPS 2019: 2271-2281 - [i57]Gary Mataev, Michael Elad, Peyman Milanfar:
DeepRED: Deep Image Prior Powered by RED. CoRR abs/1903.10176 (2019) - [i56]Dror Simon, Michael Elad:
Rethinking the CSC Model for Natural Images. CoRR abs/1909.05742 (2019) - [i55]Meyer Scetbon, Michael Elad, Peyman Milanfar:
Deep K-SVD Denoising. CoRR abs/1909.13164 (2019) - [i54]Gregory Vaksman, Michael Elad, Peyman Milanfar:
Low-Weight and Learnable Image Denoising. CoRR abs/1911.07167 (2019) - 2018
- [j105]Vardan Papyan, Yaniv Romano, Jeremias Sulam, Michael Elad:
Theoretical Foundations of Deep Learning via Sparse Representations: A Multilayer Sparse Model and Its Connection to Convolutional Neural Networks. IEEE Signal Process. Mag. 35(4): 72-89 (2018) - [j104]Yi Ren, Yaniv Romano, Michael Elad:
Example-Based Image Synthesis via Randomized Patch-Matching. IEEE Trans. Image Process. 27(1): 220-235 (2018) - [j103]Yehuda Dar, Michael Elad, Alfred M. Bruckstein:
Optimized Pre-Compensating Compression. IEEE Trans. Image Process. 27(10): 4798-4809 (2018) - [j102]Jeremias Sulam, Vardan Papyan, Yaniv Romano, Michael Elad:
Multilayer Convolutional Sparse Modeling: Pursuit and Dictionary Learning. IEEE Trans. Signal Process. 66(15): 4090-4104 (2018) - [j101]Yehuda Dar, Michael Elad, Alfred M. Bruckstein:
Restoration by Compression. IEEE Trans. Signal Process. 66(22): 5833-5847 (2018) - [c55]Yael Yankelevsky, Michael Elad:
Dictionary Learning for High Dimensional Graph Signals. ICASSP 2018: 4669-4673 - [c54]Jeremias Sulam, Vardan Papyan, Yaniv Romano, Michael Elad:
Projecting on to the Multi-Layer Convolutional Sparse Coding Model. ICASSP 2018: 6757-6761 - [c53]Yaniv Romano, Michael Elad, Peyman Milanfar:
RED-UCATION: A Novel CNN Architecture Based on Denoising Nonlinearities. ICASSP 2018: 6762-6766 - [c52]Yehuda Dar, Michael Elad, Alfred M. Bruckstein:
Compression for Multiple Reconstructions. ICIP 2018: 440-444 - [c51]Yehuda Dar, Michael Elad, Alfred M. Bruckstein:
System-Aware Compression. ISIT 2018: 2226-2230 - [i53]Yehuda Dar, Michael Elad, Alfred M. Bruckstein:
System-Aware Compression. CoRR abs/1801.04853 (2018) - [i52]Yehuda Dar, Michael Elad, Alfred M. Bruckstein:
Compression for Multiple Reconstructions. CoRR abs/1802.03937 (2018) - [i51]Aviad Aberdam, Jeremias Sulam, Michael Elad:
Multi Layer Sparse Coding: the Holistic Way. CoRR abs/1804.09788 (2018) - [i50]Tao Hong, Yaniv Romano, Michael Elad:
Acceleration of RED via Vector Extrapolation. CoRR abs/1805.02158 (2018) - [i49]Yaniv Romano, Michael Elad:
Classification Stability for Sparse-Modeled Signals. CoRR abs/1805.11596 (2018) - [i48]Alona Golts, Daniel Freedman, Michael Elad:
Deep Energy: Using Energy Functions for Unsupervised Training of DNNs. CoRR abs/1805.12355 (2018) - [i47]Jeremias Sulam, Aviad Aberdam, Michael Elad:
On Multi-Layer Basis Pursuit, Efficient Algorithms and Convolutional Neural Networks. CoRR abs/1806.00701 (2018) - [i46]Yael Yankelevsky, Michael Elad:
Finding GEMS: Multi-Scale Dictionaries for High-Dimensional Graph Signals. CoRR abs/1806.05356 (2018) - [i45]Dror Simon, Jeremias Sulam, Yaniv Romano, Yue M. Lu, Michael Elad:
Improving Pursuit Algorithms Using Stochastic Resonance. CoRR abs/1806.10171 (2018) - [i44]Ev Zisselman, Jeremias Sulam, Michael Elad:
A Local Block Coordinate Descent Algorithm for the Convolutional Sparse Coding Model. CoRR abs/1811.00312 (2018) - [i43]Alona Golts, Daniel Freedman, Michael Elad:
Unsupervised Single Image Dehazing Using Dark Channel Prior Loss. CoRR abs/1812.07051 (2018) - 2017
- [j100]Vardan Papyan, Yaniv Romano, Michael Elad:
Convolutional Neural Networks Analyzed via Convolutional Sparse Coding. J. Mach. Learn. Res. 18: 83:1-83:52 (2017) - [j99]Yaniv Romano, Michael Elad, Peyman Milanfar:
The Little Engine That Could: Regularization by Denoising (RED). SIAM J. Imaging Sci. 10(4): 1804-1844 (2017) - [j98]Michael Elad, Peyman Milanfar:
Style Transfer Via Texture Synthesis. IEEE Trans. Image Process. 26(5): 2338-2351 (2017) - [j97]Vardan Papyan, Jeremias Sulam, Michael Elad:
Working Locally Thinking Globally: Theoretical Guarantees for Convolutional Sparse Coding. IEEE Trans. Signal Process. 65(21): 5687-5701 (2017) - [c50]Yael Yankelevsky, Michael Elad:
Structure-aware classification using supervised dictionary learning. ICASSP 2017: 4421-4425 - [c49]Vardan Papyan, Yaniv Romano, Michael Elad, Jeremias Sulam:
Convolutional Dictionary Learning via Local Processing. ICCV 2017: 5306-5314 - [i42]Dmitry Batenkov, Yaniv Romano, Michael Elad:
On the Global-Local Dichotomy in Sparsity Modeling. CoRR abs/1702.03446 (2017) - [i41]Vardan Papyan, Yaniv Romano, Jeremias Sulam, Michael Elad:
Convolutional Dictionary Learning via Local Processing. CoRR abs/1705.03239 (2017) - [i40]Vardan Papyan, Jeremias Sulam, Michael Elad:
Working Locally Thinking Globally: Theoretical Guarantees for Convolutional Sparse Coding. CoRR abs/1707.06066 (2017) - [i39]Jeremias Sulam, Vardan Papyan, Yaniv Romano, Michael Elad:
Multi-Layer Convolutional Sparse Modeling: Pursuit and Dictionary Learning. CoRR abs/1708.08705 (2017) - [i38]Yehuda Dar, Michael Elad, Alfred M. Bruckstein:
Restoration by Compression. CoRR abs/1711.05147 (2017) - [i37]Yehuda Dar, Michael Elad, Alfred M. Bruckstein:
Optimized Pre-Compensating Compression. CoRR abs/1711.07901 (2017) - 2016
- [j96]Alona Golts, Michael Elad:
Linearized Kernel Dictionary Learning. IEEE J. Sel. Top. Signal Process. 10(4): 726-739 (2016) - [j95]Arie Rond, Raja Giryes, Michael Elad:
Poisson inverse problems by the Plug-and-Play scheme. J. Vis. Commun. Image Represent. 41: 96-108 (2016) - [j94]Gregory Vaksman, Michael Zibulevsky, Michael Elad:
Patch Ordering as a Regularization for Inverse Problems in Image Processing. SIAM J. Imaging Sci. 9(1): 287-319 (2016) - [j93]Jeremias Sulam, Michael Elad:
Large Inpainting of Face Images With Trainlets. IEEE Signal Process. Lett. 23(12): 1839-1843 (2016) - [j92]Vardan Papyan, Michael Elad:
Multi-Scale Patch-Based Image Restoration. IEEE Trans. Image Process. 25(1): 249-261 (2016) - [j91]Yehuda Dar, Alfred M. Bruckstein, Michael Elad, Raja Giryes:
Postprocessing of Compressed Images via Sequential Denoising. IEEE Trans. Image Process. 25(7): 3044-3058 (2016) - [j90]Yaniv Romano, Michael Elad:
Con-Patch: When a Patch Meets Its Context. IEEE Trans. Image Process. 25(9): 3967-3978 (2016) - [j89]Yael Yankelevsky, Michael Elad:
Dual Graph Regularized Dictionary Learning. IEEE Trans. Signal Inf. Process. over Networks 2(4): 611-624 (2016) - [j88]Jeremias Sulam, Boaz Ophir, Michael Zibulevsky, Michael Elad:
Trainlets: Dictionary Learning in High Dimensions. IEEE Trans. Signal Process. 64(12): 3180-3193 (2016) - [c48]Alon Brifman, Yaniv Romano, Michael Elad:
Turning a denoiser into a super-resolver using plug and play priors. ICIP 2016: 1404-1408 - [c47]Yehuda Dar, Alfred M. Bruckstein, Michael Elad:
Image restoration via successive compression. PCS 2016: 1-5 - [i36]Jeremias Sulam, Boaz Ophir, Michael Zibulevsky, Michael Elad:
Trainlets: Dictionary Learning in High Dimensions. CoRR abs/1602.00212 (2016) - [i35]Gregory Vaksman, Michael Zibulevsky, Michael Elad:
Patch-Ordering as a Regularization for Inverse Problems in Image Processing. CoRR abs/1602.08510 (2016) - [i34]Yaniv Romano, Michael Elad:
Con-Patch: When a Patch Meets its Context. CoRR abs/1603.06812 (2016) - [i33]Amir Adler, David Boublil, Michael Elad, Michael Zibulevsky:
A Deep Learning Approach to Block-based Compressed Sensing of Images. CoRR abs/1606.01519 (2016) - [i32]Vardan Papyan, Jeremias Sulam, Michael Elad:
Working Locally Thinking Globally - Part I: Theoretical Guarantees for Convolutional Sparse Coding. CoRR abs/1607.02005 (2016) - [i31]Vardan Papyan, Jeremias Sulam, Michael Elad:
Working Locally Thinking Globally - Part II: Stability and Algorithms for Convolutional Sparse Coding. CoRR abs/1607.02009 (2016) - [i30]Vardan Papyan, Yaniv Romano, Michael Elad:
Convolutional Neural Networks Analyzed via Convolutional Sparse Coding. CoRR abs/1607.08194 (2016) - [i29]Michael Elad, Peyman Milanfar:
Style-Transfer via Texture-Synthesis. CoRR abs/1609.03057 (2016) - [i28]Yi Ren, Yaniv Romano, Michael Elad:
Example-Based Image Synthesis via Randomized Patch-Matching. CoRR abs/1609.07370 (2016) - [i27]Yael Yankelevsky, Michael Elad:
Structure-Aware Classification using Supervised Dictionary Learning. CoRR abs/1609.09199 (2016) - [i26]Amir Adler, Michael Elad, Michael Zibulevsky:
Compressed Learning: A Deep Neural Network Approach. CoRR abs/1610.09615 (2016) - [i25]Yaniv Romano, Michael Elad, Peyman Milanfar:
The Little Engine that Could: Regularization by Denoising (RED). CoRR abs/1611.02862 (2016) - 2015
- [j87]Javier S. Turek, Michael Elad, Irad Yavneh:
Clutter Mitigation in Echocardiography Using Sparse Signal Separation. Int. J. Biomed. Imaging 2015: 958963:1-958963:18 (2015) - [j86]Julien Mairal, Michael Elad, Francis R. Bach:
Guest Editorial: Sparse Coding. Int. J. Comput. Vis. 114(2-3): 89-90 (2015) - [j85]Wen-Ze Shao, Haibo Li, Michael Elad:
Bi-l0-l2-norm regularization for blind motion deblurring. J. Vis. Commun. Image Represent. 33: 42-59 (2015) - [j84]Yaniv Romano, Michael Elad:
Boosting of Image Denoising Algorithms. SIAM J. Imaging Sci. 8(2): 1187-1219 (2015) - [j83]Raja Giryes, Michael Elad, Alfred M. Bruckstein:
Sparsity Based Methods for Overparameterized Variational Problems. SIAM J. Imaging Sci. 8(3): 2133-2159 (2015) - [j82]Yuval Bahat, Yoav Y. Schechner, Michael Elad:
Self-content-based audio inpainting. Signal Process. 111: 61-72 (2015) - [j81]David Boublil, Michael Elad, Joseph Shtok, Michael Zibulevsky:
Spatially-Adaptive Reconstruction in Computed Tomography Using Neural Networks. IEEE Trans. Medical Imaging 34(7): 1474-1485 (2015) - [j80]Amir Adler, Michael Elad, Yacov Hel-Or:
Linear-Time Subspace Clustering via Bipartite Graph Modeling. IEEE Trans. Neural Networks Learn. Syst. 26(10): 2234-2246 (2015) - [j79]Amir Adler, Michael Elad, Yacov Hel-Or, Ehud Rivlin:
Sparse Coding with Anomaly Detection. J. Signal Process. Syst. 79(2): 179-188 (2015) - [c46]Javier S. Turek, Jeremias Sulam, Michael Elad, Irad Yavneh:
Fusion of ultrasound harmonic imaging with clutter removal using sparse signal separation. ICASSP 2015: 793-797 - [c45]Yaniv Romano, Michael Elad:
Patch-disagreement as away to improve K-SVD denoising. ICASSP 2015: 1280-1284 - [c44]Wenze Shao, Michael Elad:
Simple, Accurate, and Robust Nonparametric Blind Super-Resolution. ICIG (3) 2015: 333-348 - [c43]Esben Plenge, Mitchell A. Cooper, Martin R. Prince, Yi Wang, Pascal Spincemaille, Michael Elad:
Reconstruction of highly under-sampled dynamic MRI using sparse representation of 1D temporal snippets. ISBI 2015: 1240-1243 - [i24]Yaniv Romano, Michael Elad:
SOS Boosting of Image Denoising Algorithms. CoRR abs/1502.06220 (2015) - [i23]Wen-Ze Shao, Michael Elad:
Simple, Accurate, and Robust Nonparametric Blind Super-Resolution. CoRR abs/1503.03187 (2015) - [i22]Alona Golts, Michael Elad:
Linearized Kernel Dictionary Learning. CoRR abs/1509.05634 (2015) - [i21]Yehuda Dar, Alfred M. Bruckstein, Michael Elad, Raja Giryes:
Postprocessing of Compressed Images via Sequential Denoising. CoRR abs/1510.09041 (2015) - [i20]Arie Rond, Raja Giryes, Michael Elad:
Poisson Inverse Problems by the Plug-and-Play scheme. CoRR abs/1511.02500 (2015) - 2014
- [j78]Javier Turek, Irad Yavneh, Michael Elad:
On MAP and MMSE estimators for the co-sparse analysis model. Digit. Signal Process. 28: 57-74 (2014) - [j77]Idan Ram, Israel Cohen, Michael Elad:
Facial Image Compression using Patch-Ordering-Based Adaptive Wavelet Transform. IEEE Signal Process. Lett. 21(10): 1270-1274 (2014) - [j76]Tomer Peleg, Michael Elad:
A Statistical Prediction Model Based on Sparse Representations for Single Image Super-Resolution. IEEE Trans. Image Process. 23(6): 2569-2582 (2014) - [j75]Idan Ram, Israel Cohen, Michael Elad:
Patch-Ordering-Based Wavelet Frame and Its Use in Inverse Problems. IEEE Trans. Image Process. 23(7): 2779-2792 (2014) - [j74]Yaniv Romano, Matan Protter, Michael Elad:
Single Image Interpolation Via Adaptive Nonlocal Sparsity-Based Modeling. IEEE Trans. Image Process. 23(7): 3085-3098 (2014) - [j73]Raja Giryes, Michael Elad:
Sparsity-Based Poisson Denoising With Dictionary Learning. IEEE Trans. Image Process. 23(12): 5057-5069 (2014) - [j72]Ron Rubinstein, Michael Elad:
Dictionary Learning for Analysis-Synthesis Thresholding. IEEE Trans. Signal Process. 62(22): 5962-5972 (2014) - [c42]Jeremias Sulam, Michael Elad:
Expected Patch Log Likelihood with a Sparse Prior. EMMCVPR 2014: 99-111 - [c41]Jeremias Sulam, Boaz Ophir, Michael Elad:
Image denoising through multi-scale learnt dictionaries. ICIP 2014: 808-812 - [c40]Raja Giryes, Michael Elad:
Sparsity based poisson inpainting. ICIP 2014: 2839-2843 - [i19]Raja Giryes, Michael Elad, Alfred M. Bruckstein:
Sparsity Based Methods for Overparametrized Variational Problems. CoRR abs/1405.4969 (2014) - [i18]Wen-Ze Shao, Haibo Li, Michael Elad:
Bi-l0-l2-Norm Regularization for Blind Motion Deblurring. CoRR abs/1408.4712 (2014) - 2013
- [j71]Joseph Shtok, Michael Elad, Michael Zibulevsky:
Learned Shrinkage Approach for Low-Dose Reconstruction in Computed Tomography. Int. J. Biomed. Imaging 2013: 609274:1-609274:20 (2013) - [j70]Amir Adler, Michael Elad, Yacov Hel-Or:
Probabilistic Subspace Clustering Via Sparse Representations. IEEE Signal Process. Lett. 20(1): 63-66 (2013) - [j69]Leslie N. Smith, Michael Elad:
Improving Dictionary Learning: Multiple Dictionary Updates and Coefficient Reuse. IEEE Signal Process. Lett. 20(1): 79-82 (2013) - [j68]Idan Ram, Michael Elad, Israel Cohen:
Image Processing Using Smooth Ordering of its Patches. IEEE Trans. Image Process. 22(7): 2764-2774 (2013) - [j67]Tomer Peleg, Michael Elad:
Performance Guarantees of the Thresholding Algorithm for the Cosparse Analysis Model. IEEE Trans. Inf. Theory 59(3): 1832-1845 (2013) - [j66]Ron Rubinstein, Tomer Peleg, Michael Elad:
Analysis K-SVD: A Dictionary-Learning Algorithm for the Analysis Sparse Model. IEEE Trans. Signal Process. 61(3): 661-677 (2013) - [c39]Idan Ram, Michael Elad, Israel Cohen:
Image denoising using NL-means via smooth patch ordering. ICASSP 2013: 1350-1354 - [c38]Raja Giryes, Michael Elad:
Can we allow linear dependencies in the dictionary in the sparse synthesis framework? ICASSP 2013: 5459-5463 - [c37]Yaniv Romano, Michael Elad:
Improving K-SVD denoising by post-processing its method-noise. ICIP 2013: 435-439 - [c36]Amir Adler, Michael Elad, Yacov Hel-Or, Ehud Rivlin:
Sparse coding with anomaly detection. MLSP 2013: 1-6 - [i17]Raja Giryes, Michael Elad:
Can we allow linear dependencies in the dictionary in the sparse synthesis framework? CoRR abs/1303.5655 (2013) - [i16]Raja Giryes, Michael Elad:
Sparsity Based Poisson Denoising with Dictionary Learning. CoRR abs/1309.4306 (2013) - [i15]Joseph Shtok, Michael Zibulevsky, Michael Elad:
Spatially-Adaptive Reconstruction in Computed Tomography using Neural Networks. CoRR abs/1311.7251 (2013) - 2012
- [j65]Idan Ram, Michael Elad, Israel Cohen:
Redundant Wavelets on Graphs and High Dimensional Data Clouds. IEEE Signal Process. Lett. 19(5): 291-294 (2012) - [j64]Michael Elad:
Sparse and Redundant Representation Modeling - What Next? IEEE Signal Process. Lett. 19(12): 922-928 (2012) - [j63]Amir Adler, Valentin Emiya, Maria G. Jafari, Michael Elad, Rémi Gribonval, Mark D. Plumbley:
Audio Inpainting. IEEE Trans. Speech Audio Process. 20(3): 922-932 (2012) - [j62]Raja Giryes, Michael Elad:
RIP-Based Near-Oracle Performance Guarantees for SP, CoSaMP, and IHT. IEEE Trans. Signal Process. 60(3): 1465-1468 (2012) - [j61]Tomer Peleg, Yonina C. Eldar, Michael Elad:
Exploiting Statistical Dependencies in Sparse Representations for Signal Recovery. IEEE Trans. Signal Process. 60(5): 2286-2303 (2012) - [c35]Dana Segev, Yoav Y. Schechner, Michael Elad:
Example-based cross-modal denoising. CVPR 2012: 486-493 - [c34]Raja Giryes, Michael Elad:
Cosamp and SP for the cosparse analysis model. EUSIPCO 2012: 964-968 - [c33]Ron Rubinstein, Tomer Faktor, Michael Elad:
K-SVD dictionary-learning for the analysis sparse model. ICASSP 2012: 5405-5408 - [i14]Tomer Peleg, Michael Elad:
Performance Guarantees of the Thresholding Algorithm for the Co-Sparse Analysis Model. CoRR abs/1203.2769 (2012) - [i13]Idan Ram, Michael Elad, Israel Cohen:
Image Processing using Smooth Ordering of its Patches. CoRR abs/1210.3832 (2012) - 2011
- [j60]Jean-Luc Starck, Jalal Fadili, Michael Elad, Robert D. Nowak, Panagiotis Tsakalides:
Introduction to the issue on Adaptive Sparse Representation of Data and Applications in Signal and Image Processing. IEEE J. Sel. Top. Signal Process. 5(5): 893-895 (2011) - [j59]Boaz Ophir, Michael Lustig, Michael Elad:
Multi-Scale Dictionary Learning Using Wavelets. IEEE J. Sel. Top. Signal Process. 5(5): 1014-1024 (2011) - [j58]Javier Turek, Irad Yavneh, Michael Elad:
On MMSE and MAP Denoising Under Sparse Representation Modeling Over a Unitary Dictionary. IEEE Trans. Signal Process. 59(8): 3526-3535 (2011) - [j57]Idan Ram, Michael Elad, Israel Cohen:
Generalized Tree-Based Wavelet Transform. IEEE Trans. Signal Process. 59(9): 4199-4209 (2011) - [c32]Sangnam Nam, Michael E. Davies, Michael Elad, Rémi Gribonval:
Recovery of cosparse signals with Greedy Analysis Pursuit in the presence of noise. CAMSAP 2011: 361-364 - [c31]Boaz Ophir, Michael Elad, Nancy Bertin, Mark D. Plumbley:
Sequential minimal eigenvalues - an approach to analysis dictionary learning. EUSIPCO 2011: 1465-1469 - [c30]Raja Giryes, Michael Elad:
Denoising with greedy-like pursuit algorithms. EUSIPCO 2011: 1475-1479 - [c29]Amir Adler, Valentin Emiya, Maria G. Jafari, Michael Elad, Rémi Gribonval, Mark D. Plumbley:
A constrained matching pursuit approach to audio declipping. ICASSP 2011: 329-332 - [c28]Joseph Shtok, Michael Elad, Michael Zibulevsky:
Sparsity-based Sinogram Denoising for low-dose Computed Tomography. ICASSP 2011: 569-572 - [c27]Sangnam Nam, Michael E. Davies, Michael Elad, Rémi Gribonval:
Cosparse analysis modeling - uniqueness and algorithms. ICASSP 2011: 5804-5807 - [c26]Tomer Faktor, Yonina C. Eldar, Michael Elad:
Denoising of image patches via sparse representations with learned statistical dependencies. ICASSP 2011: 5820-5823 - [i12]Sangnam Nam, Mike E. Davies, Michael Elad, Rémi Gribonval:
The Cosparse Analysis Model and Algorithms. CoRR abs/1106.4987 (2011) - [i11]Idan Ram, Michael Elad, Israel Cohen:
Redundant Wavelets on Graphs and High Dimensional Data Clouds. CoRR abs/1111.4619 (2011) - [i10]Stephan Dahlke, Michael Elad, Yonina C. Eldar, Gitta Kutyniok, Gerd Teschke:
Sparse Representations and Efficient Sensing of Data (Dagstuhl Seminar 11051). Dagstuhl Reports 1(1): 108-127 (2011) - 2010
- [b1]Michael Elad:
Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing. Springer 2010, ISBN 978-1-4419-7010-7, pp. I-XX, 1-376 - [j56]Michael Elad, Raja Giryes:
Iterative signal recovery from incomplete samples: technical perspective. Commun. ACM 53(12): 92 (2010) - [j55]Michael Elad, Dmitry Datsenko:
Corrigendum: Example-Based Regularization Deployed to Super-Resolution Reconstruction of a Single Image. Comput. J. 53(7): 1131 (2010) - [j54]Mohamed-Jalal Fadili, Jean-Luc Starck, Michael Elad, David L. Donoho:
MCALab: Reproducible Research in Signal and Image Decomposition and Inpainting. Comput. Sci. Eng. 12(1): 44-63 (2010) - [j53]Richard G. Baraniuk, Emmanuel J. Candès, Michael Elad, Yi Ma:
Applications of Sparse Representation and Compressive Sensing. Proc. IEEE 98(6): 906-909 (2010) - [j52]Michael Elad, Mário A. T. Figueiredo, Yi Ma:
On the Role of Sparse and Redundant Representations in Image Processing. Proc. IEEE 98(6): 972-982 (2010) - [j51]Ron Rubinstein, Alfred M. Bruckstein, Michael Elad:
Dictionaries for Sparse Representation Modeling. Proc. IEEE 98(6): 1045-1057 (2010) - [j50]Michael Zibulevsky, Michael Elad:
L1-L2 Optimization in Signal and Image Processing. IEEE Signal Process. Mag. 27(3): 76-88 (2010) - [j49]Ron Rubinstein, Michael Zibulevsky, Michael Elad:
Double sparsity: learning sparse dictionaries for sparse signal approximation. IEEE Trans. Signal Process. 58(3): 1553-1564 (2010) - [j48]Matan Protter, Irad Yavneh, Michael Elad:
Closed-form MMSE estimation for signal denoising under sparse representation modeling over a unitary dictionary. IEEE Trans. Signal Process. 58(7): 3471-3484 (2010) - [j47]Zvika Ben-Haim, Yonina C. Eldar, Michael Elad:
Coherence-based performance guarantees for estimating a sparse vector under random noise. IEEE Trans. Signal Process. 58(10): 5030-5043 (2010) - [c25]Roman Zeyde, Michael Elad, Matan Protter:
On Single Image Scale-Up Using Sparse-Representations. Curves and Surfaces 2010: 711-730 - [c24]Amir Adler, Yacov Hel-Or, Michael Elad:
A Shrinkage Learning Approach for Single Image Super-Resolution with Overcomplete Representations. ECCV (2) 2010: 622-635 - [c23]Amir Adler, Yacov Hel-Or, Michael Elad:
A weighted discriminative approach for image denoising with overcomplete representations. ICASSP 2010: 782-785 - [c22]Zvika Ben-Haim, Yonina C. Eldar, Michael Elad:
Coherence-based near-oracle performance guarantees for sparse estimation under Gaussian noise. ICASSP 2010: 3590-3593 - [i9]Javier Turek, Irad Yavneh, Matan Protter, Michael Elad:
On MMSE and MAP Denoising Under Sparse Representation Modeling Over a Unitary Dictionary. CoRR abs/1003.3984 (2010) - [i8]Raja Giryes, Michael Elad, Yonina C. Eldar:
The Projected GSURE for Automatic Parameter Tuning in Iterative Shrinkage Methods. CoRR abs/1003.3985 (2010) - [i7]Joseph Shtok, Michael Elad:
Analysis of Basis Pursuit Via Capacity Sets. CoRR abs/1004.4329 (2010) - [i6]Joseph Shtok, Michael Zibulevsky, Michael Elad:
Spatially-Adaptive Reconstruction in Computed Tomography Based on Statistical Learning. CoRR abs/1004.4373 (2010) - [i5]Tomer Faktor, Yonina C. Eldar, Michael Elad:
Exploiting Statistical Dependencies in Sparse Representations for Signal Recovery. CoRR abs/1010.5734 (2010) - [i4]Idan Ram, Michael Elad, Israel Cohen:
Generalized Tree-Based Wavelet Transform. CoRR abs/1011.4615 (2010)
2000 – 2009
- 2009
- [j46]Michael Elad, Dmitry Datsenko:
Example-Based Regularization Deployed to Super-Resolution Reconstruction of a Single Image. Comput. J. 52(1): 15-30 (2009) - [j45]Alfred M. Bruckstein, David L. Donoho, Michael Elad:
From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images. SIAM Rev. 51(1): 34-81 (2009) - [j44]Matan Protter, Michael Elad:
Image Sequence Denoising via Sparse and Redundant Representations. IEEE Trans. Image Process. 18(1): 27-35 (2009) - [j43]Matan Protter, Michael Elad, Hiroyuki Takeda, Peyman Milanfar:
Generalizing the Nonlocal-Means to Super-Resolution Reconstruction. IEEE Trans. Image Process. 18(1): 36-51 (2009) - [j42]Matan Protter, Michael Elad:
Super Resolution With Probabilistic Motion Estimation. IEEE Trans. Image Process. 18(8): 1899-1904 (2009) - [j41]Hiroyuki Takeda, Peyman Milanfar, Matan Protter, Michael Elad:
Super-Resolution Without Explicit Subpixel Motion Estimation. IEEE Trans. Image Process. 18(9): 1958-1975 (2009) - [j40]Michael Elad, Irad Yavneh:
A plurality of sparse representations is better than the sparsest one alone. IEEE Trans. Inf. Theory 55(10): 4701-4714 (2009) - [c21]Joseph Shtok, Michael Elad, Michael Zibulevsky:
Direct Adaptive Algorithms for CT Reconstruction. ISBI 2009: 181-184 - 2008
- [j39]Ori Bryt, Michael Elad:
Compression of facial images using the K-SVD algorithm. J. Vis. Commun. Image Represent. 19(4): 270-282 (2008) - [j38]Julien Mairal, Guillermo Sapiro, Michael Elad:
Learning Multiscale Sparse Representations for Image and Video Restoration. Multiscale Model. Simul. 7(1): 214-241 (2008) - [j37]Michal Aharon, Michael Elad:
Sparse and Redundant Modeling of Image Content Using an Image-Signature-Dictionary. SIAM J. Imaging Sci. 1(3): 228-247 (2008) - [j36]Julien Mairal, Michael Elad, Guillermo Sapiro:
Sparse Representation for Color Image Restoration. IEEE Trans. Image Process. 17(1): 53-69 (2008) - [j35]Alfred M. Bruckstein, Michael Elad, Michael Zibulevsky:
On the Uniqueness of Nonnegative Sparse Solutions to Underdetermined Systems of Equations. IEEE Trans. Inf. Theory 54(11): 4813-4820 (2008) - [c20]Alfred M. Bruckstein, Michael Elad, Michael Zibulevsky:
On the uniqueness of non-negative sparse & redundant representations. ICASSP 2008: 5145-5148 - [e1]Stephan Dahlke, Ingrid Daubechies, Michael Elad, Gitta Kutyniok, Gerd Teschke:
Structured Decompositions and Efficient Algorithms, 30.11. - 05.12.2008. Dagstuhl Seminar Proceedings 08492, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany 2008 [contents] - [i3]Stephan Dahlke, Ingrid Daubechies, Michael Elad, Gitta Kutyniok, Gerd Teschke:
08492 Abstracts Collection - Structured Decompositions and Efficient Algorithms. Structured Decompositions and Efficient Algorithms 2008 - [i2]Stephan Dahlke, Ingrid Daubechies, Michael Elad, Gitta Kutyniok, Gerd Teschke:
08492 Executive Summary - Structured Decompositions and Efficient Algorithms. Structured Decompositions and Efficient Algorithms 2008 - [i1]Michael Elad, Irad Yavneh:
A Weighted Average of Sparse Representations is Better than the Sparsest One Alone. Structured Decompositions and Efficient Algorithms 2008 - 2007
- [j34]Carl Staelin, Michael Elad, Darryl Greig, Oded Shmueli, Marie Vans:
Biblio: automatic meta-data extraction. Int. J. Document Anal. Recognit. 10(2): 113-126 (2007) - [j33]David L. Donoho, Michael Elad, Vladimir N. Temlyakov:
On Lebesgue-type inequalities for greedy approximation. J. Approx. Theory 147(2): 185-195 (2007) - [j32]Dmitry Datsenko, Michael Elad:
Example-based single document image super-resolution: a global MAP approach with outlier rejection. Multidimens. Syst. Signal Process. 18(2-3): 103-121 (2007) - [j31]Michael Elad, Roman Goldenberg, Ron Kimmel:
Low Bit-Rate Compression of Facial Images. IEEE Trans. Image Process. 16(9): 2379-2383 (2007) - [j30]Einat Kidron, Yoav Y. Schechner, Michael Elad:
Cross-Modal Localization via Sparsity. IEEE Trans. Signal Process. 55(4): 1390-1404 (2007) - [j29]Michael Elad:
Optimized Projections for Compressed Sensing. IEEE Trans. Signal Process. 55(12): 5695-5702 (2007) - [c19]Julien Mairal, Guillermo Sapiro, Michael Elad:
Multiscale Sparse Image Representationwith Learned Dictionaries. ICIP (3) 2007: 105-108 - 2006
- [j28]Michael Elad:
Sparse Representations Are Most Likely to Be the Sparsest Possible. EURASIP J. Adv. Signal Process. 2006 (2006) - [j27]Sina Farsiu, Michael Elad, Peyman Milanfar:
Video-to-Video Dynamic Super-Resolution for Grayscale and Color Sequences. EURASIP J. Adv. Signal Process. 2006 (2006) - [j26]David L. Donoho, Michael Elad:
On the stability of the basis pursuit in the presence of noise. Signal Process. 86(3): 511-532 (2006) - [j25]Jérôme Bobin, Yassir Moudden, Jean-Luc Starck, Michael Elad:
Morphological diversity and source separation. IEEE Signal Process. Lett. 13(7): 409-412 (2006) - [j24]Sina Farsiu, Michael Elad, Peyman Milanfar:
Multiframe demosaicing and super-resolution of color images. IEEE Trans. Image Process. 15(1): 141-159 (2006) - [j23]Michael Elad, Michal Aharon:
Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries. IEEE Trans. Image Process. 15(12): 3736-3745 (2006) - [j22]David L. Donoho, Michael Elad, Vladimir N. Temlyakov:
Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inf. Theory 52(1): 6-18 (2006) - [j21]Michael Elad:
Why Simple Shrinkage Is Still Relevant for Redundant Representations? IEEE Trans. Inf. Theory 52(12): 5559-5569 (2006) - [j20]Michal Aharon, Michael Elad, Alfred M. Bruckstein:
K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11): 4311-4322 (2006) - [c18]Michael R. Charest, Michael Elad, Peyman Milanfar:
A General Iterative Regularization Framework For Image Denoising. CISS 2006: 452-457 - [c17]Michael Elad, Michal Aharon:
Image Denoising Via Learned Dictionaries and Sparse representation. CVPR (1) 2006: 895-900 - [c16]Michael Elad, Boaz Matalon, Michael Zibulevsky:
Image Denoising with Shrinkage and Redundant Representations. CVPR (2) 2006: 1924-1931 - [c15]Michael Elad, Peyman Milanfar, Ron Rubinstein:
Analysis versus synthesis in signal priors. EUSIPCO 2006: 1-5 - 2005
- [j19]Michael Elad, Patrick C. Teo, Yacov Hel-Or:
On the Design of Filters for Gradient-Based Motion Estimation. J. Math. Imaging Vis. 23(3): 345-365 (2005) - [j18]Gregory Boutry, Michael Elad, Gene H. Golub, Peyman Milanfar:
The Generalized Eigenvalue Problem for Nonsquare Pencils Using a Minimal Perturbation Approach. SIAM J. Matrix Anal. Appl. 27(2): 582-601 (2005) - [j17]Yaakov Tsaig, Michael Elad, Peyman Milanfar, Gene H. Golub:
Variable projection for near-optimal filtering in low bit-rate block coders. IEEE Trans. Circuits Syst. Video Technol. 15(1): 154-160 (2005) - [j16]Ron Kimmel, Doron Shaked, Michael Elad, Irwin Sobel:
Space-dependent color gamut mapping: a variational approach. IEEE Trans. Image Process. 14(6): 796-803 (2005) - [j15]Jean-Luc Starck, Michael Elad, David L. Donoho:
Image Decomposition via the Combination of Sparse Representations and a Variational Approach. IEEE Trans. Image Process. 14(10): 1570-1582 (2005) - [c14]Einat Kidron, Yoav Y. Schechner, Michael Elad:
Pixels that Sound. CVPR (1) 2005: 88-95 - [c13]Michael Elad:
Retinex by Two Bilateral Filters. Scale-Space 2005: 217-229 - 2004
- [j14]Sina Farsiu, M. Dirk Robinson, Michael Elad, Peyman Milanfar:
Advances and challenges in super-resolution. Int. J. Imaging Syst. Technol. 14(2): 47-57 (2004) - [j13]Sina Farsiu, M. Dirk Robinson, Michael Elad, Peyman Milanfar:
Fast and robust multiframe super resolution. IEEE Trans. Image Process. 13(10): 1327-1344 (2004) - [j12]Michael Elad, Peyman Milanfar, Gene H. Golub:
Shape from moments - an estimation theory perspective. IEEE Trans. Signal Process. 52(7): 1814-1829 (2004) - [c12]Sina Farsiu, Michael Elad, Peyman Milanfar:
Multiframe demosaicing and super-resolution from undersampled color images. Computational Imaging 2004: 222-233 - [c11]Andrew Segall, Michael Elad, Peyman Milanfar, Richard Webb, Chad Fogg:
Improved high-definition video by encoding at an intermediate resolution. VCIP 2004 - 2003
- [j11]Ron Kimmel, Michael Elad, Doron Shaked, Renato Keshet, Irwin Sobel:
A Variational Framework for Retinex. Int. J. Comput. Vis. 52(1): 7-23 (2003) - [j10]Michael Elad, Ron Kimmel, Doron Shaked, Renato Keshet:
Reduced complexity Retinex algorithm via the variational approach. J. Vis. Commun. Image Represent. 14(4): 369-388 (2003) - [j9]Alfred M. Bruckstein, Michael Elad, Ron Kimmel:
Down-scaling for better transform compression. IEEE Trans. Image Process. 12(9): 1132-1144 (2003) - [c10]Yaakov Tsaig, Michael Elad, Gene H. Golub, Peyman Milanfar:
Optimal framework for low bit-rate block coders. ICIP (2) 2003: 219-222 - [c9]Sina Farsiu, M. Dirk Robinson, Michael Elad, Peyman Milanfar:
Fast and robust super-resolution. ICIP (2) 2003: 291-294 - 2002
- [j8]Michael Elad, Yacov Hel-Or, Renato Keshet:
Rejection based classifier for face detection. Pattern Recognit. Lett. 23(12): 1459-1471 (2002) - [j7]Michael Elad:
On the origin of the bilateral filter and ways to improve it. IEEE Trans. Image Process. 11(10): 1141-1151 (2002) - [j6]Michael Elad, Alfred M. Bruckstein:
A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Trans. Inf. Theory 48(9): 2558-2567 (2002) - [c8]Ron Kimmel, Michael Elad, Doron Shaked, Renato Keshet, Irwin Sobel:
Variational famework for Retinex. Human Vision and Electronic Imaging 2002: 409-418 - 2001
- [j5]Michael Elad, Yacov Hel-Or:
A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur. IEEE Trans. Image Process. 10(8): 1187-1193 (2001) - [c7]Michael Elad, Ayellet Tal, Sigal Ar:
Content Based Retrieval of VRML Objects - An Iterative and Interactive Approach. Eurographics Multimedia Workshop 2001: 107-118 - [c6]Michael Elad, Alfred M. Bruckstein:
On sparse signal representations. ICIP (1) 2001: 3-6 - [c5]Michael Elad, Yacov Hel-Or, Renato Keshet:
Pattern Detection Using a Maximal Rejection Classifier. IWVF 2001: 514-524 - [c4]Alfred M. Bruckstein, Michael Elad, Ron Kimmel:
Down-Scaling for Better Transform Compression. Scale-Space 2001: 123-136
1990 – 1999
- 1999
- [j4]Michael Elad, Arie Feuer:
Super-Resolution Reconstruction of Image Sequences. IEEE Trans. Pattern Anal. Mach. Intell. 21(9): 817-834 (1999) - [j3]Michael Elad, Arie Feuer:
Superresolution restoration of an image sequence: adaptive filtering approach. IEEE Trans. Image Process. 8(3): 387-395 (1999) - [c3]Michael Elad, Patrick C. Teo, Yacov Hel-Or:
Optimal Filters for Gradient-based Motion Estimation. ICCV 1999: 559-565 - [c2]Michael Elad, Arie Feuer:
Super-Resolution Reconstruction of Continuous Image Sequences. ICIP (3) 1999: 459-463 - 1998
- [j2]Michael Elad, Arie Feuer:
Recursive Optical Flow Estimation - Adaptive Filtering Approach. J. Vis. Commun. Image Represent. 9(2): 119-138 (1998) - [c1]Tamir Sagi, Arie Feuer, Michael Elad:
The periodic step gradient descent algorithm - General analysis and application to the super resolution reconstruction problem. EUSIPCO 1998: 1-4 - 1997
- [j1]Michael Elad, Arie Feuer:
Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images. IEEE Trans. Image Process. 6(12): 1646-1658 (1997)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-07 20:33 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint