default search action
Fredrik Lindsten
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c42]Amirhossein Ahmadian, Yifan Ding, Gabriel Eilertsen, Fredrik Lindsten:
Unsupervised Novelty Detection in Pretrained Representation Space with Locally Adapted Likelihood Ratio. AISTATS 2024: 874-882 - [c41]Amanda Olmin, Jakob Lindqvist, Lennart Svensson, Fredrik Lindsten:
On the connection between Noise-Contrastive Estimation and Contrastive Divergence. AISTATS 2024: 3016-3024 - [c40]Filip Ekström Kelvinius, Fredrik Lindsten:
Discriminator Guidance for Autoregressive Diffusion Models. AISTATS 2024: 3403-3411 - [i29]Amanda Olmin, Jakob Lindqvist, Lennart Svensson, Fredrik Lindsten:
On the connection between Noise-Contrastive Estimation and Contrastive Divergence. CoRR abs/2402.16688 (2024) - [i28]Hariprasath Govindarajan, Per Sidén, Jacob Roll, Fredrik Lindsten:
DINO as a von Mises-Fisher mixture model. CoRR abs/2405.10939 (2024) - [i27]Joel Oskarsson, Tomas Landelius, Marc Peter Deisenroth, Fredrik Lindsten:
Probabilistic Weather Forecasting with Hierarchical Graph Neural Networks. CoRR abs/2406.04759 (2024) - [i26]Gabriel Ducrocq, Lukas Grunewald, Sebastian Westenhoff, Fredrik Lindsten:
cryoSPHERE: Single-particle heterogeneous reconstruction from cryo EM. CoRR abs/2407.01574 (2024) - [i25]Amanda Olmin, Fredrik Lindsten:
Towards understanding epoch-wise double descent in two-layer linear neural networks. CoRR abs/2407.09845 (2024) - [i24]Ioannis Athanasiadis, Shashi Nagarajan, Fredrik Lindsten, Michael Felsberg:
Prior Learning in Introspective VAEs. CoRR abs/2408.13805 (2024) - 2023
- [j11]Heiko Zimmermann, Fredrik Lindsten, Jan-Willem van de Meent, Christian A. Naesseth:
A Variational Perspective on Generative Flow Networks. Trans. Mach. Learn. Res. 2023 (2023) - [c39]Joel Oskarsson, Per Sidén, Fredrik Lindsten:
Temporal Graph Neural Networks for Irregular Data. AISTATS 2023: 4515-4531 - [c38]Amirhossein Ahmadian, Fredrik Lindsten:
Enhancing Representation Learning with Deep Classifiers in Presence of Shortcut. ICASSP 2023: 1-5 - [c37]Hariprasath Govindarajan, Per Sidén, Jacob Roll, Fredrik Lindsten:
DINO as a von Mises-Fisher mixture model. ICLR 2023 - [c36]Jakob Lindqvist, Amanda Olmin, Lennart Svensson, Fredrik Lindsten:
Generalised Active Learning With Annotation Quality Selection. MLSP 2023: 1-6 - [c35]Johannes Varga, Emil Karlsson, Günther R. Raidl, Elina Rönnberg, Fredrik Lindsten, Tobias Rodemann:
Speeding Up Logic-Based Benders Decomposition by Strengthening Cuts with Graph Neural Networks. LOD (1) 2023: 24-38 - [c34]Pierre Glaser, David Widmann, Fredrik Lindsten, Arthur Gretton:
Fast and scalable score-based kernel calibration tests. UAI 2023: 691-700 - [i23]Joel Oskarsson, Per Sidén, Fredrik Lindsten:
Temporal Graph Neural Networks for Irregular Data. CoRR abs/2302.08415 (2023) - [i22]Joel Oskarsson, Tomas Landelius, Fredrik Lindsten:
Graph-based Neural Weather Prediction for Limited Area Modeling. CoRR abs/2309.17370 (2023) - [i21]Filip Ekström Kelvinius, Fredrik Lindsten:
Discriminator Guidance for Autoregressive Diffusion Models. CoRR abs/2310.15817 (2023) - 2022
- [c33]Amanda Olmin, Fredrik Lindsten:
Robustness and Reliability When Training With Noisy Labels. AISTATS 2022: 922-942 - [c32]Joel Oskarsson, Per Sidén, Fredrik Lindsten:
Scalable Deep Gaussian Markov Random Fields for General Graphs. ICML 2022: 17117-17137 - [c31]Amanda Olmin, Jakob Lindqvist, Lennart Svensson, Fredrik Lindsten:
Active Learning with Weak Supervision for Gaussian Processes. ICONIP (5) 2022: 195-204 - [i20]Amanda Olmin, Jakob Lindqvist, Lennart Svensson, Fredrik Lindsten:
Active Learning with Weak Labels for Gaussian Processes. CoRR abs/2204.08335 (2022) - [i19]Joel Oskarsson, Per Sidén, Fredrik Lindsten:
Scalable Deep Gaussian Markov Random Fields for General Graphs. CoRR abs/2206.05032 (2022) - [i18]Heiko Zimmermann, Fredrik Lindsten, Jan-Willem van de Meent, Christian A. Naesseth:
A Variational Perspective on Generative Flow Networks. CoRR abs/2210.07992 (2022) - [i17]David Widmann, Fredrik Lindsten, Dave Zachariah:
Calibration tests beyond classification. CoRR abs/2210.13355 (2022) - 2021
- [j10]Johan Alenlöv, Arnoud Doucet, Fredrik Lindsten:
Pseudo-Marginal Hamiltonian Monte Carlo. J. Mach. Learn. Res. 22: 141:1-141:45 (2021) - [c30]David Widmann, Fredrik Lindsten, Dave Zachariah:
Calibration tests beyond classification. ICLR 2021 - [c29]Amirhossein Ahmadian, Fredrik Lindsten:
Likelihood-free Out-of-Distribution Detection with Invertible Generative Models. IJCAI 2021: 2119-2125 - [c28]Hariprasath Govindarajan, Peter Lindskog, Dennis Lundström, Amanda Olmin, Jacob Roll, Fredrik Lindsten:
Self-Supervised Representation Learning for Content Based Image Retrieval of Complex Scenes. IV Workshops 2021: 249-256 - [i16]Amanda Olmin, Fredrik Lindsten:
Robustness and reliability when training with noisy labels. CoRR abs/2110.03321 (2021) - 2020
- [c27]Jan Kudlicka, Lawrence M. Murray, Thomas B. Schön, Fredrik Lindsten:
Particle Filter with Rejection Control and Unbiased Estimator of the Marginal Likelihood. ICASSP 2020: 5860-5864 - [c26]Per Sidén, Fredrik Lindsten:
Deep Gaussian Markov Random Fields. ICML 2020: 8916-8926 - [c25]Jakob Lindqvist, Amanda Olmin, Fredrik Lindsten, Lennart Svensson:
A General Framework for Ensemble Distribution Distillation. MLSP 2020: 1-6 - [c24]Christian A. Naesseth, Fredrik Lindsten, David M. Blei:
Markovian Score Climbing: Variational Inference with KL(p||q). NeurIPS 2020 - [i15]Per Sidén, Fredrik Lindsten:
Deep Gaussian Markov random fields. CoRR abs/2002.07467 (2020) - [i14]Jakob Lindqvist, Amanda Olmin, Fredrik Lindsten, Lennart Svensson:
A general framework for ensemble distribution distillation. CoRR abs/2002.11531 (2020) - [i13]Christian A. Naesseth, Fredrik Lindsten, David M. Blei:
Markovian Score Climbing: Variational Inference with KL(p||q). CoRR abs/2003.10374 (2020)
2010 – 2019
- 2019
- [j9]Riccardo Sven Risuleo, Fredrik Lindsten, Håkan Hjalmarsson:
Bayesian nonparametric identification of Wiener systems. Autom. 108 (2019) - [j8]Christian A. Naesseth, Fredrik Lindsten, Thomas B. Schön:
Elements of Sequential Monte Carlo. Found. Trends Mach. Learn. 12(3): 307-392 (2019) - [j7]Christian A. Naesseth, Fredrik Lindsten, Thomas B. Schön:
High-Dimensional Filtering Using Nested Sequential Monte Carlo. IEEE Trans. Signal Process. 67(16): 4177-4188 (2019) - [c23]Juozas Vaicenavicius, David Widmann, Carl R. Andersson, Fredrik Lindsten, Jacob Roll, Thomas B. Schön:
Evaluating model calibration in classification. AISTATS 2019: 3459-3467 - [c22]Jack Umenberger, Thomas B. Schön, Fredrik Lindsten:
Bayesian identification of state-space models via adaptive thermostats. CDC 2019: 7382-7388 - [c21]Christopher Nemeth, Fredrik Lindsten, Maurizio Filippone, James Hensman:
Pseudo-Extended Markov chain Monte Carlo. NeurIPS 2019: 4314-4324 - [c20]Anna Wigren, Riccardo Sven Risuleo, Lawrence Murray, Fredrik Lindsten:
Parameter elimination in particle Gibbs sampling. NeurIPS 2019: 8916-8927 - [c19]David Widmann, Fredrik Lindsten, Dave Zachariah:
Calibration tests in multi-class classification: A unifying framework. NeurIPS 2019: 12236-12246 - [i12]Fredrik Lindsten, Jouni Helske, Matti Vihola:
Graphical model inference: Sequential Monte Carlo meets deterministic approximations. CoRR abs/1901.02374 (2019) - [i11]Jalil Taghia, Maria Bånkestad, Fredrik Lindsten, Thomas B. Schön:
Constructing the Matrix Multilayer Perceptron and its Application to the VAE. CoRR abs/1902.01182 (2019) - [i10]Juozas Vaicenavicius, David Widmann, Carl R. Andersson, Fredrik Lindsten, Jacob Roll, Thomas B. Schön:
Evaluating model calibration in classification. CoRR abs/1902.06977 (2019) - [i9]Christian A. Naesseth, Fredrik Lindsten, Thomas B. Schön:
Elements of Sequential Monte Carlo. CoRR abs/1903.04797 (2019) - [i8]David Widmann, Fredrik Lindsten, Dave Zachariah:
Calibration tests in multi-class classification: A unifying framework. CoRR abs/1910.11385 (2019) - 2018
- [c18]Riccardo Sven Risuleo, Fredrik Lindsten, Håkan Hjalmarsson:
Semi-Parametric Kernel-Based Identification of Wiener Systems. CDC 2018: 3874-3879 - [c17]Fredrik Lindsten, Jouni Helske, Matti Vihola:
Graphical model inference: Sequential Monte Carlo meets deterministic approximations. NeurIPS 2018: 8201-8211 - [i7]Andreas Svensson, Fredrik Lindsten:
Learning dynamical systems with particle stochastic approximation EM. CoRR abs/1806.09548 (2018) - 2017
- [i6]Thomas B. Schön, Andreas Svensson, Lawrence M. Murray, Fredrik Lindsten:
Probabilistic learning of nonlinear dynamical systems using sequential Monte Carlo. CoRR abs/1703.02419 (2017) - [i5]Andreas Svensson, Fredrik Lindsten, Thomas B. Schön:
Learning nonlinear state-space models using smooth particle-filter-based likelihood approximations. CoRR abs/1711.10765 (2017) - 2016
- [j6]Fredrik Lindsten, Pete Bunch, Simo Särkkä, Thomas B. Schön, Simon J. Godsill:
Rao-Blackwellized Particle Smoothers for Conditionally Linear Gaussian Models. IEEE J. Sel. Top. Signal Process. 10(2): 353-365 (2016) - [c16]Tom Rainforth, Christian A. Naesseth, Fredrik Lindsten, Brooks Paige, Jan-Willem van de Meent, Arnaud Doucet, Frank D. Wood:
Interacting Particle Markov Chain Monte Carlo. ICML 2016: 2616-2625 - 2015
- [j5]Johan Dahlin, Fredrik Lindsten, Thomas B. Schön:
Particle Metropolis-Hastings using gradient and Hessian information. Stat. Comput. 25(1): 81-92 (2015) - [j4]Emre Özkan, Fredrik Lindsten, Carsten Fritsche, Fredrik Gustafsson:
Recursive Maximum Likelihood Identification of Jump Markov Nonlinear Systems. IEEE Trans. Signal Process. 63(3): 754-765 (2015) - [c15]Simon Lacoste-Julien, Fredrik Lindsten, Francis R. Bach:
Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering. AISTATS 2015 - [c14]Pete Bunch, Fredrik Lindsten, Sumeetpal S. Singh:
Particle Gibbs with refreshed backward simulation. ICASSP 2015: 4115-4119 - [c13]Christian A. Naesseth, Fredrik Lindsten, Thomas B. Schön:
Nested Sequential Monte Carlo Methods. ICML 2015: 1292-1301 - [i4]Simon Lacoste-Julien, Fredrik Lindsten, Francis R. Bach:
Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering. CoRR abs/1501.02056 (2015) - 2014
- [j3]Fredrik Lindsten, Michael I. Jordan, Thomas B. Schön:
Particle gibbs with ancestor sampling. J. Mach. Learn. Res. 15(1): 2145-2184 (2014) - [c12]Andreas Svensson, Thomas B. Schön, Fredrik Lindsten:
Identification of jump Markov linear models using particle filters. CDC 2014: 6504-6509 - [c11]Christian A. Naesseth, Fredrik Lindsten, Thomas B. Schön:
Capacity estimation of two-dimensional channels using Sequential Monte Carlo. ITW 2014: 431-435 - [c10]Christian A. Naesseth, Fredrik Lindsten, Thomas B. Schön:
Sequential Monte Carlo for Graphical Models. NIPS 2014: 1862-1870 - [i3]Christian A. Naesseth, Fredrik Lindsten, Thomas B. Schön:
Capacity estimation of two-dimensional channels using Sequential Monte Carlo. CoRR abs/1405.0102 (2014) - 2013
- [j2]Fredrik Lindsten, Thomas B. Schön, Michael I. Jordan:
Bayesian semiparametric Wiener system identification. Autom. 49(7): 2053-2063 (2013) - [j1]Fredrik Lindsten, Thomas B. Schön:
Backward Simulation Methods for Monte Carlo Statistical Inference. Found. Trends Mach. Learn. 6(1): 1-143 (2013) - [c9]Fredrik Lindsten:
An efficient stochastic approximation EM algorithm using conditional particle filters. ICASSP 2013: 6274-6278 - [c8]Fredrik Lindsten, Pete Bunch, Simon J. Godsill, Thomas B. Schön:
Rao-Blackwellized particle smoothers for mixed linear/nonlinear state-space models. ICASSP 2013: 6288-6292 - [c7]Ehsan Taghavi, Fredrik Lindsten, Lennart Svensson, Thomas B. Schön:
Adaptive stopping for fast particle smoothing. ICASSP 2013: 6293-6297 - [c6]Johan Dahlin, Fredrik Lindsten, Thomas B. Schön:
Particle metropolis hastings using Langevin dynamics. ICASSP 2013: 6308-6312 - [c5]Roger Frigola, Fredrik Lindsten, Thomas B. Schön, Carl E. Rasmussen:
Bayesian Inference and Learning in Gaussian Process State-Space Models with Particle MCMC. NIPS 2013: 3156-3164 - [i2]Roger Frigola, Fredrik Lindsten, Thomas B. Schön, Carl E. Rasmussen:
Bayesian Inference and Learning in Gaussian Process State-Space Models with Particle MCMC. CoRR abs/1306.2861 (2013) - [i1]Roger Frigola, Fredrik Lindsten, Thomas B. Schön, Carl E. Rasmussen:
Identification of Gaussian Process State-Space Models with Particle Stochastic Approximation EM. CoRR abs/1312.4852 (2013) - 2012
- [c4]Fredrik Lindsten, Thomas B. Schön:
On the use of backward simulation in the particle Gibbs sampler. ICASSP 2012: 3845-3848 - [c3]Fredrik Lindsten, Michael I. Jordan, Thomas B. Schön:
Ancestor Sampling for Particle Gibbs. NIPS 2012: 2600-2608 - 2010
- [c2]Fredrik Lindsten, Thomas B. Schön:
Identification of mixed linear/nonlinear state-space models. CDC 2010: 6377-6382 - [c1]Fredrik Lindsten, Jonas Callmer, Henrik Ohlsson, David Törnqvist, Thomas B. Schön, Fredrik Gustafsson:
Geo-referencing for UAV navigation using environmental classification. ICRA 2010: 1420-1425
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-30 00:07 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint