


default search action
25. NIPS 2012: Lake Tahoe, Nevada, USA
- Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C. Burges, Léon Bottou, Kilian Q. Weinberger:

Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States. 2012 - Andrew Ziegler, Eric M. Christiansen, David J. Kriegman, Serge J. Belongie:

Locally Uniform Comparison Image Descriptor. 1-9 - Krikamol Muandet, Kenji Fukumizu, Francesco Dinuzzo, Bernhard Schölkopf:

Learning from Distributions via Support Measure Machines. 10-18 - Ehsan Elhamifar, Guillermo Sapiro, René Vidal:

Finding Exemplars from Pairwise Dissimilarities via Simultaneous Sparse Recovery. 19-27 - Chad Scherrer, Ambuj Tewari, Mahantesh Halappanavar, David Haglin:

Feature Clustering for Accelerating Parallel Coordinate Descent. 28-36 - Chuanxin Minos Niu, Sirish K. Nandyala, Won Joon Sohn, Terence D. Sanger:

Multi-scale Hyper-time Hardware Emulation of Human Motor Nervous System Based on Spiking Neurons using FPGA. 37-45 - Michael A. Osborne, David Duvenaud, Roman Garnett, Carl E. Rasmussen, Stephen J. Roberts, Zoubin Ghahramani:

Active Learning of Model Evidence Using Bayesian Quadrature. 46-54 - Dahua Lin, John W. Fisher III:

Coupling Nonparametric Mixtures via Latent Dirichlet Processes. 55-63 - Minjie Xu, Jun Zhu, Bo Zhang:

Nonparametric Max-Margin Matrix Factorization for Collaborative Prediction. 64-72 - Feng Cao, Soumya Ray:

Bayesian Hierarchical Reinforcement Learning. 73-81 - Christoph H. Lampert:

Dynamic Pruning of Factor Graphs for Maximum Marginal Prediction. 82-90 - Joseph Wang, Venkatesh Saligrama:

Local Supervised Learning through Space Partitioning. 91-99 - S. M. Ali Eslami, Christopher K. I. Williams:

A Generative Model for Parts-based Object Segmentation. 100-107 - Jianqiu Ji, Jianmin Li, Shuicheng Yan, Bo Zhang, Qi Tian:

Super-Bit Locality-Sensitive Hashing. 108-116 - Nicholas Ruozzi

:
The Bethe Partition Function of Log-supermodular Graphical Models. 117-125 - Hossein Azari Soufiani, David C. Parkes, Lirong Xia:

Random Utility Theory for Social Choice. 126-134 - Wouter M. Koolen, Dmitry Adamskiy, Manfred K. Warmuth:

Putting Bayes to sleep. 135-143 - Suvrit Sra:

A new metric on the manifold of kernel matrices with application to matrix geometric means. 144-152 - Wei Bi, James T. Kwok:

Mandatory Leaf Node Prediction in Hierarchical Multilabel Classification. 153-161 - Tuo Zhao, Kathryn Roeder, Han Liu:

Smooth-projected Neighborhood Pursuit for High-dimensional Nonparanormal Graph Estimation. 162-170 - Fang Han, Han Liu:

Semiparametric Principal Component Analysis. 171-179 - Shinsuke Koyama:

Coding efficiency and detectability of rate fluctuations with non-Poisson neuronal firing. 180-188 - Francesco Dinuzzo, Bernhard Schölkopf:

The representer theorem for Hilbert spaces: a necessary and sufficient condition. 189-196 - Clément Calauzènes, Nicolas Usunier, Patrick Gallinari:

"On the (Non-)existence of Convex, Calibrated Surrogate Losses for Ranking". 197-205 - Manuel Lopes, Tobias Lang, Marc Toussaint, Pierre-Yves Oudeyer:

Exploration in Model-based Reinforcement Learning by Empirically Estimating Learning Progress. 206-214 - Purushottam Kar, Prateek Jain:

Supervised Learning with Similarity Functions. 215-223 - Yuxuan Wang, DeLiang Wang:

Cocktail Party Processing via Structured Prediction. 224-232 - Takayuki Osogami:

Robustness and risk-sensitivity in Markov decision processes. 233-241 - Xiaolong Wang, Liang Lin:

Dynamical And-Or Graph Learning for Object Shape Modeling and Detection. 242-250 - Alexandra Carpentier, Rémi Munos:

Adaptive Stratified Sampling for Monte-Carlo integration of Differentiable functions. 251-259 - Varun Kanade, Zhenming Liu, Bozidar Radunovic:

Distributed Non-Stochastic Experts. 260-268 - Allison Chang, Dimitris Bertsimas, Cynthia Rudin:

An Integer Optimization Approach to Associative Classification. 269-277 - Tomasz Trzcinski, C. Mario Christoudias, Vincent Lepetit, Pascal Fua:

Learning Image Descriptors with the Boosting-Trick. 278-286 - Chunxiao Zhou, Jiseong Park, Yun Fu:

Fast Resampling Weighted v-Statistics. 287-295 - Binbin Lin, Sen Yang, Chiyuan Zhang, Jieping Ye, Xiaofei He:

Multi-task Vector Field Learning. 296-304 - Aditya Khosla, Jianxiong Xiao, Antonio Torralba, Aude Oliva:

Memorability of Image Regions. 305-313 - Jaedeug Choi, Kee-Eung Kim:

Nonparametric Bayesian Inverse Reinforcement Learning for Multiple Reward Functions. 314-322 - Joonseok Lee, Mingxuan Sun, Seungyeon Kim, Guy Lebanon:

Automatic Feature Induction for Stagewise Collaborative Filtering. 323-331 - Quanquan Gu, Tong Zhang, Chris H. Q. Ding, Jiawei Han:

Selective Labeling via Error Bound Minimization. 332-340 - Koby Crammer, Tal Wagner:

Volume Regularization for Binary Classification. 341-349 - Junyuan Xie, Linli Xu, Enhong Chen:

Image Denoising and Inpainting with Deep Neural Networks. 350-358 - Du Tran, Junsong Yuan:

Max-Margin Structured Output Regression for Spatio-Temporal Action Localization. 359-367 - Fang Han, Han Liu:

Transelliptical Component Analysis. 368-376 - Hankz Hankui Zhuo, Qiang Yang, Subbarao Kambhampati:

Action-Model Based Multi-agent Plan Recognition. 377-385 - Angela Eigenstetter, Björn Ommer:

Visual Recognition using Embedded Feature Selection for Curvature Self-Similarity. 386-394 - Nikhil Bhat, Ciamac C. Moallemi, Vivek F. Farias:

Non-parametric Approximate Dynamic Programming via the Kernel Method. 395-403 - Xi Chen, Qihang Lin, Javier Peña:

Optimal Regularized Dual Averaging Methods for Stochastic Optimization. 404-412 - Emanuele Coviello, Antoni B. Chan, Gert R. G. Lanckriet:

The variational hierarchical EM algorithm for clustering hidden Markov models. 413-421 - Chong Wang, David M. Blei:

Truncation-free Online Variational Inference for Bayesian Nonparametric Models. 422-430 - Hyun Soo Park, Eakta Jain, Yaser Sheikh:

3D Social Saliency from Head-mounted Cameras. 431-439 - Peter Kontschieder, Samuel Rota Bulò, Antonio Criminisi, Pushmeet Kohli, Marcello Pelillo, Horst Bischof:

Context-Sensitive Decision Forests for Object Detection. 440-448 - Grégoire Montavon, Katja Hansen, Siamac Fazli, Matthias Rupp, Franziska Biegler, Andreas Ziehe, Alexandre Tkatchenko, O. Anatole von Lilienfeld, Klaus-Robert Müller:

Learning Invariant Representations of Molecules for Atomization Energy Prediction. 449-457 - Joan Fruitet, Alexandra Carpentier, Rémi Munos, Maureen Clerc:

Bandit Algorithms boost Brain Computer Interfaces for motor-task selection of a brain-controlled button. 458-466 - Jeremy C. Weiss, Sriraam Natarajan, David Page:

Multiplicative Forests for Continuous-Time Processes. 467-475 - Jenna Wiens, John V. Guttag, Eric Horvitz:

Patient Risk Stratification for Hospital-Associated C. diff as a Time-Series Classification Task. 476-484 - Tianbao Yang, Yufeng Li, Mehrdad Mahdavi, Rong Jin, Zhi-Hua Zhou:

Nyström Method vs Random Fourier Features: A Theoretical and Empirical Comparison. 485-493 - Amit Daniely, Sivan Sabato, Shai Shalev-Shwartz:

Multiclass Learning Approaches: A Theoretical Comparison with Implications. 494-502 - Mehrdad Mahdavi, Tianbao Yang, Rong Jin, Shenghuo Zhu, Jinfeng Yi:

Stochastic Gradient Descent with Only One Projection. 503-511 - Dmitri B. Chklovskii, Daniel Soudry:

"Neuronal spike generation mechanism as an oversampling, noise-shaping A-to-D converter". 512-520 - Pietro Di Lena, Pierre Baldi, Ken Nagata:

Deep Spatio-Temporal Architectures and Learning for Protein Structure Prediction. 521-529 - Ognjen Arandjelovic:

Assessing Blinding in Clinical Trials. 530-538 - Suvrit Sra:

Scalable nonconvex inexact proximal splitting. 539-547 - Julian J. McAuley, Jure Leskovec:

Learning to Discover Social Circles in Ego Networks. 548-556 - Li-Ping Liu, Thomas G. Dietterich:

A Conditional Multinomial Mixture Model for Superset Label Learning. 557-565 - Tony Jebara, Anna Choromanska:

Majorization for CRFs and Latent Likelihoods. 566-574 - Kumar Sricharan, Alfred O. Hero III:

Ensemble weighted kernel estimators for multivariate entropy estimation. 575-583 - Paul Vernaza, Drew Bagnell:

Efficient high dimensional maximum entropy modeling via symmetric partition functions. 584-592 - Xiaofeng Ren, Liefeng Bo:

Discriminatively Trained Sparse Code Gradients for Contour Detection. 593-601 - Mohsen Hejrati, Deva Ramanan:

Analyzing 3D Objects in Cluttered Images. 602-610 - Zhihua Zhang, Bojun Tu:

Nonconvex Penalization Using Laplace Exponents and Concave Conjugates. 611-619 - Sanja Fidler, Sven J. Dickinson, Raquel Urtasun:

3D Object Detection and Viewpoint Estimation with a Deformable 3D Cuboid Model. 620-628 - Karthik Mohan, Michael Jae-Yoon Chung, Seungyeop Han, Daniela M. Witten, Su-In Lee, Maryam Fazel:

Structured Learning of Gaussian Graphical Models. 629-637 - Elad Hazan, Zohar Shay Karnin:

A Polylog Pivot Steps Simplex Algorithm for Classification. 638-646 - Kevin D. Tang, Vignesh Ramanathan, Li Fei-Fei, Daphne Koller:

Shifting Weights: Adapting Object Detectors from Image to Video. 647-655 - Shusen Wang, Zhihua Zhang:

A Scalable CUR Matrix Decomposition Algorithm: Lower Time Complexity and Tighter Bound. 656-664 - Richard Socher, Brody Huval, Bharath Putta Bath, Christopher D. Manning, Andrew Y. Ng:

Convolutional-Recursive Deep Learning for 3D Object Classification. 665-673 - David López-Paz, José Miguel Hernández-Lobato, Bernhard Schölkopf:

Semi-Supervised Domain Adaptation with Non-Parametric Copulas. 674-682 - Firdaus Janoos, Weichang Li, Niranjan A. Subrahmanya, István Ákos Mórocz, William M. Wells III:

Identification of Recurrent Patterns in the Activation of Brain Networks. 683-691 - Masashi Sugiyama, Takafumi Kanamori, Taiji Suzuki, Marthinus Christoffel du Plessis, Song Liu, Ichiro Takeuchi:

Density-Difference Estimation. 692-700 - Qiang Liu, Jian Peng, Alexander Ihler:

Variational Inference for Crowdsourcing. 701-709 - Vinayak A. Rao, Yee Whye Teh:

MCMC for continuous-time discrete-state systems. 710-718 - Pieter-Jan Kindermans, Hannes Verschore, David Verstraeten, Benjamin Schrauwen:

A P300 BCI for the Masses: Prior Information Enables Instant Unsupervised Spelling. 719-727 - Elad Mezuman, Yair Weiss:

Learning about Canonical Views from Internet Image Collections. 728-736 - Assaf Glazer, Michael Lindenbaum, Shaul Markovitch:

Learning High-Density Regions for a Generalized Kolmogorov-Smirnov Test in High-Dimensional Data. 737-745 - Emily B. Fox, David B. Dunson:

Multiresolution Gaussian Processes. 746-754 - Jianxiong Xiao, Bryan C. Russell, Antonio Torralba:

Localizing 3D cuboids in single-view images. 755-763 - Peder A. Olsen, Figen Öztoprak, Jorge Nocedal, Steven J. Rennie:

Newton-Like Methods for Sparse Inverse Covariance Estimation. 764-772 - Gary B. Huang, Marwan A. Mattar, Honglak Lee, Erik G. Learned-Miller:

Learning to Align from Scratch. 773-781 - Stefan Habenschuss, Johannes Bill, Bernhard Nessler:

Homeostatic plasticity in Bayesian spiking networks as Expectation Maximization with posterior constraints. 782-790 - Nan Li, Longin Jan Latecki:

Clustering Aggregation as Maximum-Weight Independent Set. 791-799 - Marcelo Fiori, Pablo Musé, Guillermo Sapiro:

Topology Constraints in Graphical Models. 800-808 - Han Liu, Fang Han, Cun-Hui Zhang:

Transelliptical Graphical Models. 809-817 - Weilong Yang, Yang Wang, Arash Vahdat, Greg Mori:

Kernel Latent SVM for Visual Recognition. 818-826 - Erik Talvitie:

Learning Partially Observable Models Using Temporally Abstract Decision Trees. 827-835 - Jason D. Lee, Yuekai Sun, Michael A. Saunders:

Proximal Newton-type methods for convex optimization. 836-844 - Bo Liu, Sridhar Mahadevan, Ji Liu:

Regularized Off-Policy TD-Learning. 845-853 - Ko-Jen Hsiao, Kevin S. Xu, Jeff Calder, Alfred O. Hero III:

Multi-criteria Anomaly Detection using Pareto Depth Analysis. 854-862 - Jake V. Bouvrie, Jean-Jacques E. Slotine:

Synchronization can Control Regularization in Neural Systems via Correlated Noise Processes. 863-871 - Tingni Sun, Cun-Hui Zhang:

Calibrated Elastic Regularization in Matrix Completion. 872-880 - Uri Maoz, Shengxuan Ye, Ian B. Ross, Adam N. Mamelak, Christof Koch:

Predicting Action Content On-Line and in Real Time before Action Onset - an Intracranial Human Study. 881-889 - Bogdan Alexe, Nicolas Heess, Yee Whye Teh, Vittorio Ferrari:

Searching for objects driven by context. 890-898 - Sergey Karayev, Tobias Baumgartner, Mario Fritz, Trevor Darrell:

Timely Object Recognition. 899-907 - Gal Elidan, Cobi Cario:

Nonparanormal Belief Propagation (NPNBP). 908-916 - Ryan Kiros, Csaba Szepesvári:

Deep Representations and Codes for Image Auto-Annotation. 917-925 - Anima Anandkumar, Dean P. Foster, Daniel J. Hsu, Sham M. Kakade, Yi-Kai Liu:

A Spectral Algorithm for Latent Dirichlet Allocation. 926-934 - Aharon Birnbaum, Shai Shalev-Shwartz:

Learning Halfspaces with the Zero-One Loss: Time-Accuracy Tradeoffs. 935-943 - Rina Foygel, Nathan Srebro, Ruslan Salakhutdinov:

Matrix reconstruction with the local max norm. 944-952 - Anteo Smerieri, François Duport, Yvan Paquot, Benjamin Schrauwen, Marc Haelterman, Serge Massar:

Analog readout for optical reservoir computers. 953-961 - Stephen P. Boyd, Corinna Cortes, Mehryar Mohri, Ana Radovanovic:

Accuracy at the Top. 962-970 - Andrew Delong, Olga Veksler, Anton Osokin, Yuri Boykov:

Minimizing Sparse High-Order Energies by Submodular Vertex-Cover. 971-979 - Shinichi Nakajima, Ryota Tomioka, Masashi Sugiyama, S. Derin Babacan:

Perfect Dimensionality Recovery by Variational Bayesian PCA. 980-988 - Nicolò Cesa-Bianchi, Pierre Gaillard, Gábor Lugosi, Gilles Stoltz:

Mirror Descent Meets Fixed Share (and feels no regret). 989-997 - Kamalika Chaudhuri, Anand D. Sarwate, Kaushik Sinha:

Near-optimal Differentially Private Principal Components. 998-1006 - James Robert Lloyd, Peter Orbanz, Zoubin Ghahramani, Daniel M. Roy:

Random function priors for exchangeable arrays with applications to graphs and relational data. 1007-1015 - Edouard Klein, Matthieu Geist, Bilal Piot, Olivier Pietquin:

Inverse Reinforcement Learning through Structured Classification. 1016-1024 - Ashwini Shukla, Aude Billard:

Augmented-SVM: Automatic space partitioning for combining multiple non-linear dynamics. 1025-1033 - Arthur Guez, David Silver, Peter Dayan:

Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based Search. 1034-1042 - Chi Jin, Liwei Wang:

Dimensionality Dependent PAC-Bayes Margin Bound. 1043-1051 - Animashree Anandkumar, Ragupathyraj Valluvan:

Latent Graphical Model Selection: Efficient Methods for Locally Tree-like Graphs. 1052-1060 - Animashree Anandkumar, Daniel J. Hsu, Furong Huang, Sham M. Kakade:

Learning Mixtures of Tree Graphical Models. 1061-1069 - Mohammad Norouzi, David J. Fleet, Ruslan Salakhutdinov:

Hamming Distance Metric Learning. 1070-1078 - Romain Daniel Cazé, Mark D. Humphries, Boris S. Gutkin:

Spiking and saturating dendrites differentially expand single neuron computation capacity. 1079-1087 - Zhirong Yang, Tele Hao, Onur Dikmen, Xi Chen, Erkki Oja:

Clustering by Nonnegative Matrix Factorization Using Graph Random Walk. 1088-1096 - C. C. Alan Fung, K. Y. Michael Wong, Si Wu:

Delay Compensation with Dynamical Synapses. 1097-1105 - Juan Huo:

A dynamic excitatory-inhibitory network in a VLSI chip for spiking information reregistration. - Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton:

ImageNet Classification with Deep Convolutional Neural Networks. 1106-1114 - Weixin Li, Nuno Vasconcelos:

Recognizing Activities by Attribute Dynamics. 1115-1123 - Chen Chen, Junzhou Huang:

Compressive Sensing MRI with Wavelet Tree Sparsity. 1124-1132 - Lucas Theis, Jascha Sohl-Dickstein, Matthias Bethge:

Training sparse natural image models with a fast Gibbs sampler of an extended state space. 1133-1141 - Aaron Wilson, Alan Fern, Prasad Tadepalli

:
A Bayesian Approach for Policy Learning from Trajectory Preference Queries. 1142-1150 - Jingrui He, Hanghang Tong, Qiaozhu Mei, Boleslaw K. Szymanski:

GenDeR: A Generic Diversified Ranking Algorithm. 1151-1159 - Claudio Gentile, Francesco Orabona:

On Multilabel Classification and Ranking with Partial Feedback. 1160-1168 - Vinay Jethava, Anders Martinsson, Chiranjib Bhattacharyya, Devdatt P. Dubhashi:

"The Lovasz $\theta$ function, SVMs and finding large dense subgraphs". 1169-1177 - Sergey Feldman, Maya R. Gupta, Bela A. Frigyik:

Multi-Task Averaging. 1178-1186 - Sourish Chaudhuri, Bhiksha Raj:

Unsupervised Structure Discovery for Semantic Analysis of Audio. 1187-1195 - Yali Wang, Brahim Chaib-draa:

A Marginalized Particle Gaussian Process Regression. 1196-1204 - Yunchao Gong, Sanjiv Kumar, Vishal Verma, Svetlana Lazebnik:

Angular Quantization-based Binary Codes for Fast Similarity Search. 1205-1213 - Arthur Gretton, Bharath K. Sriperumbudur, Dino Sejdinovic, Heiko Strathmann, Sivaraman Balakrishnan, Massimiliano Pontil, Kenji Fukumizu:

Optimal kernel choice for large-scale two-sample tests. 1214-1222 - Ben Recht, Christopher Ré, Joel A. Tropp, Victor Bittorf:

Factoring nonnegative matrices with linear programs. 1223-1231 - Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc'Aurelio Ranzato, Andrew W. Senior, Paul A. Tucker, Ke Yang, Andrew Y. Ng:

Large Scale Distributed Deep Networks. 1232-1240 - Yanyan Lan, Jiafeng Guo, Xueqi Cheng, Tie-Yan Liu:

Statistical Consistency of Ranking Methods in A Rank-Differentiable Probability Space. 1241-1249 - Won Hwa Kim, Deepti Pachauri, Charles R. Hatt, Moo K. Chung, Sterling C. Johnson, Vikas Singh:

Wavelet based multi-scale shape features on arbitrary surfaces for cortical thickness discrimination. 1250-1258 - Aaron Defazio, Tibério S. Caetano:

A Convex Formulation for Learning Scale-Free Networks via Submodular Relaxation. 1259-1267 - Arnak S. Dalalyan, Yin Chen:

Fused sparsity and robust estimation for linear models with unknown variance. 1268-1276 - Yanping Huang, Abram L. Friesen, Timothy D. Hanks, Michael N. Shadlen, Rajesh P. N. Rao:

How Prior Probability Influences Decision Making: A Unifying Probabilistic Model. 1277-1285 - Hua Wang, Feiping Nie, Heng Huang, Jingwen Yan, Sungeun Kim, Shannon L. Risacher, Andrew J. Saykin, Li Shen:

High-Order Multi-Task Feature Learning to Identify Longitudinal Phenotypic Markers for Alzheimer's Disease Progression Prediction. 1286-1294 - Kosuke Fukumasu, Koji Eguchi, Eric P. Xing:

Symmetric Correspondence Topic Models for Multilingual Text Analysis. 1295-1303 - Michael C. Hughes, Emily B. Fox, Erik B. Sudderth:

Effective Split-Merge Monte Carlo Methods for Nonparametric Models of Sequential Data. 1304-1312 - Xue-Xin Wei, Alan A. Stocker:

Efficient coding provides a direct link between prior and likelihood in perceptual Bayesian inference. 1313-1321 - Maksims Volkovs, Richard S. Zemel:

Efficient Sampling for Bipartite Matching Problems. 1322-1330 - Marius Pachitariu, Maneesh Sahani:

Learning visual motion in recurrent neural networks. 1331-1339 - Jiarong Jiang, Adam R. Teichert, Hal Daumé III, Jason Eisner:

Learned Prioritization for Trading Off Accuracy and Speed. 1340-1348 - Amir Massoud Farahmand, Doina Precup:

Value Pursuit Iteration. 1349-1357 - Xaq Pitkow:

"Compressive neural representation of sparse, high-dimensional probabilities". 1358-1366 - Eunho Yang, Pradeep Ravikumar, Genevera I. Allen, Zhandong Liu:

Graphical Models via Generalized Linear Models. 1367-1375 - Henrik Ohlsson, Allen Y. Yang, Roy Dong, S. Shankar Sastry:

CPRL -- An Extension of Compressive Sensing to the Phase Retrieval Problem. 1376-1384 - Yi Zhen, Dit-Yan Yeung:

Co-Regularized Hashing for Multimodal Data. 1385-1393 - Xavier Bresson, Thomas Laurent, David Uminsky, James H. von Brecht:

Convergence and Energy Landscape for Cheeger Cut Clustering. 1394-1402 - Zahra Zamani, Scott Sanner, Pascal Poupart, Kristian Kersting:

Symbolic Dynamic Programming for Continuous State and Observation POMDPs. 1403-1411 - Lei Shi:

Bayesian Probabilistic Co-Subspace Addition. 1412-1420 - Thanh T. Ngo, Yousef Saad:

Scaled Gradients on Grassmann Manifolds for Matrix Completion. 1421-1429 - Chris Hinrichs, Vikas Singh, Jiming Peng, Sterling C. Johnson:

Q-MKL: Matrix-induced Regularization in Multi-Kernel Learning with Applications to Neuroimaging. 1430-1438 - John C. Duchi, Michael I. Jordan, Martin J. Wainwright:

Privacy Aware Learning. 1439-1447 - John C. Duchi, Michael I. Jordan, Martin J. Wainwright, Andre Wibisono:

Finite Sample Convergence Rates of Zero-Order Stochastic Optimization Methods. 1448-1456 - Odalric-Ambrym Maillard:

Hierarchical Optimistic Region Selection driven by Curiosity. 1457-1465 - Andreas Argyriou, Rina Foygel, Nathan Srebro:

Sparse Prediction with the $k$-Support Norm. 1466-1474 - Hemant Tyagi, Volkan Cevher:

Active Learning of Multi-Index Function Models. 1475-1483 - Koby Crammer, Yishay Mansour:

Learning Multiple Tasks using Shared Hypotheses. 1484-1492 - André da Motta Salles Barreto, Doina Precup, Joelle Pineau:

On-line Reinforcement Learning Using Incremental Kernel-Based Stochastic Factorization. 1493-1501 - Kei Wakabayashi, Takao Miura:

Forward-Backward Activation Algorithm for Hierarchical Hidden Markov Models. 1502-1510 - Yuchen Zhang, John C. Duchi, Martin J. Wainwright:

Communication-Efficient Algorithms for Statistical Optimization. 1511-1519 - Daniel J. Hsu, Sham M. Kakade, Percy Liang:

Identifiability and Unmixing of Latent Parse Trees. 1520-1528 - Francois Caron, Yee Whye Teh:

Bayesian nonparametric models for ranked data. 1529-1537 - Yao-Nan Chen, Hsuan-Tien Lin:

Feature-aware Label Space Dimension Reduction for Multi-label Classification. 1538-1546 - Alekh Agarwal, Sahand N. Negahban, Martin J. Wainwright:

Stochastic optimization and sparse statistical recovery: Optimal algorithms for high dimensions. 1547-1555 - Tatsuya Harada, Yasuo Kuniyoshi:

Graphical Gaussian Vector for Image Categorization. 1556-1564 - XianXing Zhang, Lawrence Carin:

Joint Modeling of a Matrix with Associated Text via Latent Binary Features. 1565-1573 - Jesús Cid-Sueiro:

Proper losses for learning from partial labels. 1574-1582 - Benjamin T. Rolfs, Bala Rajaratnam, Dominique Guillot, Ian Wong, Arian Maleki:

Iterative Thresholding Algorithm for Sparse Inverse Covariance Estimation. 1583-1591 - Abhimanyu Das, Anirban Dasgupta, Ravi Kumar:

Selecting Diverse Features via Spectral Regularization. 1592-1600 - Qixia Jiang, Jun Zhu, Maosong Sun, Eric P. Xing:

Monte Carlo Methods for Maximum Margin Supervised Topic Models. 1601-1609 - Jun Wang, Alexandros Kalousis, Adam Woznica:

Parametric Local Metric Learning for Nearest Neighbor Classification. 1610-1618 - Nicolò Cesa-Bianchi, Claudio Gentile, Fabio Vitale, Giovanni Zappella:

A Linear Time Active Learning Algorithm for Link Classification. 1619-1627 - Miguel Lázaro-Gredilla:

Bayesian Warped Gaussian Processes. 1628-1636 - Rina Foygel, Michael Horrell, Mathias Drton, John D. Lafferty:

Nonparametric Reduced Rank Regression. 1637-1645 - Risi Kondor, Walter Dempsey:

Multiresolution analysis on the symmetric group. 1646-1654 - Weihao Kong, Wu-Jun Li:

Isotropic Hashing. 1655-1663 - Deepak Venugopal, Vibhav Gogate

:
On Lifting the Gibbs Sampling Algorithm. 1664-1672 - Vijay Mahadevan, Nuno Vasconcelos:

On the connections between saliency and tracking. 1673-1681 - Martha White, Yaoliang Yu, Xinhua Zhang, Dale Schuurmans:

Convex Multi-view Subspace Learning. 1682-1690 - Lars Buesing, Jakob H. Macke, Maneesh Sahani:

Spectral learning of linear dynamics from generalised-linear observations with application to neural population data. 1691-1699 - Tim van Erven, Peter D. Grünwald, Mark D. Reid, Robert C. Williamson:

Mixability in Statistical Learning. 1700-1708 - Christian Mayr, Paul Stärke, Johannes Partzsch, René Schüffny, Love Cederstroem, Yao Shuai, Nan Du, Heidemarie Schmidt:

Waveform Driven Plasticity in BiFeO3 Memristive Devices: Model and Implementation. 1709-1717 - Karol Gregor, Dmitri B. Chklovskii:

A lattice filter model of the visual pathway. 1718-1726 - Sung Ju Hwang, Kristen Grauman, Fei Sha:

Semantic Kernel Forests from Multiple Taxonomies. 1727-1735 - Zhitang Chen, Kun Zhang, Laiwan Chan:

Causal discovery with scale-mixture model for spatiotemporal variance dependencies. 1736-1744 - Daniel Zoran, Yair Weiss:

"Natural Images, Gaussian Mixtures and Dead Leaves". 1745-1753 - David P. Wipf, Yi Wu:

Dual-Space Analysis of the Sparse Linear Model. 1754-1762 - Christoph Sawade, Niels Landwehr, Tobias Scheffer:

Active Comparison of Prediction Models. 1763-1771 - Ronald Ortner, Daniil Ryabko:

Online Regret Bounds for Undiscounted Continuous Reinforcement Learning. 1772-1780 - Chao Zhang, Lei Zhang, Jieping Ye:

Generalization Bounds for Domain Adaptation. - Jinfeng Yi, Rong Jin, Anil K. Jain, Shaili Jain, Tianbao Yang:

Semi-Crowdsourced Clustering: Generalizing Crowd Labeling by Robust Distance Metric Learning. 1781-1789 - Peter Sollich, Simon R. F. Ashton:

Learning curves for multi-task Gaussian process regression. 1790-1798 - Alexander Lorbert, Peter J. Ramadge:

Kernel Hyperalignment. 1799-1807 - Abner Guzmán-Rivera, Dhruv Batra, Pushmeet Kohli:

Multiple Choice Learning: Learning to Produce Multiple Structured Outputs. 1808-1816 - Mathieu Sinn, Bei Chen:

Mixing Properties of Conditional Markov Chains with Unbounded Feature Functions. 1817-1825 - Florian T. Pokorny, Carl Henrik Ek, Hedvig Kjellström, Danica Kragic:

Persistent Homology for Learning Densities with Bounded Support. 1826-1834 - Bruno Scherrer, Boris Lesner:

On the Use of Non-Stationary Policies for Stationary Infinite-Horizon Markov Decision Processes. 1835-1843 - Sander M. Bohté:

Efficient Spike-Coding with Multiplicative Adaptation in a Spike Response Model. 1844-1852 - David Belanger, Alexandre Passos, Sebastian Riedel, Andrew McCallum:

MAP Inference in Chains using Column Generation. 1853-1861 - Francisco J. R. Ruiz, Isabel Valera

, Carlos Blanco, Fernando Pérez-Cruz:
Bayesian Nonparametric Modeling of Suicide Attempts. 1862-1870 - Antonino Freno, Mikaela Keller, Marc Tommasi:

Fiedler Random Fields: A Large-Scale Spectral Approach to Statistical Network Modeling. 1871-1879 - Jaldert O. Rombouts, Sander M. Bohté, Pieter R. Roelfsema:

Neurally Plausible Reinforcement Learning of Working Memory Tasks. 1880-1888 - Richard G. Gibson, Neil Burch, Marc Lanctot, Duane Szafron:

Efficient Monte Carlo Counterfactual Regret Minimization in Games with Many Player Actions. 1889-1897 - Francesca Petralia, Vinayak A. Rao, David B. Dunson:

Repulsive Mixtures. 1898-1906 - Jonathan W. Pillow, James G. Scott:

Fully Bayesian inference for neural models with negative-binomial spiking. 1907-1915 - Tivadar Papai, Henry A. Kautz, Daniel Stefankovic:

Slice Normalized Dynamic Markov Logic Networks. 1916-1924 - Mélanie Rey, Volker Roth:

Meta-Gaussian Information Bottleneck. 1925-1933 - Yung-Kyun Noh, Frank Chongwoo Park, Daniel D. Lee:

Diffusion Decision Making for Adaptive k-Nearest Neighbor Classification. 1934-1942 - Maayan Harel, Shie Mannor:

The Perturbed Variation. 1943-1951 - Konstantinos I. Tsianos, Sean F. Lawlor, Michael G. Rabbat:

Communication/Computation Tradeoffs in Consensus-Based Distributed Optimization. 1952-1960 - Simon M. J. Lyons, Amos J. Storkey, Simo Särkkä:

The Coloured Noise Expansion and Parameter Estimation of Diffusion Processes. 1961-1969 - Alexandra Carpentier, Odalric-Ambrym Maillard:

Online allocation and homogeneous partitioning for piecewise constant mean-approximation. 1970-1978 - Xianghang Liu, James Petterson, Tibério S. Caetano:

Learning as MAP Inference in Discrete Graphical Models. 1979-1987 - Shaul Druckmann, Tao Hu, Dmitri B. Chklovskii:

A mechanistic model of early sensory processing based on subtracting sparse representations. 1988-1996 - Pinghua Gong, Jieping Ye, Changshui Zhang:

Multi-Stage Multi-Task Feature Learning. 1997-2005 - Soumya Ghosh, Erik B. Sudderth, Matthew Loper, Michael J. Black:

From Deformations to Parts: Motion-based Segmentation of 3D Objects. 2006-2014 - Hyunsin Park, Sungrack Yun, Sanghyuk Park, Jongmin Kim, Chang D. Yoo:

Phoneme Classification using Constrained Variational Gaussian Process Dynamical System. 2015-2023 - Evan Archer, Il Memming Park, Jonathan W. Pillow:

Bayesian estimation of discrete entropy with mixtures of stick-breaking priors. 2024-2032 - Søren Hauberg, Oren Freifeld, Michael J. Black:

A Geometric take on Metric Learning. 2033-2041 - Aaron W. Dennis, Dan Ventura:

Learning the Architecture of Sum-Product Networks Using Clustering on Variables. 2042-2050 - Yair Wiener, Ran El-Yaniv:

Pointwise Tracking the Optimal Regression Function. 2051-2059 - Francois Caron:

Bayesian nonparametric models for bipartite graphs. 2060-2068 - Daniil Ryabko, Jérémie Mary:

Reducing statistical time-series problems to binary classification. 2069-2077 - Katherine Chen, Michael Bowling:

Tractable Objectives for Robust Policy Optimization. 2078-2086 - Harish G. Ramaswamy, Shivani Agarwal:

Classification Calibration Dimension for General Multiclass Losses. 2087-2095 - Po-Ling Loh, Martin J. Wainwright:

Structure estimation for discrete graphical models: Generalized covariance matrices and their inverses. 2096-2104 - Neil Houlsby, José Miguel Hernández-Lobato, Ferenc Huszar, Zoubin Ghahramani:

Collaborative Gaussian Processes for Preference Learning. 2105-2113 - Joachim Giesen, Jens K. Müller, Sören Laue, Sascha Swiercy:

Approximating Concavely Parameterized Optimization Problems. 2114-2122 - Kenji Fukumizu, Chenlei Leng:

Gradient-based kernel method for feature extraction and variable selection. 2123-2131 - Pradeep Shenoy, Angela J. Yu:

Strategic Impatience in Go/NoGo versus Forced-Choice Decision-Making. 2132-2140 - Qirong Ho, Junming Yin, Eric P. Xing:

On Triangular versus Edge Representations --- Towards Scalable Modeling of Networks. 2141-2149 - Alexander Rakhlin, Ohad Shamir, Karthik Sridharan:

Relax and Randomize : From Value to Algorithms. 2150-2158 - Nishant A. Mehta, Dongryeol Lee, Alexander G. Gray:

Minimax Multi-Task Learning and a Generalized Loss-Compositional Paradigm for MTL. 2159-2167 - Borja Balle, Mehryar Mohri:

Spectral Learning of General Weighted Automata via Constrained Matrix Completion. 2168-2176 - Zhuo Wang, Alan A. Stocker, Daniel D. Lee:

"Optimal Neural Tuning Curves for Arbitrary Stimulus Distributions: Discrimax, Infomax and Minimum $L_p$ Loss". 2177-2185 - Abdeslam Boularias, Oliver Kroemer, Jan Peters:

Algorithms for Learning Markov Field Policies. 2186-2194 - Edward Challis, David Barber:

Affine Independent Variational Inference. 2195-2203 - Dengyong Zhou, John C. Platt, Sumit Basu, Yi Mao:

Learning from the Wisdom of Crowds by Minimax Entropy. 2204-2212 - Yudong Chen, Sujay Sanghavi, Huan Xu:

Clustering Sparse Graphs. 2213-2221 - Marc G. Bellemare, Joel Veness, Michael Bowling:

Sketch-Based Linear Value Function Approximation. 2222-2230 - Nitish Srivastava, Ruslan Salakhutdinov:

Multimodal Learning with Deep Boltzmann Machines. 2231-2239 - Zuoguan Wang, Siwei Lyu, Gerwin Schalk, Qiang Ji:

Learning with Target Prior. 2240-2248 - Nicholas J. Foti, Sinead Williamson:

Slice sampling normalized kernel-weighted completely random measure mixture models. 2249-2257 - Prem Gopalan, David M. Mimno, Sean Gerrish, Michael J. Freedman, David M. Blei:

Scalable Inference of Overlapping Communities. 2258-2266 - Shiva Prasad Kasiviswanathan, Huahua Wang, Arindam Banerjee, Prem Melville:

Online L1-Dictionary Learning with Application to Novel Document Detection. 2267-2275 - Francisco Pereira, Matthew M. Botvinick:

A systematic approach to extracting semantic information from functional MRI data. 2276-2284 - Jacquelyn A. Shelton, Philip Sterne, Jörg Bornschein, Abdul-Saboor Sheikh, Jörg Lücke:

Why MCA? Nonlinear sparse coding with spike-and-slab prior for neurally plausible image encoding. 2285-2293 - Ralph Bourdoukan, David G. T. Barrett, Christian K. Machens, Sophie Denève:

Learning optimal spike-based representations. 2294-2302 - Maksims Volkovs, Richard S. Zemel:

Collaborative Ranking With 17 Parameters. 2303-2311 - Nisheeth Srivastava, Paul R. Schrater:

Rational inference of relative preferences. 2312-2320 - Hiroki Terashima, Masato Okada:

The topographic unsupervised learning of natural sounds in the auditory cortex. 2321-2329 - Amy Greenwald, Jiacui Li, Eric Sodomka:

Approximating Equilibria in Sequential Auctions with Incomplete Information and Multi-Unit Demand. 2330-2338 - Cho-Jui Hsieh, Inderjit S. Dhillon, Pradeep Ravikumar, Arindam Banerjee:

A Divide-and-Conquer Method for Sparse Inverse Covariance Estimation. 2339-2347 - Moritz Hardt, Katrina Ligett, Frank McSherry:

A Simple and Practical Algorithm for Differentially Private Data Release. 2348-2356 - Mijung Park, Jonathan W. Pillow:

Bayesian active learning with localized priors for fast receptive field characterization. 2357-2365 - Tsuyoshi Ueno, Kohei Hayashi, Takashi Washio, Yoshinobu Kawahara:

Weighted Likelihood Policy Search with Model Selection. 2366-2374 - Yunlong He, Yanjun Qi, Koray Kavukcuoglu, Haesun Park:

Learning the Dependency Structure of Latent Factors. 2375-2383 - Sanjeev Arora, Rong Ge, Ankur Moitra, Sushant Sachdeva:

"Provable ICA with Unknown Gaussian Noise, with Implications for Gaussian Mixtures and Autoencoders". 2384-2392 - Alexander G. Schwing, Tamir Hazan, Marc Pollefeys, Raquel Urtasun:

Globally Convergent Dual MAP LP Relaxation Solvers using Fenchel-Young Margins. 2393-2401 - Argyris Kalogeratos, Aristidis Likas:

Dip-means: an incremental clustering method for estimating the number of clusters. 2402-2410 - Matthew J. Streeter, H. Brendan McMahan:

No-Regret Algorithms for Unconstrained Online Convex Optimization. 2411-2419 - Siddharth Gopal, Yiming Yang, Bing Bai, Alexandru Niculescu-Mizil:

Bayesian models for Large-scale Hierarchical Classification. 2420-2428 - Mert Pilanci, Laurent El Ghaoui, Venkat Chandrasekaran:

Recovery of Sparse Probability Measures via Convex Programming. 2429-2437 - Hachem Kadri, Alain Rakotomamonjy, Francis R. Bach, Philippe Preux:

Multiple Operator-valued Kernel Learning. 2438-2446 - Ulugbek Kamilov, Sundeep Rangan, Alyson K. Fletcher, Michael Unser:

Approximate Message Passing with Consistent Parameter Estimation and Applications to Sparse Learning. 2447-2455 - Ruslan Salakhutdinov, Geoffrey E. Hinton:

A Better Way to Pretrain Deep Boltzmann Machines. 2456-2464 - David Balduzzi, Michel Besserve:

Towards a learning-theoretic analysis of spike-timing dependent plasticity. 2465-2473 - Guillermo D. Cañas, Tomaso A. Poggio, Lorenzo Rosasco:

Learning Manifolds with K-Means and K-Flats. 2474-2482 - Sahand Negahban, Sewoong Oh, Devavrat Shah:

Iterative ranking from pair-wise comparisons. 2483-2491 - Yaoliang Yu, Özlem Aslan, Dale Schuurmans:

A Polynomial-time Form of Robust Regression. 2492-2500 - Guillermo D. Cañas, Lorenzo Rosasco:

Learning Probability Measures with respect to Optimal Transport Metrics. 2501-2509 - Weiwei Cheng, Eyke Hüllermeier, Willem Waegeman, Volkmar Welker:

Label Ranking with Partial Abstention based on Thresholded Probabilistic Models. 2510-2518 - Amadou Ba

, Mathieu Sinn, Yannig Goude, Pascal Pompey:
Adaptive Learning of Smoothing Functions: Application to Electricity Load Forecasting. 2519-2527 - Shay B. Cohen, Michael Collins:

Tensor Decomposition for Fast Parsing with Latent-Variable PCFGs. 2528-2536 - Toke Jansen Hansen, Michael W. Mahoney:

Semi-supervised Eigenvectors for Locally-biased Learning. 2537-2545 - Han Liu, John D. Lafferty, Larry A. Wasserman:

Exponential Concentration for Mutual Information Estimation with Application to Forests. 2546-2554 - Mingyuan Zhou, Lawrence Carin:

Augment-and-Conquer Negative Binomial Processes. 2555-2563 - Trung Thanh Nguyen, Tomi Silander, Tze-Yun Leong:

Transferring Expectations in Model-based Reinforcement Learning. 2564-2572 - Jason L. Pacheco, Erik B. Sudderth:

Minimization of Continuous Bethe Approximations: A Positive Variation. 2573-2581 - Dor Kedem, Stephen Tyree, Kilian Q. Weinberger, Fei Sha, Gert R. G. Lanckriet:

Non-linear Metric Learning. 2582-2590 - Michael J. Paul, Mark Dredze:

Factorial LDA: Sparse Multi-Dimensional Text Models. 2591-2599 - Fredrik Lindsten, Michael I. Jordan, Thomas B. Schön:

Ancestor Sampling for Particle Gibbs. 2600-2608 - Charles Blundell, Katherine A. Heller, Jeffrey M. Beck:

Modelling Reciprocating Relationships with Hawkes Processes. 2609-2617 - Marc Peter Deisenroth, Shakir Mohamed:

Expectation Propagation in Gaussian Process Dynamical Systems. 2618-2626 - Stephen Becker, Mohamed-Jalal Fadili:

A quasi-Newton proximal splitting method. 2627-2635 - Demba E. Ba, Behtash Babadi, Patrick L. Purdon, Emery N. Brown:

Exact and Stable Recovery of Sequences of Signals with Sparse Increments via Differential _1-Minimization. 2636-2644 - Morteza Ibrahimi, Adel Javanmard, Benjamin Van Roy:

Efficient Reinforcement Learning for High Dimensional Linear Quadratic Systems. 2645-2653 - Ashish Kapoor, Raajay Viswanathan, Prateek Jain:

Multilabel Classification using Bayesian Compressed Sensing. 2654-2662 - Stephen H. Bach, Matthias Broecheler, Lise Getoor, Dianne P. O'Leary:

Scaling MPE Inference for Constrained Continuous Markov Random Fields with Consensus Optimization. 2663-2671 - Nicolas Le Roux, Mark Schmidt, Francis R. Bach:

A Stochastic Gradient Method with an Exponential Convergence Rate for Finite Training Sets. 2672-2680 - Kevin G. Jamieson, Robert D. Nowak, Benjamin Recht:

Query Complexity of Derivative-Free Optimization. 2681-2689 - Adam Coates, Andrej Karpathy, Andrew Y. Ng:

Emergence of Object-Selective Features in Unsupervised Feature Learning. 2690-2698 - Falk Lieder, Thomas L. Griffiths, Noah D. Goodman:

"Burn-in, bias, and the rationality of anchoring". 2699-2707 - Michael Bryant, Erik B. Sudderth:

Truly Nonparametric Online Variational Inference for Hierarchical Dirichlet Processes. 2708-2716 - Hugo Larochelle, Stanislas Lauly:

A Neural Autoregressive Topic Model. 2717-2725 - Thomas Furmston, David Barber:

A Unifying Perspective of Parametric Policy Search Methods for Markov Decision Processes. 2726-2734 - Seong-Hwan Jun, Liangliang Wang, Alexandre Bouchard-Côté:

Entangled Monte Carlo. 2735-2743 - Jennifer Gillenwater, Alex Kulesza, Ben Taskar:

Near-Optimal MAP Inference for Determinantal Point Processes. 2744-2752 - S. Derin Babacan, Shinichi Nakajima, Minh N. Do:

Probabilistic Low-Rank Subspace Clustering. 2753-2761 - Sean Gerrish, David M. Blei:

How They Vote: Issue-Adjusted Models of Legislative Behavior. 2762-2770 - Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, Bart Selman:

Density Propagation and Improved Bounds on the Partition Function. 2771-2779 - Alex Flint, Matthew B. Blaschko:

Perceptron Learning of SAT. 2780-2788 - Nan Du, Le Song, Alexander J. Smola, Ming Yuan:

Learning Networks of Heterogeneous Influence. 2789-2797 - Youssef Mroueh, Tomaso A. Poggio, Lorenzo Rosasco, Jean-Jacques E. Slotine:

Multiclass Learning with Simplex Coding. 2798-2806 - Amr Ahmed, Sujith Ravi, Shravan M. Narayanamurthy, Alexander J. Smola:

FastEx: Hash Clustering with Exponential Families. 2807-2815 - Peter M. Krafft, Juston Moore, Bruce A. Desmarais, Hanna M. Wallach:

Topic-Partitioned Multinetwork Embeddings. 2816-2824 - Andriy Mnih, Yee Whye Teh:

Learning Label Trees for Probabilistic Modelling of Implicit Feedback. 2825-2833 - Oriol Vinyals, Yangqing Jia, Li Deng, Trevor Darrell:

Learning with Recursive Perceptual Representations. 2834-2842 - Emile Richard, Stéphane Gaïffas, Nicolas Vayatis:

Link Prediction in Graphs with Autoregressive Features. 2843-2851 - Dan C. Ciresan, Alessandro Giusti, Luca Maria Gambardella, Jürgen Schmidhuber:

Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images. 2852-2860 - Lloyd T. Elliott, Yee Whye Teh:

Scalable imputation of genetic data with a discrete fragmentation-coagulation process. 2861-2869 - Samory Kpotufe, Abdeslam Boularias:

Gradient Weights help Nonparametric Regressors. 2870-2878 - Mark Herbster, Stephen Pasteris, Fabio Vitale:

Online Sum-Product Computation Over Trees. 2879-2887 - Ben Calderhead, Mátyás A. Sustik:

Sparse Approximate Manifolds for Differential Geometric MCMC. 2888-2896 - James Hensman, Magnus Rattray, Neil D. Lawrence:

Fast Variational Inference in the Conjugate Exponential Family. 2897-2905 - Bonnie Kirkpatrick, Alexandre Bouchard-Côté:

Bayesian Pedigree Analysis using Measure Factorization. 2906-2914 - Xinhua Zhang, Yaoliang Yu, Dale Schuurmans:

Accelerated Training for Matrix-norm Regularization: A Boosting Approach. 2915-2923 - Vasiliy Karasev, Alessandro Chiuso, Stefano Soatto:

Controlled Recognition Bounds for Visual Learning and Exploration. 2924-2932 - Sejong Yoon, Vladimir Pavlovic

:
Distributed Probabilistic Learning for Camera Networks with Missing Data. 2933-2941 - Rishabh K. Iyer, Jeff A. Bilmes:

Submodular-Bregman and the Lovász-Bregman Divergences with Applications. 2942-2950 - Nilesh N. Dalvi, Aditya G. Parameswaran

, Vibhor Rastogi:
Minimizing Uncertainty in Pipelines. 2951-2959 - Jasper Snoek, Hugo Larochelle, Ryan P. Adams:

Practical Bayesian Optimization of Machine Learning Algorithms. 2960-2968 - Dijun Luo, Chris H. Q. Ding, Heng Huang, Feiping Nie:

Forging The Graphs: A Low Rank and Positive Semidefinite Graph Learning Approach. 2969-2977 - Levi Boyles, Max Welling:

The Time-Marginalized Coalescent Prior for Hierarchical Clustering. 2978-2986 - Yu Zhou, Xiang Bai, Wenyu Liu, Longin Jan Latecki:

Fusion with Diffusion for Robust Visual Tracking. 2987-2995 - David A. Knowles, Konstantina Palla, Zoubin Ghahramani:

A nonparametric variable clustering model. 2996-3004 - James Y. Zou, Ryan P. Adams:

Priors for Diversity in Generative Latent Variable Models. 3005-3013 - Pedro A. Ortega, Jordi Grau-Moya, Tim Genewein, David Balduzzi, Daniel A. Braun:

A Nonparametric Conjugate Prior Distribution for the Maximizing Argument of a Noisy Function. 3014-3022 - Ofer Meshi, Tommi S. Jaakkola, Amir Globerson:

Convergence Rate Analysis of MAP Coordinate Minimization Algorithms. 3023-3031 - Madalina Fiterau, Artur Dubrawski:

Projection Retrieval for Classification. 3032-3040 - Yan Karklin, Chaitanya Ekanadham, Eero P. Simoncelli:

Hierarchical spike coding of sound. 3041-3049 - Joshua T. Abbott, Joseph L. Austerweil, Thomas L. Griffiths:

Human memory search as a random walk in a semantic network. 3050-3058 - Kevin Swersky, Daniel Tarlow, Ryan P. Adams, Richard S. Zemel, Brendan J. Frey:

Probabilistic n-Choose-k Models for Classification and Ranking. 3059-3067 - Jeffrey M. Beck, Katherine A. Heller, Alexandre Pouget:

Complex Inference in Neural Circuits with Probabilistic Population Codes and Topic Models. 3068-3076 - Dongho Kim, Kee-Eung Kim, Pascal Poupart:

Cost-Sensitive Exploration in Bayesian Reinforcement Learning. 3077-3085 - Xiao-Ming Wu, Zhenguo Li, Anthony Man-Cho So, John Wright, Shih-Fu Chang:

Learning with Partially Absorbing Random Walks. 3086-3094 - Azadeh Khaleghi, Daniil Ryabko:

Locating Changes in Highly Dependent Data with Unknown Number of Change Points. 3095-3103 - Jonathan Huang, Daniel C. Alexander:

Probabilistic Event Cascades for Alzheimer's disease. 3104-3112 - Brett Vintch, Andrew D. Zaharia, J. Anthony Movshon, Eero P. Simoncelli:

Efficient and direct estimation of a neural subunit model for sensory coding. 3113-3121 - Ping Li, Art B. Owen, Cun-Hui Zhang:

One Permutation Hashing. 3122-3130 - Shulin Yang, Liefeng Bo, Jue Wang, Linda G. Shapiro:

Unsupervised Template Learning for Fine-Grained Object Recognition. 3131-3139 - Teodor Mihai Moldovan, Pieter Abbeel:

Risk Aversion in Markov Decision Processes via Near Optimal Chernoff Bounds. 3140-3148 - Mohammad Emtiyaz Khan, Shakir Mohamed, Kevin P. Murphy:

Fast Bayesian Inference for Non-Conjugate Gaussian Process Regression. 3149-3157 - He He, Hal Daumé III, Jason Eisner:

Imitation Learning by Coaching. 3158-3166 - Ke Jiang, Brian Kulis, Michael I. Jordan:

Small-Variance Asymptotics for Exponential Family Dirichlet Process Mixture Models. 3167-3175 - Rodolphe Jenatton, Nicolas Le Roux, Antoine Bordes, Guillaume Obozinski:

A latent factor model for highly multi-relational data. 3176-3184 - Ping Li, Cun-Hui Zhang:

Entropy Estimations Using Correlated Symmetric Stable Random Projections. 3185-3193 - Piyush Rai, Abhishek Kumar, Hal Daumé III:

Simultaneously Leveraging Output and Task Structures for Multiple-Output Regression. 3194-3202 - Yichuan Zhang, Charles Sutton, Amos J. Storkey, Zoubin Ghahramani:

Continuous Relaxations for Discrete Hamiltonian Monte Carlo. 3203-3211 - Will Y. Zou, Andrew Y. Ng, Shenghuo Zhu, Kai Yu:

Deep Learning of Invariant Features via Simulated Fixations in Video. 3212-3220 - Victor Gabillon, Mohammad Ghavamzadeh, Alessandro Lazaric:

Best Arm Identification: A Unified Approach to Fixed Budget and Fixed Confidence. 3221-3229 - Matthew Coudron, Gilad Lerman:

On the Sample Complexity of Robust PCA. 3230-3238 - Matthew F. Der, Lawrence K. Saul:

Latent Coincidence Analysis: A Hidden Variable Model for Distance Metric Learning. 3239-3247 - Robert Gens, Pedro M. Domingos:

Discriminative Learning of Sum-Product Networks. 3248-3256 - Felipe W. Trevizan, Manuela M. Veloso:

Trajectory-Based Short-Sighted Probabilistic Planning. 3257-3265 - Jayadev Acharya, Hirakendu Das, Alon Orlitsky:

Tight Bounds on Profile Redundancy and Distinguishability. 3266-3274 - Nicolás Della Penna, Mark D. Reid, Rafael M. Frongillo:

Interpreting prediction markets: a stochastic approach. 3275-3283 - Amir Sani, Alessandro Lazaric, Rémi Munos:

Risk-Aversion in Multi-armed Bandits. 3284-3292 - Liva Ralaivola:

Confusion-Based Online Learning and a Passive-Aggressive Scheme. 3293-3301 - Kevin Swersky, Daniel Tarlow, Ilya Sutskever, Ruslan Salakhutdinov, Richard S. Zemel, Ryan P. Adams:

Cardinality Restricted Boltzmann Machines. 3302-3310

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














