


default search action
24th ICML 2007: Corvalis, Oregon, USA
- Zoubin Ghahramani:

Machine Learning, Proceedings of the Twenty-Fourth International Conference (ICML 2007), Corvallis, Oregon, USA, June 20-24, 2007. ACM International Conference Proceeding Series 227, ACM 2007, ISBN 978-1-59593-793-3 - Esma Aïmeur, Gilles Brassard, Sébastien Gambs:

Quantum clustering algorithms. 1-8 - Alekh Agarwal, Soumen Chakrabarti:

Learning random walks to rank nodes in graphs. 9-16 - Yonatan Amit, Michael Fink, Nathan Srebro, Shimon Ullman:

Uncovering shared structures in multiclass classification. 17-24 - Rie Kubota Ando, Tong Zhang:

Two-view feature generation model for semi-supervised learning. 25-32 - Galen Andrew, Jianfeng Gao:

Scalable training of L1-regularized log-linear models. 33-40 - S. Asharaf, M. Narasimha Murty, Shirish K. Shevade:

Multiclass core vector machine. 41-48 - Arik Azran:

The rendezvous algorithm: multiclass semi-supervised learning with Markov random walks. 49-56 - Rashmin Babaria, J. Saketha Nath, S. Krishnan, K. R. Sivaramakrishnan, Chiranjib Bhattacharyya, M. Narasimha Murty:

Focused crawling with scalable ordinal regression solvers. 57-64 - Aharon Bar-Hillel, Daphna Weinshall:

Learning distance function by coding similarity. 65-72 - Sourangshu Bhattacharya

, Chiranjib Bhattacharyya, Nagasuma R. Chandra
:
Structural alignment based kernels for protein structure classification. 73-80 - Steffen Bickel, Michael Brückner, Tobias Scheffer:

Discriminative learning for differing training and test distributions. 81-88 - Antoine Bordes, Léon Bottou, Patrick Gallinari, Jason Weston:

Solving multiclass support vector machines with LaRank. 89-96 - Brent Bryan, H. Brendan McMahan, Chad M. Schafer, Jeff G. Schneider:

Efficiently computing minimax expected-size confidence regions. 97-104 - Razvan C. Bunescu, Raymond J. Mooney:

Multiple instance learning for sparse positive bags. 105-112 - Ludwig M. Busse, Peter Orbanz, Joachim M. Buhmann:

Cluster analysis of heterogeneous rank data. 113-120 - Bin Cao

, Dou Shen, Jian-Tao Sun, Qiang Yang, Zheng Chen:
Feature selection in a kernel space. 121-128 - Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai

, Hang Li:
Learning to rank: from pairwise approach to listwise approach. 129-136 - Luca Cazzanti, Maya R. Gupta:

Local similarity discriminant analysis. 137-144 - Antoni B. Chan

, Nuno Vasconcelos
, Gert R. G. Lanckriet:
Direct convex relaxations of sparse SVM. 145-153 - Xue-wen Chen, Jong Cheol Jeong:

Minimum reference set based feature selection for small sample classifications. 153-160 - Li Cheng

, S. V. N. Vishwanathan:
Learning to compress images and videos. 161-168 - Corinna Cortes, Mehryar Mohri, Ashish Rastogi:

Magnitude-preserving ranking algorithms. 169-176 - Alexandre d'Aspremont, Francis R. Bach, Laurent El Ghaoui:

Full regularization path for sparse principal component analysis. 177-184 - Guang Dai, Dit-Yan Yeung:

Kernel selection forl semi-supervised kernel machines. 185-192 - Wenyuan Dai, Qiang Yang, Gui-Rong Xue, Yong Yu:

Boosting for transfer learning. 193-200 - Ian Davidson, S. S. Ravi:

Intractability and clustering with constraints. 201-208 - Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit Sra

, Inderjit S. Dhillon:
Information-theoretic metric learning. 209-216 - Jesse Davis, Vítor Santos Costa

, Soumya Ray
, David Page:
An integrated approach to feature invention and model construction for drug activity prediction. 217-224 - Erick Delage, Shie Mannor

:
Percentile optimization in uncertain Markov decision processes with application to efficient exploration. 225-232 - Laura Dietz, Steffen Bickel, Tobias Scheffer:

Unsupervised prediction of citation influences. 233-240 - Piotr Dollár, Vincent C. Rabaud, Serge J. Belongie

:
Non-isometric manifold learning: analysis and an algorithm. 241-248 - Miroslav Dudík, David M. Blei, Robert E. Schapire:

Hierarchical maximum entropy density estimation. 249-256 - Roberto Esposito

, Daniele Paolo Radicioni
:
CarpeDiem: an algorithm for the fast evaluation of SSL classifiers. 257-264 - Amir Massoud Farahmand, Csaba Szepesvári, Jean-Yves Audibert:

Manifold-adaptive dimension estimation. 265-272 - Sylvain Gelly, David Silver:

Combining online and offline knowledge in UCT. 273-280 - Samuel Gerber, Tolga Tasdizen, Ross T. Whitaker:

Robust non-linear dimensionality reduction using successive 1-dimensional Laplacian Eigenmaps. 281-288 - Pierre Geurts, Louis Wehenkel

, Florence d'Alché-Buc
:
Gradient boosting for kernelized output spaces. 289-296 - Mohammad Ghavamzadeh, Yaakov Engel:

Bayesian actor-critic algorithms. 297-304 - Amir Globerson, Terry Koo, Xavier Carreras

, Michael Collins:
Exponentiated gradient algorithms for log-linear structured prediction. 305-312 - Nizar Grira, Michael E. Houle:

Best of both: a hybridized centroid-medoid clustering heuristic. 313-320 - Fan Guo, Steve Hanneke, Wenjie Fu, Eric P. Xing:

Recovering temporally rewiring networks: a model-based approach. 321-328 - Rahul Gupta, Ajit A. Diwan, Sunita Sarawagi:

Efficient inference with cardinality-based clique potentials. 329-336 - Romain Hérault

, Yves Grandvalet
:
Sparse probabilistic classifiers. 337-344 - Peter Haider, Ulf Brefeld, Tobias Scheffer:

Supervised clustering of streaming data for email batch detection. 345-352 - Steve Hanneke:

A bound on the label complexity of agnostic active learning. 353-360 - Steven C. H. Hoi

, Rong Jin, Michael R. Lyu:
Learning nonparametric kernel matrices from pairwise constraints. 361-368 - Manfred Jaeger:

Parameter learning for relational Bayesian networks. 369-376 - Shihao Ji, Lawrence Carin

:
Bayesian compressive sensing and projection optimization. 377-384 - Jeffrey Johns, Sridhar Mahadevan:

Constructing basis functions from directed graphs for value function approximation. 385-392 - Kristian Kersting, Christian Plagemann, Patrick Pfaff, Wolfram Burgard:

Most likely heteroscedastic Gaussian process regression. 393-400 - Kye-Hyeon Kim, Seungjin Choi:

Neighbor search with global geometry: a minimax message passing algorithm. 401-408 - Minyoung Kim, Vladimir Pavlovic

:
A recursive method for discriminative mixture learning. 409-416 - Sergey Kirshner, Padhraic Smyth

:
Infinite mixtures of trees. 417-423 - Arto Klami

, Samuel Kaski:
Local dependent components. 425-432 - Stanley Kok, Pedro M. Domingos:

Statistical predicate invention. 433-440 - Nicole Krämer

, Mikio L. Braun:
Kernelizing PLS, degrees of freedom, and efficient model selection. 441-448 - Andreas Krause, Carlos Guestrin:

Nonmyopic active learning of Gaussian processes: an exploration-exploitation approach. 449-456 - Dmitry Kropotov, Dmitry P. Vetrov:

On one method of non-diagonal regularization in sparse Bayesian learning. 457-464 - Dima Kuzmin, Manfred K. Warmuth:

Online kernel PCA with entropic matrix updates. 465-472 - Hugo Larochelle, Dumitru Erhan

, Aaron C. Courville, James Bergstra, Yoshua Bengio:
An empirical evaluation of deep architectures on problems with many factors of variation. 473-480 - Neil D. Lawrence

, Andrew J. Moore:
Hierarchical Gaussian process latent variable models. 481-488 - Su-In Lee, Vassil Chatalbashev, David Vickrey, Daphne Koller:

Learning a meta-level prior for feature relevance from multiple related tasks. 489-496 - Jure Leskovec

, Christos Faloutsos
:
Scalable modeling of real graphs using Kronecker multiplication. 497-504 - Bin Li, Mingmin Chi, Jianping Fan, Xiangyang Xue:

Support cluster machine. 505-512 - Fuxin Li, Jian Yang, Jue Wang:

A transductive framework of distance metric learning by spectral dimensionality reduction. 513-520 - Chris H. Q. Ding, Tao Li:

Adaptive dimension reduction using discriminant analysis and K-means clustering. 521-528 - Wenye Li, Kin-Hong Lee, Kwong-Sak Leung:

Large-scale RLSC learning without agony. 529-536 - Xin Li, William Kwok-Wai Cheung

, Jiming Liu
, Zhili Wu:
A novel orthogonal NMF-based belief compression for POMDPs. 537-544 - Percy Liang, Michael I. Jordan

, Benjamin Taskar:
A permutation-augmented sampler for DP mixture models. 545-552 - Xuejun Liao, Hui Li, Lawrence Carin

:
Quadratically gated mixture of experts for incomplete data classification. 553-560 - Chih-Jen Lin

, Ruby C. Weng, S. Sathiya Keerthi:
Trust region Newton methods for large-scale logistic regression. 561-568 - Bo Long, Zhongfei (Mark) Zhang, Xiaoyun Wu, Philip S. Yu:

Relational clustering by symmetric convex coding. 569-576 - Yong Ma, Shihong Lao, Erina Takikawa, Masato Kawade:

Discriminant analysis in correlation similarity measure space. 577-584 - Sridhar Mahadevan:

Adaptive mesh compression in 3D computer graphics using multiscale manifold learning. 585-592 - Gideon S. Mann, Andrew McCallum:

Simple, robust, scalable semi-supervised learning via expectation regularization. 593-600 - Bhaskara Marthi:

Automatic shaping and decomposition of reward functions. 601-608 - Hamed Masnadi-Shirazi, Nuno Vasconcelos

:
Asymmetric boosting. 609-619 - Graham McNeill, Sethu Vijayakumar:

Linear and nonlinear generative probabilistic class models for shape contours. 617-624 - Lilyana Mihalkova, Raymond J. Mooney:

Bottom-up learning of Markov logic network structure. 625-632 - David M. Mimno

, Wei Li, Andrew McCallum:
Mixtures of hierarchical topics with Pachinko allocation. 633-640 - Andriy Mnih, Geoffrey E. Hinton:

Three new graphical models for statistical language modelling. 641-648 - Alessandro Moschitti

, Fabio Massimo Zanzotto
:
Fast and effective kernels for relational learning from texts. 649-656 - Sofia Mosci, Lorenzo Rosasco

, Alessandro Verri:
Dimensionality reduction and generalization. 657-664 - Markos Mylonakis, Khalil Sima'an, Rebecca Hwa

:
Unsupervised estimation for noisy-channel models. 665-672 - Blaine Nelson, Ira Cohen:

Revisiting probabilistic models for clustering with pair-wise constraints. 673-680 - Nam Nguyen, Yunsong Guo:

Comparisons of sequence labeling algorithms and extensions. 681-688 - Kai Ni, Lawrence Carin

, David B. Dunson:
Multi-task learning for sequential data via iHMMs and the nested Dirichlet process. 689-696 - Jens Nilsson, Fei Sha, Michael I. Jordan

:
Regression on manifolds using kernel dimension reduction. 697-704 - Sarah Osentoski, Sridhar Mahadevan:

Learning state-action basis functions for hierarchical MDPs. 705-712 - A. P. Yogananda, M. Narasimha Murty, Lakshmi Gopal:

A fast linear separability test by projection of positive points on subspaces. 713-720 - Sandeep Pandey, Deepayan Chakrabarti

, Deepak Agarwal:
Multi-armed bandit problems with dependent arms. 721-728 - Charles Parker, Alan Fern, Prasad Tadepalli

:
Learning for efficient retrieval of structured data with noisy queries. 729-736 - Ronald Parr, Christopher Painter-Wakefield, Lihong Li, Michael L. Littman:

Analyzing feature generation for value-function approximation. 737-744 - Jan Peters

, Stefan Schaal:
Reinforcement learning by reward-weighted regression for operational space control. 745-750 - Chee Wee Phua, Robert Fitch

:
Tracking value function dynamics to improve reinforcement learning with piecewise linear function approximation. 751-758 - Rajat Raina, Alexis J. Battle, Honglak Lee, Benjamin Packer, Andrew Y. Ng:

Self-taught learning: transfer learning from unlabeled data. 759-766 - Alexander Rakhlin, Jacob D. Abernethy, Peter L. Bartlett

:
Online discovery of similarity mappings. 767-774 - Alain Rakotomamonjy, Francis R. Bach, Stéphane Canu

, Yves Grandvalet
:
More efficiency in multiple kernel learning. 775-782 - Matthew J. Rattigan, Marc E. Maier, David D. Jensen:

Graph clustering with network structure indices. 783-790 - Ruslan Salakhutdinov, Andriy Mnih, Geoffrey E. Hinton:

Restricted Boltzmann machines for collaborative filtering. 791-798 - Mohak Shah:

Sample compression bounds for decision trees. 799-806 - Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro:

Pegasos: Primal Estimated sub-GrAdient SOlver for SVM. 807-814 - Le Song, Alexander J. Smola, Arthur Gretton

, Karsten M. Borgwardt
:
A dependence maximization view of clustering. 815-822 - Le Song, Alexander J. Smola, Arthur Gretton

, Karsten M. Borgwardt
, Justin Bedo
:
Supervised feature selection via dependence estimation. 823-830 - Bharath K. Sriperumbudur, David A. Torres, Gert R. G. Lanckriet:

Sparse eigen methods by D.C. programming. 831-838 - David H. Stern, Ralf Herbrich, Thore Graepel:

Learning to solve game trees. 839-846 - Jianyong Sun, Ata Kabán, Somak Raychaudhury:

Robust mixtures in the presence of measurement errors. 847-854 - Xiaohai Sun, Dominik Janzing, Bernhard Schölkopf, Kenji Fukumizu:

A kernel-based causal learning algorithm. 855-862 - Charles Sutton, Andrew McCallum:

Piecewise pseudolikelihood for efficient training of conditional random fields. 863-870 - Richard S. Sutton, Anna Koop, David Silver:

On the role of tracking in stationary environments. 871-878 - Matthew E. Taylor

, Peter Stone:
Cross-domain transfer for reinforcement learning. 879-886 - Ivan Titov, James Henderson:

Incremental Bayesian networks for structure prediction. 887-894 - Ryota Tomioka, Kazuyuki Aihara:

Classifying matrices with a spectral regularization. 895-902 - Petroula Tsampouka, John Shawe-Taylor

:
Approximate maximum margin algorithms with rules controlled by the number of mistakes. 903-910 - Ivor W. Tsang

, András Kocsor, James T. Kwok:
Simpler core vector machines with enclosing balls. 911-918 - Koji Tsuda:

Entire regularization paths for graph data. 919-926 - Raquel Urtasun, Trevor Darrell:

Discriminative Gaussian process latent variable model for classification. 927-934 - Jason Van Hulse, Taghi M. Khoshgoftaar, Amri Napolitano:

Experimental perspectives on learning from imbalanced data. 935-942 - Gabriel Wachman, Roni Khardon:

Learning from interpretations: a rooted kernel for ordered hypergraphs. 943-950 - Gang Wang, Dit-Yan Yeung, Frederick H. Lochovsky:

A kernel path algorithm for support vector machines. 951-958 - Hua-Yan Wang, Hongbin Zha, Hong Qin:

Dirichlet aggregation: unsupervised learning towards an optimal metric for proportional data. 959-966 - Huan Wang, Shuicheng Yan, Thomas S. Huang, Jianzhuang Liu, Xiaoou Tang:

Transductive regression piloted by inter-manifold relations. 967-974 - Jack M. Wang, David J. Fleet

, Aaron Hertzmann
:
Multifactor Gaussian process models for style-content separation. 975-982 - Li Wang, Ji Zhu, Hui Zou

:
Hybrid huberized support vector machines for microarray classification. 983-990 - Liwei Wang, Cheng Yang, Jufu Feng:

On learning with dissimilarity functions. 991-998 - Manfred K. Warmuth:

Winnowing subspaces. 999-1006 - Tomás Werner:

What is decreased by the max-sum arc consistency algorithm? 1007-1014 - Aaron Wilson, Alan Fern, Soumya Ray

, Prasad Tadepalli
:
Multi-task reinforcement learning: a hierarchical Bayesian approach. 1015-1022 - David P. Wipf

, Srikantan S. Nagarajan:
Beamforming using the relevance vector machine. 1023-1030 - Adam Woznica, Alexandros Kalousis, Melanie Hilario:

Learning to combine distances for complex representations. 1031-1038 - Mingrui Wu, Kai Yu, Shipeng Yu, Bernhard Schölkopf:

Local learning projections. 1039-1046 - Yuehua Xu, Alan Fern:

On learning linear ranking functions for beam search. 1047-1054 - Xiang Xuan, Kevin P. Murphy:

Modeling changing dependency structure in multivariate time series. 1055-1062 - Ya Xue, David B. Dunson, Lawrence Carin

:
The matrix stick-breaking process for flexible multi-task learning. 1063-1070 - Takehisa Yairi:

Map building without localization by dimensionality reduction techniques. 1071-1078 - Keisuke Yamazaki, Motoaki Kawanabe, Sumio Watanabe

, Masashi Sugiyama, Klaus-Robert Müller
:
Asymptotic Bayesian generalization error when training and test distributions are different. 1079-1086 - Jieping Ye:

Least squares linear discriminant analysis. 1087-1093 - Jieping Ye, Jianhui Chen, Shuiwang Ji

:
Discriminant kernel and regularization parameter learning via semidefinite programming. 1095-1102 - Shipeng Yu, Volker Tresp, Kai Yu:

Robust multi-task learning with t-processes. 1103-1110 - Jian Zhang, Rong Yan:

On the value of pairwise constraints in classification and consistency. 1111-1118 - Kai Zhang, Ivor W. Tsang

, James T. Kwok:
Maximum margin clustering made practical. 1119-1126 - Kun Zhang, Laiwan Chan:

Nonlinear independent component analysis with minimal nonlinear distortion. 1127-1134 - Wei Zhang, Xiangyang Xue, Zichen Sun, Yue-Fei Guo, Hong Lu:

Optimal dimensionality of metric space for classification. 1135-1142 - Xinhua Zhang, Douglas Aberdeen, S. V. N. Vishwanathan:

Conditional random fields for multi-agent reinforcement learning. 1143-1150 - Zheng Zhao, Huan Liu:

Spectral feature selection for supervised and unsupervised learning. 1151-1157 - Dengyong Zhou, Christopher J. C. Burges:

Spectral clustering and transductive learning with multiple views. 1159-1166 - Zhi-Hua Zhou, Jun-Ming Xu:

On the relation between multi-instance learning and semi-supervised learning. 1167-1174 - Jun Zhu, Zaiqing Nie, Bo Zhang, Ji-Rong Wen:

Dynamic hierarchical Markov random fields and their application to web data extraction. 1175-1182 - Alexander Zien, Ulf Brefeld, Tobias Scheffer:

Transductive support vector machines for structured variables. 1183-1190 - Alexander Zien, Cheng Soon Ong:

Multiclass multiple kernel learning. 1191-1198

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














