


default search action
SemEval@NAACL-HLT 2013: Atlanta, Georgia, USA
- Mona T. Diab, Timothy Baldwin, Marco Baroni:

Proceedings of the 7th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT 2013, Atlanta, Georgia, USA, June 14-15, 2013. The Association for Computer Linguistics 2013, ISBN 978-1-937284-49-7 - Naushad UzZaman, Hector Llorens, Leon Derczynski, James F. Allen, Marc Verhagen, James Pustejovsky:

SemEval-2013 Task 1: TempEval-3: Evaluating Time Expressions, Events, and Temporal Relations. 1-9 - Steven Bethard:

ClearTK-TimeML: A minimalist approach to TempEval 2013. 10-14 - Jannik Strötgen, Julian Zell, Michael Gertz:

HeidelTime: Tuning English and Developing Spanish Resources for TempEval-3. 15-19 - Hyuckchul Jung, Amanda Stent:

ATT1: Temporal Annotation Using Big Windows and Rich Syntactic and Semantic Features. 20-24 - Matteo Negri, Alessandro Marchetti, Yashar Mehdad, Luisa Bentivogli, Danilo Giampiccolo:

Semeval-2013 Task 8: Cross-lingual Textual Entailment for Content Synchronization. 25-33 - Sergio Jiménez, Claudia Jeanneth Becerra, Alexander F. Gelbukh:

SOFTCARDINALITY: Learning to Identify Directional Cross-Lingual Entailment from Cardinalities and SMT. 34-38 - Ioannis Korkontzelos, Torsten Zesch, Fabio Massimo Zanzotto, Chris Biemann:

SemEval-2013 Task 5: Evaluating Phrasal Semantics. 39-47 - Christian Wartena:

HsH: Estimating Semantic Similarity of Words and Short Phrases with Frequency Normalized Distance Measures. 48-52 - Michele Filannino, Gavin Brown, Goran Nenadic:

ManTIME: Temporal expression identification and normalization in the TempEval-3 challenge. 53-57 - Vanni Zavarella, Hristo Tanev:

FSS-TimEx for TempEval-3: Extracting Temporal Information from Text. 58-63 - Anup Kumar Kolya, Amitava Kundu, Rajdeep Gupta, Asif Ekbal, Sivaji Bandyopadhyay:

JU_CSE: A CRF Based Approach to Annotation of Temporal Expression, Event and Temporal Relations. 64-72 - Nate Chambers:

NavyTime: Event and Time Ordering from Raw Text. 73-77 - Angel X. Chang, Christopher D. Manning:

SUTime: Evaluation in TempEval-3. 78-82 - Oleksandr Kolomiyets, Marie-Francine Moens:

KUL: Data-driven Approach to Temporal Parsing of Newswire Articles. 83-87 - Natsuda Laokulrat, Makoto Miwa, Yoshimasa Tsuruoka, Takashi Chikayama:

UTTime: Temporal Relation Classification using Deep Syntactic Features. 88-92 - Héctor Dávila, Antonio Fernández Orquín, Alexander Chavez, Yoan Gutiérrez, Armando Collazo, José Ignacio Abreu, Andrés Montoyo, Rafael Muñoz:

UMCC_DLSI-(EPS): Paraphrases Detection Based on Semantic Distance. 93-97 - Tim Van de Cruys, Stergos D. Afantenos, Philippe Muller:

MELODI: Semantic Similarity of Words and Compositional Phrases using Latent Vector Weighting. 98-102 - Lorna Byrne, Caroline Fenlon, John Dunnion:

IIRG: A Naive Approach to Evaluating Phrasal Semantics. 103-107 - Reda Siblini, Leila Kosseim:

ClaC: Semantic Relatedness of Words and Phrases. 108-113 - Sergio Jiménez, Claudia Jeanneth Becerra, Alexander F. Gelbukh:

UNAL: Discriminating between Literal and Figurative Phrasal Usage Using Distributional Statistics and POS tags. 114-117 - Jiang Zhao, Man Lan, Zheng-Yu Niu:

ECNUCS: Recognizing Cross-lingual Textual Entailment Using Multiple Text Similarity and Text Difference Measures. 118-123 - Darnes Vilariño, David Pinto, Saúl León, Yuridiana Alemán, Helena Gómez-Adorno:

BUAP: N-gram based Feature Evaluation for the Cross-Lingual Textual Entailment Task. 124-127 - Marco Turchi, Matteo Negri:

ALTN: Word Alignment Features for Cross-lingual Textual Entailment. 128-132 - Yvette Graham, Bahar Salehi, Timothy Baldwin:

Umelb: Cross-lingual Textual Entailment with Word Alignment and String Similarity Features. 133-137 - Iris Hendrickx, Zornitsa Kozareva, Preslav Nakov, Diarmuid Ó Séaghdha, Stan Szpakowicz, Tony Veale:

SemEval-2013 Task 4: Free Paraphrases of Noun Compounds. 138-143 - Tim Van de Cruys, Stergos D. Afantenos, Philippe Muller:

MELODI: A Supervised Distributional Approach for Free Paraphrasing of Noun Compounds. 144-147 - Yannick Versley:

SFS-TUE: Compound Paraphrasing with a Language Model and Discriminative Reranking. 148-152 - Nitesh Surtani, Arpita Batra, Urmi Ghosh, Soma Paul:

IIIT-H: A Corpus-Driven Co-occurrence Based Probabilistic Model for Noun Compound Paraphrasing. 153-157 - Els Lefever, Véronique Hoste:

SemEval-2013 Task 10: Cross-lingual Word Sense Disambiguation. 158-166 - Liling Tan, Francis Bond:

XLING: Matching Query Sentences to a Parallel Corpus using Topic Models for WSD. 167-170 - Alex Rudnick, Can Liu, Michael Gasser:

HLTDI: CL-WSD Using Markov Random Fields for SemEval-2013 Task 10. 171-177 - Marianna Apidianaki:

LIMSI : Cross-lingual Word Sense Disambiguation using Translation Sense Clustering. 178-182 - Maarten van Gompel, Antal van den Bosch:

WSD2: Parameter optimisation for Memory-based Cross-Lingual Word-Sense Disambiguation. 183-187 - Marine Carpuat:

NRC: A Machine Translation Approach to Cross-Lingual Word Sense Disambiguation (SemEval-2013 Task 10). 188-192 - Ted Pedersen:

Duluth : Word Sense Induction Applied to Web Page Clustering. 202-206 - Satyabrata Behera, Upasana Gaikwad, Ramakrishna Bairi, Ganesh Ramakrishnan:

SATTY : Word Sense Induction Application in Web Search Clustering. 207-211 - Hans-Peter Zorn, Iryna Gurevych:

UKP-WSI: UKP Lab Semeval-2013 Task 11 System Description. 212-216 - Jey Han Lau, Paul Cook, Timothy Baldwin:

unimelb: Topic Modelling-based Word Sense Induction for Web Snippet Clustering. 217-221 - Didier Schwab, Andon Tchechmedjiev, Jérôme Goulian, Mohammad Nasiruddin, Gilles Sérasset, Hervé Blanchon:

GETALP System : Propagation of a Lesk Measure through an Ant Colony Algorithm. 232-240 - Yoan Gutiérrez, Yenier Castañeda, Andy González, Rainel Estrada, Dennys D. Puig, José Ignacio Abreu, Roger Pérez, Antonio Fernández Orquín, Andrés Montoyo, Rafael Muñoz, Franc Camara:

UMCC_DLSI: Reinforcing a Ranking Algorithm with Sense Frequencies and Multidimensional Semantic Resources to solve Multilingual Word Sense Disambiguation. 241-249 - Steve L. Manion, Raazesh Sainudiin:

DAEBAK!: Peripheral Diversity for Multilingual Word Sense Disambiguation. 250-254 - Oleksandr Kolomiyets, Parisa Kordjamshidi, Marie-Francine Moens, Steven Bethard:

SemEval-2013 Task 3: Spatial Role Labeling. 255-262 - Myroslava O. Dzikovska, Rodney D. Nielsen, Chris Brew, Claudia Leacock, Danilo Giampiccolo, Luisa Bentivogli, Peter Clark, Ido Dagan, Hoa Trang Dang:

SemEval-2013 Task 7: The Joint Student Response Analysis and 8th Recognizing Textual Entailment Challenge. 263-274 - Michael Heilman, Nitin Madnani:

ETS: Domain Adaptation and Stacking for Short Answer Scoring. 275-279 - Sergio Jiménez, Claudia Jeanneth Becerra, Alexander F. Gelbukh:

SOFTCARDINALITY: Hierarchical Text Overlap for Student Response Analysis. 280-284 - Omer Levy, Torsten Zesch, Ido Dagan, Iryna Gurevych:

UKP-BIU: Similarity and Entailment Metrics for Student Response Analysis. 285-289 - David Jurgens, Ioannis P. Klapaftis:

SemEval-2013 Task 13: Word Sense Induction for Graded and Non-Graded Senses. 290-299 - Osman Baskaya, Enis Sert, Volkan Cirik, Deniz Yuret:

AI-KU: Using Substitute Vectors and Co-Occurrence Modeling For Word Sense Induction and Disambiguation. 300-306 - Jey Han Lau, Paul Cook, Timothy Baldwin:

unimelb: Topic Modelling-based Word Sense Induction. 307-311 - Preslav Nakov, Sara Rosenthal, Zornitsa Kozareva, Veselin Stoyanov, Alan Ritter, Theresa Wilson:

SemEval-2013 Task 2: Sentiment Analysis in Twitter. 312-320 - Saif M. Mohammad, Svetlana Kiritchenko, Xiaodan Zhu:

NRC-Canada: Building the State-of-the-Art in Sentiment Analysis of Tweets. 321-327 - Tobias Günther, Lenz Furrer:

GU-MLT-LT: Sentiment Analysis of Short Messages using Linguistic Features and Stochastic Gradient Descent. 328-332 - Lee Becker, George Erhart, David Skiba, Valentine Matula:

AVAYA: Sentiment Analysis on Twitter with Self-Training and Polarity Lexicon Expansion. 333-340 - Isabel Segura-Bedmar

, Paloma Martínez, María Herrero-Zazo:
SemEval-2013 Task 9 : Extraction of Drug-Drug Interactions from Biomedical Texts (DDIExtraction 2013). 341-350 - Md. Faisal Mahbub Chowdhury, Alberto Lavelli:

FBK-irst : A Multi-Phase Kernel Based Approach for Drug-Drug Interaction Detection and Classification that Exploits Linguistic Information. 351-355 - Tim Rocktäschel, Torsten Huber, Michael Weidlich, Ulf Leser:

WBI-NER: The impact of domain-specific features on the performance of identifying and classifying mentions of drugs. 356-363 - Mohamed Dermouche, Leila Khouas, Julien Velcin, Sabine Loudcher:

AMI&ERIC: How to Learn with Naive Bayes and Prior Knowledge: an Application to Sentiment Analysis. 364-368 - Giuseppe Castellucci, Simone Filice, Danilo Croce, Roberto Basili:

UNITOR: Combining Syntactic and Semantic Kernels for Twitter Sentiment Analysis. 369-374 - Tawunrat Chalothorn, Jeremy Ellman:

TJP: Using Twitter to Analyze the Polarity of Contexts. 375-379 - Hamid Poursepanj, Josh Weissbock, Diana Inkpen:

uOttawa: System description for SemEval 2013 Task 2 Sentiment Analysis in Twitter. 380-383 - Zhemin Zhu, Djoerd Hiemstra, Peter M. G. Apers, Andreas Wombacher:

UT-DB: An Experimental Study on Sentiment Analysis in Twitter. 384-389 - Ganesh Harihara, Eugene Yang, Nate Chambers:

USNA: A Dual-Classifier Approach to Contextual Sentiment Analysis. 390-394 - Thomas Proisl, Paul Greiner, Stefan Evert, Besim Kabashi:

KLUE: Simple and robust methods for polarity classification. 395-401 - Eugenio Martínez-Cámara, Arturo Montejo-Ráez, María Teresa Martín-Valdivia, Luis Alfonso Ureña López:

SINAI: Machine Learning and Emotion of the Crowd for Sentiment Analysis in Microblogs. 402-407 - Tiantian Zhu, Fangxi Zhang, Lan Man:

ECNUCS: A Surface Information Based System Description of Sentiment Analysis in Twitter in the SemEval-2013 (Task 2). 408-413 - Clement Levallois:

Umigon: sentiment analysis for tweets based on terms lists and heuristics. 414-417 - Morgane Marchand, Alexandru-Lucian Gînsca, Romaric Besançon, Olivier Mesnard:

[LVIC-LIMSI]: Using Syntactic Features and Multi-polarity Words for Sentiment Analysis in Twitter. 418-424 - Sam Clark, Rich Wicentwoski:

SwatCS: Combining simple classifiers with estimated accuracy. 425-429 - Øyvind Selmer, Mikael Brevik, Björn Gambäck, Lars Bungum:

NTNU: Domain Semi-Independent Short Message Sentiment Classification. 430-437 - Nikolaos Malandrakis, Abe Kazemzadeh, Alexandros Potamianos, Shrikanth S. Narayanan:

SAIL: A hybrid approach to sentiment analysis. 438-442 - Yoan Gutiérrez, Andy González, Roger Pérez, José Ignacio Abreu, Antonio Fernández Orquín, Alejandro Mosquera López, Andrés Montoyo, Rafael Muñoz, Franc Camara:

UMCC_DLSI-(SA): Using a ranking algorithm and informal features to solve Sentiment Analysis in Twitter. 443-449 - Robert Remus:

ASVUniOfLeipzig: Sentiment Analysis in Twitter using Data-driven Machine Learning Techniques. 450-454 - Hussam Hamdan, Frédéric Béchet, Patrice Bellot:

Experiments with DBpedia, WordNet and SentiWordNet as resources for sentiment analysis in micro-blogging. 455-459 - Alexandra Balahur:

OPTWIMA: Comparing Knowledge-rich and Knowledge-poor Approaches for Sentiment Analysis in Short Informal Texts. 460-465 - Md. Faisal Mahbub Chowdhury, Marco Guerini, Sara Tonelli, Alberto Lavelli:

FBK: Sentiment Analysis in Twitter with Tweetsted. 466-470 - Gizem Gezici, Rahim Dehkharghani, Berrin A. Yanikoglu, Dilek Tapucu, Yücel Saygin:

SU-Sentilab : A Classification System for Sentiment Analysis in Twitter. 471-477 - Sara Rosenthal, Kathy McKeown:

Columbia NLP: Sentiment Detection of Subjective Phrases in Social Media. 478-482 - Carlos Rodríguez Penagos, Jordi Atserias Batalla, Joan Codina-Filbà, David García Narbona, Jens Grivolla, Patrik Lambert, Roser Saurí:

FBM: Combining lexicon-based ML and heuristics for Social Media Polarities. 483-489 - Silvio Moreira, João Filgueiras, Bruno Martins, Francisco M. Couto, Mário J. Silva:

REACTION: A naive machine learning approach for sentiment classification. 490-494 - Karan Chawla, Ankit Ramteke, Pushpak Bhattacharyya:

IITB-Sentiment-Analysts: Participation in Sentiment Analysis in Twitter SemEval 2013 Task. 495-500 - Reynier Ortega Bueno, Adrian Fonseca Bruzón, Yoan Gutiérrez, Andrés Montoyo:

SSA-UO: Unsupervised Sentiment Analysis in Twitter. 501-507 - José Saias, Hilário Fernandes:

senti.ue-en: an approach for informally written short texts in SemEval-2013 Sentiment Analysis task. 508-512 - Hilke Reckman, Cheyanne Baird, Jean Crawford, Richard Crowell, Linnea Micciulla, Saratendu Sethi, Fruzsina Veress:

teragram: Rule-based detection of sentiment phrases using SAS Sentiment Analysis. 513-519 - Qi Han, Junfei Guo, Hinrich Schütze:

CodeX: Combining an SVM Classifier and Character N-gram Language Models for Sentiment Analysis on Twitter Text. 520-524 - Harshit Jain, Aditya Mogadala, Vasudeva Varma:

sielers : Feature Analysis and Polarity Classification of Expressions from Twitter and SMS Data. 525-529 - Ameeta Agrawal, Aijun An:

Kea: Expression-level Sentiment Analysis from Twitter Data. 530-534 - Sapna Negi, Michael Rosner:

UoM: Using Explicit Semantic Analysis for Classifying Sentiments. 535-538 - Wesley Baugh:

bwbaugh : Hierarchical sentiment analysis with partial self-training. 539-542 - Prabu palanisamy, Vineet Yadav, Harsha Elchuri:

Serendio: Simple and Practical lexicon based approach to Sentiment Analysis. 543-548 - Viktor Hangya, Gábor Berend, Richárd Farkas:

SZTE-NLP: Sentiment Detection on Twitter Messages. 549-553 - Nadin Kökciyan, Arda Çelebi, Arzucan Özgür, Suzan Üsküdarli:

BOUNCE: Sentiment Classification in Twitter using Rich Feature Sets. 554-561 - Prodromos Malakasiotis, Rafael-Michael Karampatsis, Konstantina Makrynioti, John Pavlopoulos:

nlp.cs.aueb.gr: Two Stage Sentiment Analysis. 562-567 - Pedro Balage Filho, Thiago Alexandre Salgueiro Pardo:

NILC_USP: A Hybrid System for Sentiment Analysis in Twitter Messages. 568-572 - Emanuele Bastianelli, Danilo Croce, Roberto Basili, Daniele Nardi:

UNITOR-HMM-TK: Structured Kernel-based learning for Spatial Role Labeling. 573-579 - Itziar Aldabe, Montse Maritxalar, Oier Lopez de Lacalle:

EHU-ALM: Similarity-Feature Based Approach for Student Response Analysis. 580-584 - Ergun Biçici, Josef van Genabith:

CNGL: Grading Student Answers by Acts of Translation. 585-591 - Milen Kouylekov, Luca Dini, Alessio Bosca, Marco Trevisan:

Celi: EDITS and Generic Text Pair Classification. 592-597 - Martin Gleize, Brigitte Grau:

LIMSIILES: Basic English Substitution for Student Answer Assessment at SemEval 2013. 598-602 - Ifeyinwa Okoye, Steven Bethard, Tamara Sumner:

CU : Computational Assessment of Short Free Text Answers - A Tool for Evaluating Students' Understanding. 603-607 - Niels Ott, Ramon Ziai, Michael Hahn, Detmar Meurers:

CoMeT: Integrating different levels of linguistic modeling for meaning assessment. 608-616 - Daniel Sánchez-Cisneros:

UC3M: A kernel-based approach to identify and classify DDIs in bio-medical texts. 617-621 - Daniel Sánchez-Cisneros, Fernando Aparicio Gali:

UEM-UC3M: An Ontology-based named entity recognition system for biomedical texts. 622-627 - Philippe Thomas, Mariana L. Neves, Tim Rocktäschel, Ulf Leser:

WBI-DDI: Drug-Drug Interaction Extraction using Majority Voting. 628-635 - Armando Collazo, Alberto Ceballo, Dennys D. Puig, Yoan Gutiérrez, José Ignacio Abreu, Roger Pérez, Antonio Fernández Orquín, Andrés Montoyo, Rafael Muñoz, Franc Camara:

UMCC_DLSI: Semantic and Lexical features for detection and classification Drugs in biomedical texts. 636-643 - Behrouz Bokharaeian, Alberto Díaz:

NIL_UCM: Extracting Drug-Drug interactions from text through combination of sequence and tree kernels. 644-650 - Jari Björne, Suwisa Kaewphan, Tapio Salakoski:

UTurku: Drug Named Entity Recognition and Drug-Drug Interaction Extraction Using SVM Classification and Domain Knowledge. 651-659 - Tiago Grego, Francisco R. Pinto, Francisco M. Couto:

LASIGE: using Conditional Random Fields and ChEBI ontology. 660-666 - Majid Rastegar-Mojarad, Richard D. Boyce, Rashmi Prasad:

UWM-TRIADS: Classifying Drug-Drug Interactions with Two-Stage SVM and Post-Processing. 667-674 - Tamara Bobic, Juliane Fluck, Martin Hofmann-Apitius:

SCAI: Extracting drug-drug interactions using a rich feature vector. 675-683 - Negacy D. Hailu, Lawrence E. Hunter, K. Bretonnel Cohen:

UColorado_SOM: Extraction of Drug-Drug Interactions from Biomedical Text using Knowledge-rich and Knowledge-poor Features. 684-688 - David Richard Hope, Bill Keller:

UoS: A Graph-Based System for Graded Word Sense Induction. 689-694

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














