


default search action
25th AISTATS 2022: Virtual Event
- Gustau Camps-Valls, Francisco J. R. Ruiz, Isabel Valera

:
International Conference on Artificial Intelligence and Statistics, AISTATS 2022, 28-30 March 2022, Virtual Event. Proceedings of Machine Learning Research 151, PMLR 2022 - Andrew Silva, Rohit Chopra, Matthew C. Gombolay:

Cross-Loss Influence Functions to Explain Deep Network Representations. 1-17 - Hao Jin, Yang Peng, Wenhao Yang, Shusen Wang, Zhihua Zhang:

Federated Reinforcement Learning with Environment Heterogeneity. 18-37 - Lan V. Truong:

On Linear Model with Markov Signal Priors. 38-53 - Jie Bian, Kwang-Sung Jun:

Maillard Sampling: Boltzmann Exploration Done Optimally. 54-72 - Spencer B. Gales

, Sunder Sethuraman, Kwang-Sung Jun:
Norm-Agnostic Linear Bandits. 73-91 - Zihan Li, Jonathan Scarlett:

Gaussian Process Bandit Optimization with Few Batches. 92-107 - Tavor Z. Baharav, Gary Cheng, Mert Pilanci, David Tse:

Approximate Function Evaluation via Multi-Armed Bandits. 108-135 - Yue Xing, Qifan Song, Guang Cheng:

Unlabeled Data Help: Minimax Analysis and Adversarial Robustness. 136-168 - Hyun-Suk Lee:

System-Agnostic Meta-Learning for MDP-based Dynamic Scheduling via Descriptive Policy. 169-187 - Chieh Tzu Wu, Aria Masoomi, Arthur Gretton, Jennifer G. Dy:

Deep Layer-wise Networks Have Closed-Form Weights. 188-225 - Oliver Cobb, Arnaud Van Looveren, Janis Klaise:

Sequential Multivariate Change Detection with Calibrated and Memoryless False Detection Rates. 226-239 - Parnian Kassraie, Andreas Krause:

Neural Contextual Bandits without Regret. 240-278 - Jiabin Chen, Rui Yuan, Guillaume Garrigos, Robert M. Gower:

SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums. 279-318 - Baturalp Yalcin, Haixiang Zhang, Javad Lavaei, Somayeh Sojoudi:

Factorization Approach for Low-complexity Matrix Completion Problems: Exponential Number of Spurious Solutions and Failure of Gradient Methods. 319-341 - Samrat Mukhopadhyay, Sourav Sahoo, Abhishek Sinha:

k-experts - Online Policies and Fundamental Limits. 342-365 - Eduard Gorbunov, Nicolas Loizou, Gauthier Gidel:

Extragradient Method: O(1/K) Last-Iterate Convergence for Monotone Variational Inequalities and Connections With Cocoercivity. 366-402 - Suho Shin, Seungjoon Lee, Jungseul Ok:

Multi-armed Bandit Algorithm against Strategic Replication. 403-431 - Zehao Dou, Zhuoran Yang, Zhaoran Wang, Simon S. Du:

Gap-Dependent Bounds for Two-Player Markov Games. 432-455 - Aadirupa Saha, Suprovat Ghoshal:

Exploiting Correlation to Achieve Faster Learning Rates in Low-Rank Preference Bandits. 456-482 - Zenan Ling, Fan Zhou, Meng Wei, Quanshi Zhang:

Exploring Image Regions Not Well Encoded by an INN. 483-509 - Xupeng Shi, Pengfei Zheng, A. Adam Ding, Yuan Gao, Weizhong Zhang:

Finding Dynamics Preserving Adversarial Winning Tickets. 510-528 - Agustinus Kristiadi, Matthias Hein, Philipp Hennig:

Being a Bit Frequentist Improves Bayesian Neural Networks. 529-545 - Louis Faury, Marc Abeille, Kwang-Sung Jun, Clément Calauzènes:

Jointly Efficient and Optimal Algorithms for Logistic Bandits. 546-580 - Sergio Hernan Garrido Mejia, Elke Kirschbaum, Dominik Janzing:

Obtaining Causal Information by Merging Datasets with MAXENT. 581-603 - Hengchao Chen, Qiang Sun:

Distributed Sparse Multicategory Discriminant Analysis. 604-624 - Nicholas Krämer, Jonathan Schmidt, Philipp Hennig:

Probabilistic Numerical Method of Lines for Time-Dependent Partial Differential Equations. 625-639 - Kevin Bello, Chuyang Ke, Jean Honorio

:
A View of Exact Inference in Graphs from the Degree-4 Sum-of-Squares Hierarchy. 640-654 - Yunhao Tang, Mark Rowland, Rémi Munos, Michal Valko:

Marginalized Operators for Off-policy Reinforcement Learning. 655-679 - Xun Qian, Rustem Islamov

, Mher Safaryan, Peter Richtárik:
Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning. 680-720 - Winnie Xu, Ricky T. Q. Chen, Xuechen Li, David Duvenaud:

Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations. 721-738 - Maggie Makar, Ben Packer, Dan Moldovan, Davis W. Blalock, Yoni Halpern, Alexander D'Amour:

Causally motivated shortcut removal using auxiliary labels. 739-766 - Anirban Santara, Gaurav Aggarwal, Shuai Li, Claudio Gentile:

Learning to Plan Variable Length Sequences of Actions with a Cascading Bandit Click Model of User Feedback. 767-797 - Sela Fried, Geoffrey Wolfer:

Identity Testing of Reversible Markov Chains. 798-817 - Or Dinari, Oren Freifeld:

Sampling in Dirichlet Process Mixture Models for Clustering Streaming Data. 818-835 - Youssef Diouane, Aurélien Lucchi, Vihang Prakash Patil:

A Globally Convergent Evolutionary Strategy for Stochastic Constrained Optimization with Applications to Reinforcement Learning. 836-859 - Gábor Balázs:

Adaptively Partitioning Max-Affine Estimators for Convex Regression. 860-874 - Jinlin Lai, Justin Domke, Daniel Sheldon:

Variational Marginal Particle Filters. 875-895 - Nhat Ho, Tianyi Lin, Michael I. Jordan:

On Structured Filtering-Clustering: Global Error Bound and Optimal First-Order Algorithms. 896-921 - Amanda Olmin

, Fredrik Lindsten:
Robustness and Reliability When Training With Noisy Labels. 922-942 - Charita Dellaporta, Jeremias Knoblauch, Theodoros Damoulas, François-Xavier Briol:

Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap. 943-970 - Pierre Laforgue, Giulia Clerici, Nicolò Cesa-Bianchi, Ran Gilad-Bachrach:

A Last Switch Dependent Analysis of Satiation and Seasonality in Bandits. 971-990 - Anas Barakat, Pascal Bianchi, Julien Lehmann:

Analysis of a Target-Based Actor-Critic Algorithm with Linear Function Approximation. 991-1040 - Sébastien M. R. Arnold, Pierre L'Ecuyer, Liyu Chen, Yi-Fan Chen, Fei Sha:

Policy Learning and Evaluation with Randomized Quasi-Monte Carlo. 1041-1061 - Trong Nghia Hoang, Anoop Deoras, Tong Zhao, Jin Li, George Karypis:

Learning Personalized Item-to-Item Recommendation Metric via Implicit Feedback. 1062-1077 - Jiaxin Hu, Miaoyan Wang:

Multiway Spherical Clustering via Degree-Corrected Tensor Block Models. 1078-1119 - Yuki Takezawa

, Ryoma Sato, Zornitsa Kozareva, Sujith Ravi, Makoto Yamada:
Fixed Support Tree-Sliced Wasserstein Barycenter. 1120-1137 - Jean Ruppert, Marharyta Aleksandrova, Thomas Engel:

k-Pareto Optimality-Based Sorting with Maximization of Choice. 1138-1160 - Jianfeng Chi, Jian Shen, Xinyi Dai, Weinan Zhang, Yuan Tian, Han Zhao:

Towards Return Parity in Markov Decision Processes. 1161-1178 - Vivek F. Farias, Andrew A. Li, Tianyi Peng:

Uncertainty Quantification for Low-Rank Matrix Completion with Heterogeneous and Sub-Exponential Noise. 1179-1189 - David Rindt, Robert Hu, David Steinsaltz, Dino Sejdinovic:

Survival regression with proper scoring rules and monotonic neural networks. 1190-1205 - Zheng Wang, Wei W. Xing, Robert M. Kirby, Shandian Zhe:

Physics Informed Deep Kernel Learning. 1206-1218 - Yaodong Yu, Tianyi Lin, Eric V. Mazumdar, Michael I. Jordan:

Fast Distributionally Robust Learning with Variance-Reduced Min-Max Optimization. 1219-1250 - Che-Ping Tsai, Adarsh Prasad, Sivaraman Balakrishnan, Pradeep Ravikumar:

Heavy-tailed Streaming Statistical Estimation. 1251-1282 - Agnieszka Slowik, Léon Bottou:

On Distributionally Robust Optimization and Data Rebalancing. 1283-1297 - Elad Romanov, Or Ordentlich:

Spiked Covariance Estimation from Modulo-Reduced Measurements. 1298-1320 - Pedro Cisneros-Velarde, Francesco Bullo:

A Contraction Theory Approach to Optimization Algorithms from Acceleration Flows. 1321-1335 - Taeho Yoon, Youngsuk Park, Ernest K. Ryu, Yuyang Wang:

Robust Probabilistic Time Series Forecasting. 1336-1358 - Randy Ardywibowo, Shahin Boluki, Zhangyang Wang, Bobak J. Mortazavi, Shuai Huang, Xiaoning Qian:

VFDS: Variational Foresight Dynamic Selection in Bayesian Neural Networks for Efficient Human Activity Recognition. 1359-1379 - Nino Vieillard, Marcin Andrychowicz, Anton Raichuk, Olivier Pietquin, Matthieu Geist:

Implicitly Regularized RL with Implicit Q-values. 1380-1402 - Jonas M. Kübler, Wittawat Jitkrittum, Bernhard Schölkopf, Krikamol Muandet:

A Witness Two-Sample Test. 1403-1419 - Graham Cormode, Akash Bharadwaj:

Sample-and-threshold differential privacy: Histograms and applications. 1420-1431 - Vlad Winter, Or Dinari, Oren Freifeld:

Common Failure Modes of Subcluster-based Sampling in Dirichlet Process Gaussian Mixture Models - and a Deep-learning Solution. 1432-1456 - Jan MacDonald, Stephan Wäldchen:

A Complete Characterisation of ReLU-Invariant Distributions. 1457-1484 - Chih-Kuan Yeh, Kuan-Yun Lee, Frederick Liu, Pradeep Ravikumar:

Threading the Needle of On and Off-Manifold Value Functions for Shapley Explanations. 1485-1502 - Luca Rendsburg, Agustinus Kristiadi, Philipp Hennig, Ulrike von Luxburg:

Discovering Inductive Bias with Gibbs Priors: A Diagnostic Tool for Approximate Bayesian Inference. 1503-1526 - Raymond A. Yeh, Yuan-Ting Hu, Mark Hasegawa-Johnson, Alexander G. Schwing:

Equivariance Discovery by Learned Parameter-Sharing. 1527-1545 - Youming Tao, Yulian Wu, Peng Zhao, Di Wang:

Optimal Rates of (Locally) Differentially Private Heavy-tailed Multi-Armed Bandits. 1546-1574 - Wenkai Xu:

Standardisation-function Kernel Stein Discrepancy: A Unifying View on Kernel Stein Discrepancy Tests for Goodness-of-fit. 1575-1597 - Cecilia Ferrando, Shufan Wang, Daniel Sheldon:

Parametric Bootstrap for Differentially Private Confidence Intervals. 1598-1618 - Alex Delalande

:
Nearly Tight Convergence Bounds for Semi-discrete Entropic Optimal Transport. 1619-1642 - Cristian I. Challu, Peihong Jiang, Ying Nian Wu, Laurent Callot:

Deep Generative model with Hierarchical Latent Factors for Time Series Anomaly Detection. 1643-1654 - Piotr Indyk, Frederik Mallmann-Trenn, Slobodan Mitrovic, Ronitt Rubinfeld:

Online Page Migration with ML Advice. 1655-1670 - Guanhua Chen, Xiaomao Li, Menggang Yu:

Policy Learning for Optimal Individualized Dose Intervals. 1671-1693 - Shibo Li, Zheng Wang, Robert M. Kirby, Shandian Zhe:

Deep Multi-Fidelity Active Learning of High-Dimensional Outputs. 1694-1711 - Mehdi Jafarnia-Jahromi, Rahul Jain, Ashutosh Nayyar:

Online Learning for Unknown Partially Observable MDPs. 1712-1732 - Lisha Chen, Tianyi Chen:

Is Bayesian Model-Agnostic Meta Learning Better than Model-Agnostic Meta Learning, Provably? 1733-1774 - Thomas S. Richardson, Yu Liu, James McQueen, Doug Hains:

A Bayesian Model for Online Activity Sample Sizes. 1775-1785 - Daniel Augusto de Souza

, Diego Mesquita, Samuel Kaski, Luigi Acerbi:
Parallel MCMC Without Embarrassing Failures. 1786-1804 - Dheeraj Baby, Yu-Xiang Wang:

Optimal Dynamic Regret in Proper Online Learning with Strongly Convex Losses and Beyond. 1805-1845 - Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, Yuichi Ike:

Counterfactual Explanation Trees: Transparent and Consistent Actionable Recourse with Decision Trees. 1846-1870 - Matthew J. Holland, El Mehdi Haress:

Spectral risk-based learning using unbounded losses. 1871-1886 - Donghao Ying, Yuhao Ding, Javad Lavaei:

A Dual Approach to Constrained Markov Decision Processes with Entropy Regularization. 1887-1909 - Yuhao Ding, Junzi Zhang, Javad Lavaei:

On the Global Optimum Convergence of Momentum-based Policy Gradient. 1910-1934 - Benjamin Poignard, Peter J. Naylor, Héctor Climente-González, Makoto Yamada:

Feature screening with kernel knockoffs. 1935-1974 - Danny Wood, Tingting Mu, Gavin Brown:

Bias-Variance Decompositions for Margin Losses. 1975-2001 - Xing Liu, Harrison Zhu, Jean-Francois Ton, George Wynne, Andrew B. Duncan:

Grassmann Stein Variational Gradient Descent. 2002-2021 - Dirk van der Hoeven, Nicolò Cesa-Bianchi:

Nonstochastic Bandits and Experts with Arm-Dependent Delays. 2022-2044 - Ruo-Chun Tzeng, Po-An Wang, Florian Adriaens, Aristides Gionis, Chi-Jen Lu:

Improved analysis of randomized SVD for top-eigenvector approximation. 2045-2072 - Alexander Munteanu, Simon Omlor, Christian Peters:

p-Generalized Probit Regression and Scalable Maximum Likelihood Estimation via Sketching and Coresets. 2073-2100 - Peng Zhao, Yu-Xiang Wang, Zhi-Hua Zhou:

Non-stationary Online Learning with Memory and Non-stochastic Control. 2101-2133 - Marius Memmel, Puze Liu, Davide Tateo, Jan Peters:

Dimensionality Reduction and Prioritized Exploration for Policy Search. 2134-2157 - Robin Vandaele, Bo Kang, Tijl De Bie, Yvan Saeys:

The Curse Revisited: When are Distances Informative for the Ground Truth in Noisy High-Dimensional Data? 2158-2172 - Piyushi Manupriya, Tarun Ram Menta, Saketha Nath Jagarlapudi, Vineeth N. Balasubramanian:

Improving Attribution Methods by Learning Submodular Functions. 2173-2190 - Elias Samuel Wirth, Sebastian Pokutta:

Conditional Gradients for the Approximately Vanishing Ideal. 2191-2209 - Dorian Baudry, Yoan Russac, Emilie Kaufmann:

Efficient Algorithms for Extreme Bandits. 2210-2248 - Sinho Chewi, Patrik R. Gerber, Chen Lu, Thibaut Le Gouic, Philippe Rigollet:

Rejection sampling from shape-constrained distributions in sublinear time. 2249-2265 - Siu Lun Chau, Javier González, Dino Sejdinovic:

Learning Inconsistent Preferences with Gaussian Processes. 2266-2281 - Susanne Trick, Constantin A. Rothkopf:

Bayesian Classifier Fusion with an Explicit Model of Correlation. 2282-2310 - Eugenio Clerico, George Deligiannidis, Arnaud Doucet:

Conditionally Gaussian PAC-Bayes. 2311-2329 - Monica N. Agrawal, Hunter Lang, Michael Offin, Lior Gazit, David A. Sontag:

Leveraging Time Irreversibility with Order-Contrastive Pre-training. 2330-2353 - Ethan Weinberger, Nicasia Beebe-Wang, Su-In Lee:

Moment Matching Deep Contrastive Latent Variable Models. 2354-2371 - Frederik Benzing:

Unifying Importance Based Regularisation Methods for Continual Learning. 2372-2396 - Adrian Rivera Cardoso, Ryan Rogers:

Differentially Private Histograms under Continual Observation: Streaming Selection into the Unknown. 2397-2419 - Botao Hao, Nevena Lazic, Dong Yin, Yasin Abbasi-Yadkori, Csaba Szepesvári:

Confident Least Square Value Iteration with Local Access to a Simulator. 2420-2435 - Ruihao Zhu, Branislav Kveton:

Safe Optimal Design with Applications in Off-Policy Learning. 2436-2447 - Salim I. Amoukou, Tangi Salaün, Nicolas J.-B. Brunel:

Accurate Shapley Values for explaining tree-based models. 2448-2465 - Tianyi Chen, Yuejiao Sun, Quan Xiao, Wotao Yin:

A Single-Timescale Method for Stochastic Bilevel Optimization. 2466-2488 - Lydia T. Liu, Nikhil Garg, Christian Borgs:

Strategic ranking. 2489-2518 - Evrard Garcelon, Matteo Pirotta, Vianney Perchet:

Encrypted Linear Contextual Bandit. 2519-2551 - Kristy Choi, Chenlin Meng, Yang Song, Stefano Ermon:

Density Ratio Estimation via Infinitesimal Classification. 2552-2573 - Jihun Yun, Aurélie C. Lozano, Eunho Yang:

AdaBlock: SGD with Practical Block Diagonal Matrix Adaptation for Deep Learning. 2574-2606 - Tian Tong, Cong Ma, Ashley Prater-Bennette, Erin E. Tripp, Yuejie Chi:

Scaling and Scalability: Provable Nonconvex Low-Rank Tensor Completion. 2607-2617 - Han Bao, Takuya Shimada, Liyuan Xu, Issei Sato, Masashi Sugiyama:

Pairwise Supervision Can Provably Elicit a Decision Boundary. 2618-2640 - Elan Rosenfeld, Pradeep Ravikumar, Andrej Risteski:

An Online Learning Approach to Interpolation and Extrapolation in Domain Generalization. 2641-2657 - Jiawei Huang, Nan Jiang:

On the Convergence Rate of Off-Policy Policy Optimization Methods with Density-Ratio Correction. 2658-2705 - Oliver E. Richardson:

Loss as the Inconsistency of a Probabilistic Dependency Graph: Choose Your Model, Not Your Loss Function. 2706-2735 - Yulai Zhao, Yuandong Tian, Jason D. Lee, Simon S. Du:

Provably Efficient Policy Optimization for Two-Player Zero-Sum Markov Games. 2736-2761 - Hajime Ono, Kazuhiro Minami, Hideitsu Hino:

One-bit Submission for Locally Private Quasi-MLE: Its Asymptotic Normality and Limitation. 2762-2783 - Tianyi Liu, Yan Li, Enlu Zhou, Tuo Zhao:

Noise Regularizes Over-parameterized Rank One Matrix Recovery, Provably. 2784-2802 - Hoyoung Kim, Seunghyuk Cho, Dongwoo Kim, Jungseul Ok:

Robust Deep Learning from Crowds with Belief Propagation. 2803-2822 - Ulysse Marteau-Ferey, Francis R. Bach, Alessandro Rudi:

Sampling from Arbitrary Functions via PSD Models. 2823-2861 - Rui Tuo, Wenjia Wang:

Uncertainty Quantification for Bayesian Optimization. 2862-2884 - Amit Peleg, Naama Pearl, Ron Meir:

Metalearning Linear Bandits by Prior Update. 2885-2926 - Kazu Ghalamkari, Mahito Sugiyama:

Fast Rank-1 NMF for Missing Data with KL Divergence. 2927-2940 - Othmane Sebbouh, Marco Cuturi, Gabriel Peyré:

Randomized Stochastic Gradient Descent Ascent. 2941-2969 - Olga Mikheeva, Ieva Kazlauskaite, Adam Hartshorne, Hedvig Kjellström, Carl Henrik Ek, Neill D. F. Campbell:

Aligned Multi-Task Gaussian Process. 2970-2988 - Emilien Dupont, Yee Whye Teh, Arnaud Doucet:

Generative Models as Distributions of Functions. 2989-3015 - Lukas Fromme, Jasmina Bogojeska

, Jonas Kuhn:
ContextGen: Targeted Data Generation for Low Resource Domain Specific Text Classification. 3016-3027 - Baptiste Goujaud, Damien Scieur, Aymeric Dieuleveut, Adrien B. Taylor, Fabian Pedregosa:

Super-Acceleration with Cyclical Step-sizes. 3028-3065 - Badr-Eddine Chérief-Abdellatif, Yuyang Shi, Arnaud Doucet, Benjamin Guedj:

On PAC-Bayesian reconstruction guarantees for VAEs. 3066-3079 - Alexander Bartler, Andre Bühler, Felix Wiewel, Mario Döbler, Bin Yang:

MT3: Meta Test-Time Training for Self-Supervised Test-Time Adaption. 3080-3090 - Rong Zhu, Branislav Kveton:

Random Effect Bandits. 3091-3107 - Matti Karppa, Martin Aumüller, Rasmus Pagh:

DEANN: Speeding up Kernel-Density Estimation using Approximate Nearest Neighbor Search. 3108-3137 - Maksim Velikanov, Roman V. Kail, Ivan Anokhin, Roman Vashurin, Maxim Panov, Alexey Zaytsev, Dmitry Yarotsky:

Embedded Ensembles: infinite width limit and operating regimes. 3138-3163 - Qiang Li, Hoi-To Wai:

State Dependent Performative Prediction with Stochastic Approximation. 3164-3186 - Mirco Mutti, Stefano Del Col, Marcello Restelli:

Reward-Free Policy Space Compression for Reinforcement Learning. 3187-3203 - Matías Altamirano, Felipe A. Tobar:

Nonstationary multi-output Gaussian processes via harmonizable spectral mixtures. 3204-3218 - Souhaib Ben Taieb:

Learning Quantile Functions for Temporal Point Processes with Recurrent Neural Splines. 3219-3241 - Jason Milionis, Alkis Kalavasis, Dimitris A. Fotakis, Stratis Ioannidis:

Differentially Private Regression with Unbounded Covariates. 3242-3273 - Honghao Wei, Xin Liu, Lei Ying

:
Triple-Q: A Model-Free Algorithm for Constrained Reinforcement Learning with Sublinear Regret and Zero Constraint Violation. 3274-3307 - William T. Stephenson, Soumya Ghosh, Tin D. Nguyen, Mikhail Yurochkin, Sameer K. Deshpande, Tamara Broderick:

Measuring the robustness of Gaussian processes to kernel choice. 3308-3331 - Rui Yuan, Robert M. Gower, Alessandro Lazaric:

A general sample complexity analysis of vanilla policy gradient. 3332-3380 - Matthäus Kleindessner, Samira Samadi, Muhammad Bilal Zafar, Krishnaram Kenthapadi, Chris Russell:

Pairwise Fairness for Ordinal Regression. 3381-3417 - Torty Sivill, Peter A. Flach:

LIMESegment: Meaningful, Realistic Time Series Explanations. 3418-3433 - Ben Adlam, Jake A. Levinson, Jeffrey Pennington:

A Random Matrix Perspective on Mixtures of Nonlinearities in High Dimensions. 3434-3457 - Takashi Furuya, Kazuma Suetake, Koichi Taniguchi, Hiroyuki Kusumoto, Ryuji Saiin, Tomohiro Daimon:

Spectral Pruning for Recurrent Neural Networks. 3458-3482 - Tin D. Nguyen, Brian L. Trippe, Tamara Broderick:

Many processors, little time: MCMC for partitions via optimal transport couplings. 3483-3514 - Michael E. Sander, Pierre Ablin, Mathieu Blondel, Gabriel Peyré:

Sinkformers: Transformers with Doubly Stochastic Attention. 3515-3530 - Kartik Sreenivasan, Shashank Rajput, Jy-yong Sohn, Dimitris S. Papailiopoulos:

Finding Nearly Everything within Random Binary Networks. 3531-3541 - Pola Schwöbel, Martin Jørgensen, Sebastian W. Ober, Mark van der Wilk:

Last Layer Marginal Likelihood for Invariance Learning. 3542-3555 - Arman Adibi, Aryan Mokhtari, Hamed Hassani:

Minimax Optimization: The Case of Convex-Submodular. 3556-3580 - John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat, Mani Malek, Dzmitry Huba:

Federated Learning with Buffered Asynchronous Aggregation. 3581-3607 - Jiajing Zheng, Alexander D'Amour, Alexander Franks:

Bayesian Inference and Partial Identification in Multi-Treatment Causal Inference with Unobserved Confounding. 3608-3626 - Chengkuan Hong, Christian R. Shelton:

Deep Neyman-Scott Processes. 3627-3646 - Jones Yirui Liu, Xinghao Qiao, Jessica Lam:

CATVI: Conditional and Adaptively Truncated Variational Inference for Hierarchical Bayesian Nonparametric Models. 3647-3662 - Ben Barrett, Alexander Camuto, Matthew Willetts, Tom Rainforth:

Certifiably Robust Variational Autoencoders. 3663-3683 - Kaiwen Zhou, Lai Tian, Anthony Man-Cho So, James Cheng:

Practical Schemes for Finding Near-Stationary Points of Convex Finite-Sums. 3684-3708 - Felix Biggs, Benjamin Guedj:

On Margins and Derandomisation in PAC-Bayes. 3709-3731 - Oshrat Bar, Amnon Drory, Raja Giryes:

A Spectral Perspective of DNN Robustness to Label Noise. 3732-3752 - Guanghui Wang, Ming Yang, Lijun Zhang, Tianbao Yang:

Momentum Accelerates the Convergence of Stochastic AUPRC Maximization. 3753-3771 - Lai Tian, Anthony Man-Cho So:

Computing D-Stationary Points of ρ-Margin Loss SVM. 3772-3793 - Xuhui Zhang, José H. Blanchet, Soumyadip Ghosh, Mark S. Squillante:

A Class of Geometric Structures in Transfer Learning: Minimax Bounds and Optimality. 3794-3820 - Berivan Isik, Tsachy Weissman, Albert No:

An Information-Theoretic Justification for Model Pruning. 3821-3846 - Aman Bansal, Rahul Chunduru, Deepesh Data, Manoj Prabhakaran:

Flexible Accuracy for Differential Privacy. 3847-3882 - Yue Wu, Dongruo Zhou

, Quanquan Gu:
Nearly Minimax Optimal Regret for Learning Infinite-horizon Average-reward MDPs with Linear Function Approximation. 3883-3913 - Vincent Cohen-Addad, Yunus Esencayi, Chenglin Fan, Marco Gaboardi

, Shi Li, Di Wang:
On Facility Location Problem in the Local Differential Privacy Model. 3914-3929 - Tongzheng Ren, Fuheng Cui, Alexia Atsidakou, Sujay Sanghavi, Nhat Ho:

Towards Statistical and Computational Complexities of Polyak Step Size Gradient Descent. 3930-3961 - Tony Ginart, Martin Jinye Zhang, James Zou:

MLDemon: Deployment Monitoring for Machine Learning Systems. 3962-3997 - Zachary Izzo, James Zou, Lexing Ying:

How to Learn when Data Gradually Reacts to Your Model. 3998-4035 - Rebecca Roelofs, Nicholas Cain, Jonathon Shlens, Michael C. Mozer:

Mitigating Bias in Calibration Error Estimation. 4036-4054 - Tatsuki Koga, Casey Meehan, Kamalika Chaudhuri:

Privacy Amplification by Subsampling in Time Domain. 4055-4069 - Shivam Garg, Santosh S. Vempala:

How and When Random Feedback Works: A Case Study of Low-Rank Matrix Factorization. 4070-4108 - Jingfeng Wu, Vladimir Braverman, Lin Yang

:
Gap-Dependent Unsupervised Exploration for Reinforcement Learning. 4109-4131 - Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, Marc G. Bellemare:

On the Generalization of Representations in Reinforcement Learning. 4132-4157 - Yao Zhang, Jeroen Berrevoets

, Mihaela van der Schaar:
Identifiable Energy-based Representations: An Application to Estimating Heterogeneous Causal Effects. 4158-4177 - Lei Wu:

Learning a Single Neuron for Non-monotonic Activation Functions. 4178-4197 - Jiaye Teng, Weiran Huang, Haowei He:

Can Pretext-Based Self-Supervised Learning Be Boosted by Downstream Data? A Theoretical Analysis. 4198-4216 - Qingfeng Lan, Samuele Tosatto, Homayoon Farrahi, Rupam Mahmood:

Model-free Policy Learning with Reward Gradients. 4217-4234 - Zhiyuan (Jerry) Lin, Raul Astudillo, Peter I. Frazier, Eytan Bakshy:

Preference Exploration for Efficient Bayesian Optimization with Multiple Outcomes. 4235-4258 - Jiafan He, Dongruo Zhou

, Quanquan Gu:
Near-optimal Policy Optimization Algorithms for Learning Adversarial Linear Mixture MDPs. 4259-4280 - Kiran Koshy Thekumparampil, Niao He, Sewoong Oh:

Lifted Primal-Dual Method for Bilinearly Coupled Smooth Minimax Optimization. 4281-4308 - Fan Wang, Oscar Hernan Madrid Padilla, Yi Yu, Alessandro Rinaldo:

Denoising and change point localisation in piecewise-constant high-dimensional regression coefficients. 4309-4338 - Yi Yu, Oscar Hernan Madrid Padilla, Alessandro Rinaldo:

Optimal partition recovery in general graphs. 4339-4358 - Jungtaek Kim, Seungjin Choi:

On Uncertainty Estimation by Tree-based Surrogate Models in Sequential Model-based Optimization. 4359-4375 - Mengjiao Yang, Bo Dai, Ofir Nachum, George Tucker, Dale Schuurmans:

Offline Policy Selection under Uncertainty. 4376-4396 - Khang Le, Huy Nguyen, Khai Nguyen, Tung Pham, Nhat Ho:

On Multimarginal Partial Optimal Transport: Equivalent Forms and Computational Complexity. 4397-4413 - Roy Fox, Stephen M. McAleer, Will Overman, Ioannis Panageas:

Independent Natural Policy Gradient always converges in Markov Potential Games. 4414-4425 - Beomsu Kim, Junghoon Seo:

Semi-Implicit Hybrid Gradient Methods with Application to Adversarial Robustness. 4426-4445 - Alejandro Catalina, Paul-Christian Bürkner, Aki Vehtari:

Projection Predictive Inference for Generalized Linear and Additive Multilevel Models. 4446-4461 - Larissa T. Triess, Andre Bühler, David Peter

, Fabian B. Flohr
, Marius Zöllner:
Point Cloud Generation with Continuous Conditioning. 4462-4481 - Adil Salim, Laurent Condat, Dmitry Kovalev, Peter Richtárik:

An Optimal Algorithm for Strongly Convex Minimization under Affine Constraints. 4482-4498 - Ana Lucic, Maartje A. ter Hoeve, Gabriele Tolomei, Maarten de Rijke, Fabrizio Silvestri:

CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks. 4499-4511 - Cen-You Li, Barbara Rakitsch, Christoph Zimmer:

Safe Active Learning for Multi-Output Gaussian Processes. 4512-4551 - Minyoung Kim, Ricardo Guerrero, Hai Xuan Pham, Vladimir Pavlovic:

Variational Continual Proxy-Anchor for Deep Metric Learning. 4552-4573 - Martin Pawelczyk, Chirag Agarwal, Shalmali Joshi, Sohini Upadhyay, Himabindu Lakkaraju:

Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis. 4574-4594 - Alexander Camuto, Matthew Willetts:

Variational Autoencoders: A Harmonic Perspective. 4595-4611 - Alex Nowak, Alessandro Rudi, Francis R. Bach:

On the Consistency of Max-Margin Losses. 4612-4633 - Georgios Arvanitidis, Bogdan M. Georgiev, Bernhard Schölkopf:

A prior-based approximate latent Riemannian metric. 4634-4658 - Junsoo Ha, Gunhee Kim:

On Convergence of Lookahead in Smooth Games. 4659-4684 - Fredrik K. Gustafsson, Martin Danelljan, Thomas B. Schön:

Learning Proposals for Practical Energy-Based Regression. 4685-4704 - Edward De Brouwer, Javier Gonzalez, Stephanie L. Hyland:

Predicting the impact of treatments over time with uncertainty aware neural differential equations. 4705-4722 - Daniel Vial, Advait Parulekar, Sanjay Shakkottai, R. Srikant:

Improved Algorithms for Misspecified Linear Markov Decision Processes. 4723-4746 - Max Baak, Simon Brugman, Ilan Fridman Rojas, Lorraine Dalmeida, Ralph E. Q. Urlus, Jean-Baptiste Oger:

Synthsonic: Fast, Probabilistic modeling and Synthesis of Tabular Data. 4747-4763 - Marcelo Hartmann

, Mark Girolami, Arto Klami:
Lagrangian manifold Monte Carlo on Monge patches. 4764-4781 - Yuqing Zhu, Jinshuo Dong, Yu-Xiang Wang:

Optimal Accounting of Differential Privacy via Characteristic Function. 4782-4817 - Felix L. Opolka, Yin-Cong Zhi, Pietro Liò, Xiaowen Dong:

Adaptive Gaussian Processes on Graphs via Spectral Graph Wavelets. 4818-4834 - Felix L. Opolka, Pietro Liò:

Bayesian Link Prediction with Deep Graph Convolutional Gaussian Processes. 4835-4852 - Jorge Silva, Felipe A. Tobar:

On the Interplay between Information Loss and Operation Loss in Representations for Classification. 4853-4871 - Georgios Arvanitidis, Miguel González Duque, Alison Pouplin, Dimitrios Kalatzis, Søren Hauberg:

Pulling back information geometry. 4872-4894 - Preetish Rath, Michael C. Hughes:

Optimizing Early Warning Classifiers to Control False Alarms via a Minimum Precision Constraint. 4895-4914 - Vincent Stimper, Bernhard Schölkopf, José Miguel Hernández-Lobato:

Resampling Base Distributions of Normalizing Flows. 4915-4936 - Chuyang Ke, Jean Honorio

:
Federated Myopic Community Detection with One-shot Communication. 4937-4954 - George Wynne, Veit Wild:

Variational Gaussian Processes: A Functional Analysis View. 4955-4971 - Jia-Jie Zhu, Christina Kouridi, Yassine Nemmour, Bernhard Schölkopf:

Adversarially Robust Kernel Smoothing. 4972-4994 - Thibault Séjourné, François-Xavier Vialard, Gabriel Peyré:

Faster Unbalanced Optimal Transport: Translation invariant Sinkhorn and 1-D Frank-Wolfe. 4995-5021 - Audrey Huang, Liu Leqi, Zachary C. Lipton, Kamyar Azizzadenesheli:

Off-Policy Risk Assessment for Markov Decision Processes. 5022-5050 - Futoshi Futami, Tomoharu Iwata, Naonori Ueda, Issei Sato, Masashi Sugiyama:

Predictive variational Bayesian inference as risk-seeking optimization. 5051-5083 - Ni Ding:

Kantorovich Mechanism for Pufferfish Privacy. 5084-5103 - Tom Yan, Chicheng Zhang:

Margin-distancing for safe model explanation. 5104-5134 - Dávid Terjék, Diego González-Sánchez:

Optimal transport with f-divergence regularization and generalized Sinkhorn algorithm. 5135-5165 - Wessel P. Bruinsma, Martin Tegner, Richard E. Turner:

Modelling Non-Smooth Signals with Complex Spectral Structure. 5166-5195 - Alain Rakotomamonjy, Rémi Flamary, Joseph Salmon, Gilles Gasso:

Convergent Working Set Algorithm for Lasso with Non-Convex Sparse Regularizers. 5196-5211 - Thanh Nguyen-Duc, Trung Le, He Zhao, Jianfei Cai, Dinh Q. Phung:

Particle-based Adversarial Local Distribution Regularization. 5212-5224 - Yaniv Tenzer, Omer Dror, Boaz Nadler, Erhan Bilal, Yuval Kluger:

Crowdsourcing Regression: A Spectral Approach. 5225-5242 - Damien Garreau:

How to scale hyperparameters for quickshift image segmentation. 5243-5275 - Beau Coker, Wessel P. Bruinsma, David R. Burt, Weiwei Pan, Finale Doshi-Velez:

Wide Mean-Field Bayesian Neural Networks Ignore the Data. 5276-5333 - Edwige Cyffers, Aurélien Bellet:

Privacy Amplification by Decentralization. 5334-5353 - Sahin Lale, Kamyar Azizzadenesheli, Babak Hassibi, Animashree Anandkumar:

Reinforcement Learning with Fast Stabilization in Linear Dynamical Systems. 5354-5390 - Murad Tukan, Xuan Wu, Samson Zhou, Vladimir Braverman, Dan Feldman:

New Coresets for Projective Clustering and Applications. 5391-5415 - Nhat Ho, Avi Feller, Evan Greif, Luke Miratrix, Natesh S. Pillai:

Weak Separation in Mixture Models and Implications for Principal Stratification. 5416-5458 - Rickard K. A. Karlsson, Martin Willbo, Zeshan M. Hussain, Rahul G. Krishnan, David A. Sontag, Fredrik Johansson:

Using time-series privileged information for provably efficient learning of prediction models. 5459-5484 - Junchi Yang, Antonio Orvieto, Aurélien Lucchi, Niao He:

Faster Single-loop Algorithms for Minimax Optimization without Strong Concavity. 5485-5517 - Hamed Shirzad, Hossein Hajimirsadeghi, Amir H. Abdi, Greg Mori:

TD-GEN: Graph Generation Using Tree Decomposition. 5518-5537 - Abhin Shah, Karthikeyan Shanmugam

, Kartik Ahuja:
Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge. 5538-5562 - Clément Bénard, Gérard Biau, Sébastien Da Veiga, Erwan Scornet:

SHAFF: Fast and consistent SHApley eFfect estimates via random Forests. 5563-5582 - Vibhor Porwal, Piyush Srivastava

, Gaurav Sinha:
Almost Optimal Universal Lower Bound for Learning Causal DAGs with Atomic Interventions. 5583-5603 - Feras Saad, Marco F. Cusumano-Towner, Vikash Mansinghka:

Estimators of Entropy and Information via Inference in Probabilistic Models. 5604-5621 - Yuqing Zhu, Yu-Xiang Wang:

Adaptive Private-K-Selection with Adaptive K and Application to Multi-label PATE. 5622-5635 - Pierre Ablin, Gabriel Peyré:

Fast and accurate optimization on the orthogonal manifold without retraction. 5636-5657 - Romain Laroche, Remi Tachet des Combes:

Beyond the Policy Gradient Theorem for Efficient Policy Updates in Actor-Critic Algorithms. 5658-5688 - Houssam Zenati, Alberto Bietti, Eustache Diemert, Julien Mairal, Matthieu Martin, Pierre Gaillard:

Efficient Kernelized UCB for Contextual Bandits. 5689-5720 - Ye Tian, Gesualdo Scutari, Tianyu Cao, Alexander V. Gasnikov:

Acceleration in Distributed Optimization under Similarity. 5721-5756 - Xuezhou Zhang, Yiding Chen, Xiaojin Zhu, Wen Sun:

Corruption-robust Offline Reinforcement Learning. 5757-5773 - Alix Lheritier, Nicolas Bondoux:

A Cramér Distance perspective on Quantile Regression based Distributional Reinforcement Learning. 5774-5789 - Kirill Neklyudov

, Max Welling:
Orbital MCMC. 5790-5814 - Shubham Anand Jain, Rohan Shah, Sanit Gupta, Denil Mehta, Inderjeet J. Nair, Jian Vora, Sushil Khyalia, Sourav Das, Vinay J. Ribeiro, Shivaram Kalyanakrishnan:

PAC Mode Estimation using PPR Martingale Confidence Sequences. 5815-5852 - Andrew D. McRae, Santhosh Karnik, Mark A. Davenport, Vidya K. Muthukumar:

Harmless interpolation in regression and classification with structured features. 5853-5875 - Amirkeivan Mohtashami, Martin Jaggi, Sebastian U. Stich:

Masked Training of Neural Networks with Partial Gradients. 5876-5890 - Adhyyan Narang, Evan Faulkner, Dmitriy Drusvyatskiy, Maryam Fazel, Lillian J. Ratliff:

Learning in Stochastic Monotone Games with Decision-Dependent Data. 5891-5912 - Rishi Saket, Aravindan Raghuveer, Balaraman Ravindran:

On Combining Bags to Better Learn from Label Proportions. 5913-5927 - Robert Müller, Aldo Pacchiano:

Meta Learning MDPs with linear transition models. 5928-5948 - James A. Brofos, Marylou Gabrié, Marcus A. Brubaker, Roy R. Lederman:

Adaptation of the Independent Metropolis-Hastings Sampler with Normalizing Flow Proposals. 5949-5986 - Horace Pan, Risi Kondor:

Permutation Equivariant Layers for Higher Order Interactions. 5987-6001 - Gerardo Duran-Martin, Aleyna Kara, Kevin Murphy:

Efficient Online Bayesian Inference for Neural Bandits. 6002-6021 - Jongha J. Ryu, Alankrita Bhatt, Young-Han Kim:

Parameter-Free Online Linear Optimization with Side Information via Universal Coin Betting. 6022-6044 - Gavin Brown, Shlomi Hod, Iden Kalemaj:

Performative Prediction in a Stateful World. 6045-6061 - Michael J. Curry, Uro Lyi, Tom Goldstein, John P. Dickerson:

Learning Revenue-Maximizing Auctions With Differentiable Matching. 6062-6073 - Ramit Sawhney, Shivam Agarwal, Atula Tejaswi Neerkaje, Kapil Jayesh Pathak:

Orthogonal Multi-Manifold Enriching of Directed Networks. 6074-6086 - Pratik Patil, Alessandro Rinaldo, Ryan J. Tibshirani:

Estimating Functionals of the Out-of-Sample Error Distribution in High-Dimensional Ridge Regression. 6087-6120 - Yujie Wang, Mike Izbicki:

The Tree Loss: Improving Generalization with Many Classes. 6121-6133 - Michalis K. Titsias, Jiaxin Shi:

Double Control Variates for Gradient Estimation in Discrete Latent Variable Models. 6134-6151 - Petru Tighineanu, Kathrin Skubch, Paul Baireuther, Attila Reiss, Felix Berkenkamp, Julia Vinogradska:

Transfer Learning with Gaussian Processes for Bayesian Optimization. 6152-6181 - Leda Liang, Brendan Juba:

Conditional Linear Regression for Heterogeneous Covariances. 6182-6199 - Wenshuo Guo, Kirthevasan Kandasamy, Joseph Gonzalez, Michael I. Jordan, Ion Stoica:

Learning Competitive Equilibria in Exchange Economies with Bandit Feedback. 6200-6224 - Mohamed El Amine Seddik, Changmin Wu, Johannes F. Lutzeyer, Michalis Vazirgiannis:

Node Feature Kernels Increase Graph Convolutional Network Robustness. 6225-6241 - Evrard Garcelon, Vashist Avadhanula, Alessandro Lazaric, Matteo Pirotta:

Top K Ranking for Multi-Armed Bandit with Noisy Evaluations. 6242-6269 - Staal Amund Vinterbo:

Differential privacy for symmetric log-concave mechanisms. 6270-6291 - Yujia Wang, Lu Lin, Jinghui Chen:

Communication-Compressed Adaptive Gradient Method for Distributed Nonconvex Optimization. 6292-6320 - Michael Dinitz, Aravind Srinivasan, Leonidas Tsepenekas, Anil Vullikanti:

Fair Disaster Containment via Graph-Cut Problems. 6321-6333 - Xinyuan Cao, Weiyang Liu, Santosh S. Vempala:

Provable Lifelong Learning of Representations. 6334-6356 - Wenshuo Guo, Kumar Krishna Agrawal, Aditya Grover, Vidya K. Muthukumar, Ashwin Pananjady:

Learning from an Exploring Demonstrator: Optimal Reward Estimation for Bandits. 6357-6386 - Darshan Chakrabarti, John P. Dickerson, Seyed A. Esmaeili, Aravind Srinivasan, Leonidas Tsepenekas:

A New Notion of Individually Fair Clustering: α-Equitable k-Center. 6387-6408 - Zeyu Zhou, Ziyu Gong, Pradeep Ravikumar, David I. Inouye:

Iterative Alignment Flows. 6409-6444 - Vincent Hsiao, Dana S. Nau, Rina Dechter:

Fast Fourier Transform Reductions for Bayesian Network Inference. 6445-6458 - Maxime Vono, Vincent Plassier, Alain Durmus, Aymeric Dieuleveut, Eric Moulines:

QLSD: Quantised Langevin Stochastic Dynamics for Bayesian Federated Learning. 6459-6500 - Moritz P. Hoffmann, Tanya Braun, Ralf Möller:

Lifted Division for Lifted Hugin Belief Propagation. 6501-6510 - Charlotte Bunne, Laetitia Papaxanthos, Andreas Krause, Marco Cuturi:

Proximal Optimal Transport Modeling of Population Dynamics. 6511-6528 - Chuanhao Li, Hongning Wang:

Asynchronous Upper Confidence Bound Algorithms for Federated Linear Bandits. 6529-6553 - Giacomo Meanti, Luigi Carratino, Ernesto De Vito, Lorenzo Rosasco:

Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression. 6554-6572 - Matteo Gamba, Adrian Chmielewski-Anders, Josephine Sullivan, Hossein Azizpour, Mårten Björkman:

Are All Linear Regions Created Equal? 6573-6590 - Joshua Agterberg, Jeremias Sulam:

Entrywise Recovery Guarantees for Sparse PCA via Sparsistent Algorithms. 6591-6629 - Shivam Garg, Samuele Tosatto, Yangchen Pan

, Martha White, Rupam Mahmood:
An Alternate Policy Gradient Estimator for Softmax Policies. 6630-6689 - Yuan Wu, Diana Inkpen, Ahmed El-Roby:

Co-Regularized Adversarial Learning for Multi-Domain Text Classification. 6690-6701 - Chinmay Maheshwari

, Chih-Yuan Chiu, Eric Mazumdar, Shankar Sastry, Lillian J. Ratliff:
Zeroth-Order Methods for Convex-Concave Min-max Problems: Applications to Decision-Dependent Risk Minimization. 6702-6734 - Yinglun Zhu, Julian Katz-Samuels, Robert D. Nowak:

Near Instance Optimal Model Selection for Pure Exploration Linear Bandits. 6735-6769 - Benito van der Zander, Marcel Wienöbst, Markus Bläser, Maciej Liskiewicz:

Identification in Tree-shaped Linear Structural Causal Models. 6770-6792 - Yinglun Zhu, Robert D. Nowak:

Pareto Optimal Model Selection in Linear Bandits. 6793-6813 - Arpit Agarwal, Sanjeev Khanna, Prathamesh Patil:

PAC Top-k Identification under SST in Limited Rounds. 6814-6839 - Yuyang Deng, Mohammad Mahdi Kamani, Mehrdad Mahdavi:

Local SGD Optimizes Overparameterized Neural Networks in Polynomial Time. 6840-6861 - Ervine Zheng, Qi Yu

, Rui Li, Pengcheng Shi, Anne R. Haake:
Dual-Level Adaptive Information Filtering for Interactive Image Segmentation. 6862-6879 - Branislav Kveton, Ofer Meshi, Masrour Zoghi, Zhen Qin:

On the Value of Prior in Online Learning to Rank. 6880-6892 - Jun Ho Yoon

, Daniel P. Jeong, Seyoung Kim:
Doubly Mixed-Effects Gaussian Process Regression. 6893-6908 - Yuntian Deng, Xingyu Zhou, Baekjin Kim, Ambuj Tewari, Abhishek Gupta, Ness B. Shroff:

Weighted Gaussian Process Bandits for Non-stationary Environments. 6909-6932 - Hailiang Dong, Chiradeep Roy, Tahrima Rahman, Vibhav Gogate

, Nicholas Ruozzi:
Conditionally Tractable Density Estimation using Neural Networks. 6933-6946 - Hsu Kao, Vijay G. Subramanian:

Common Information based Approximate State Representations in Multi-Agent Reinforcement Learning. 6947-6967 - Mojmir Mutny, Andreas Krause:

Sensing Cox Processes via Posterior Sampling and Positive Bases. 6968-6989 - Edwin Fong, Brieuc Lehmann:

A Predictive Approach to Bayesian Nonparametric Survival Analysis. 6990-7013 - Laura Balzano:

On the equivalence of Oja's algorithm and GROUSE. 7014-7030 - Hossein Esfandiari, Vahab S. Mirrokni, Umar Syed, Sergei Vassilvitskii:

Label differential privacy via clustering. 7055-7075 - Oscar Clivio, Fabian Falck, Brieuc Lehmann, George Deligiannidis, Chris C. Holmes:

Neural score matching for high-dimensional causal inference. 7076-7110 - Qin Ding, Cho-Jui Hsieh, James Sharpnack:

Robust Stochastic Linear Contextual Bandits Under Adversarial Attacks. 7111-7123 - Boris Ndjia Njike, Xavier Siebert:

Multi-class classification in nonparametric active learning. 7124-7162 - Claudia Shi, Dhanya Sridhar, Vishal Misra, David M. Blei:

On the Assumptions of Synthetic Control Methods. 7163-7175 - Anant Raj, Pooria Joulani, András György, Csaba Szepesvári:

Faster Rates, Adaptive Algorithms, and Finite-Time Bounds for Linear Composition Optimization and Gradient TD Learning. 7176-7186 - Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, Dipendra Misra:

Investigating the Role of Negatives in Contrastive Representation Learning. 7187-7209 - AmirEmad Ghassami, Andrew Ying, Ilya Shpitser, Eric Tchetgen Tchetgen:

Minimax Kernel Machine Learning for a Class of Doubly Robust Functionals with Application to Proximal Causal Inference. 7210-7239 - Dominic Danks

, Christopher Yau:
Derivative-Based Neural Modelling of Cumulative Distribution Functions for Survival Analysis. 7240-7256 - Zhengxin Zhang, Youssef Mroueh, Ziv Goldfeld, Bharath K. Sriperumbudur:

Cycle Consistent Probability Divergences Across Different Spaces. 7257-7285 - Yingyi Ma, Xinhua Zhang:

Warping Layer: Representation Learning for Label Structures in Weakly Supervised Learning. 7286-7299 - Sebastian Bordt, Ulrike von Luxburg:

A Bandit Model for Human-Machine Decision Making with Private Information and Opacity. 7300-7319 - Marco Rando, Luigi Carratino, Silvia Villa, Lorenzo Rosasco:

Ada-BKB: Scalable Gaussian Process Optimization on Continuous Domains by Adaptive Discretization. 7320-7348 - Jean Tarbouriech, Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Michal Valko, Alessandro Lazaric:

Adaptive Multi-Goal Exploration. 7349-7383 - Subhojyoti Mukherjee

, Ardhendu S. Tripathy, Robert D. Nowak:
Chernoff Sampling for Active Testing and Extension to Active Regression. 7384-7432 - Gholamali Aminian, Mahed Abroshan, Mohammad Mahdi Khalili, Laura Toni, Miguel R. D. Rodrigues:

An Information-theoretical Approach to Semi-supervised Learning under Covariate-shift. 7433-7449 - Eli N. Weinstein, Alan Nawzad Amin, Will S. Grathwohl, Daniel Kassler, Jean Disset, Debora S. Marks:

Optimal Design of Stochastic DNA Synthesis Protocols based on Generative Sequence Models. 7450-7482 - Ruida Zhou, Chao Tian:

Approximate Top-m Arm Identification with Heterogeneous Reward Variances. 7483-7504 - Arash A. Amini, Bryon Aragam, Qing Zhou:

On perfectness in Gaussian graphical models. 7505-7517 - Sumedh A. Sontakke, Stephen Iota, Zizhao Hu, Arash Mehrjou, Laurent Itti, Bernhard Schölkopf:

GalilAI: Out-of-Task Distribution Detection using Causal Active Experimentation for Safe Transfer RL. 7518-7530 - Arnab Bhattacharyya, Sutanu Gayen, Saravanan Kandasamy, Vedant Raval, N. Variyam Vinodchandran:

Efficient interventional distribution learning in the PAC framework. 7531-7549 - Benjamin J. Lengerich, Eric P. Xing, Rich Caruana:

Dropout as a Regularizer of Interaction Effects. 7550-7564 - Joey Hong, Branislav Kveton, Manzil Zaheer, Mohammad Ghavamzadeh, Craig Boutilier:

Thompson Sampling with a Mixture Prior. 7565-7586 - Ashwinee Panda, Saeed Mahloujifar, Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal:

SparseFed: Mitigating Model Poisoning Attacks in Federated Learning with Sparsification. 7587-7624 - Blake Mason, Lalit Jain, Subhojyoti Mukherjee

, Romain Camilleri, Kevin G. Jamieson, Robert D. Nowak:
Nearly Optimal Algorithms for Level Set Estimation. 7625-7658 - Guodong Zhang, Yuanhao Wang, Laurent Lessard, Roger B. Grosse:

Near-optimal Local Convergence of Alternating Gradient Descent-Ascent for Minimax Optimization. 7659-7679 - Abhin Shah, Wei-Ning Chen, Johannes Ballé, Peter Kairouz, Lucas Theis:

Optimal Compression of Locally Differentially Private Mechanisms. 7680-7723 - Joey Hong, Branislav Kveton, Manzil Zaheer, Mohammad Ghavamzadeh:

Hierarchical Bayesian Bandits. 7724-7741 - Jonathan P. Lorraine, David Acuna, Paul Vicol, David Duvenaud:

Complex Momentum for Optimization in Games. 7742-7765 - Hao Wu

, Anthony Wirth:
Asymptotically Optimal Locally Private Heavy Hitters via Parameterized Sketches. 7766-7798 - Matthew D. Hoffman, Pavel Sountsov:

Tuning-Free Generalized Hamiltonian Monte Carlo. 7799-7813 - Zebang Shen, Hamed Hassani, Satyen Kale, Amin Karbasi:

Federated Functional Gradient Boosting. 7814-7840 - Vidhi Lalchand, Aditya Ravuri, Neil D. Lawrence:

Generalised GPLVM with Stochastic Variational Inference. 7841-7864 - Eduard Gorbunov, Hugo Berard, Gauthier Gidel, Nicolas Loizou:

Stochastic Extragradient: General Analysis and Improved Rates. 7865-7901 - Axel Brando, Joan Gimeno, José A. Rodríguez-Serrano, Jordi Vitrià:

Deep Non-crossing Quantiles through the Partial Derivative. 7902-7914 - Yeonwoo Jeong, Deokjae Lee, Gaon An, Changyong Son, Hyun Oh Song:

Optimal channel selection with discrete QCQP. 7915-7941 - Antonio Orvieto, Jonas Kohler, Dario Pavllo, Thomas Hofmann, Aurélien Lucchi:

Vanishing Curvature in Randomly Initialized Deep ReLU Networks. 7942-7975 - Hugh Dance, Brooks Paige:

Fast and Scalable Spike and Slab Variable Selection in High-Dimensional Gaussian Processes. 7976-8002 - Spencer Frei, Difan Zou, Zixiang Chen, Quanquan Gu:

Self-training Converts Weak Learners to Strong Learners in Mixture Models. 8003-8021 - Jie Wang, Rui Gao, Yao Xie:

Two-Sample Test with Kernel Projected Wasserstein Distance. 8022-8055 - Hiroaki Sasaki, Jun-Ichiro Hirayama, Takafumi Kanamori:

Mode estimation on matrix manifolds: Convergence and robustness. 8056-8079 - Alex R. Dytso, Mario Goldenbaum, H. Vincent Poor, Shlomo Shamai:

A Dimensionality Reduction Method for Finding Least Favorable Priors with a Focus on Bregman Divergence. 8080-8094 - Ignavier Ng, Kun Zhang:

Towards Federated Bayesian Network Structure Learning with Continuous Optimization. 8095-8111 - Samory Kpotufe, Gan Yuan

, Yunfan Zhao:
Nuances in Margin Conditions Determine Gains in Active Learning. 8112-8126 - Youngsuk Park, Danielle C. Maddix, François-Xavier Aubet, Kelvin Kan, Jan Gasthaus, Yuyang Wang:

Learning Quantile Functions without Quantile Crossing for Distribution-free Time Series Forecasting. 8127-8150 - Murat A. Erdogdu, Rasa Hosseinzadeh, Shunshi Zhang:

Convergence of Langevin Monte Carlo in Chi-Squared and Rényi Divergence. 8151-8175 - Ignavier Ng, Sébastien Lachapelle, Nan Rosemary Ke, Simon Lacoste-Julien, Kun Zhang:

On the Convergence of Continuous Constrained Optimization for Structure Learning. 8176-8198 - Ilias Diakonikolas, Daniel Kane, Pasin Manurangsi, Lisheng Ren:

Hardness of Learning a Single Neuron with Adversarial Label Noise. 8199-8213 - Zhaobin Kuang, Chidubem G. Arachie, Bangyong Liang, Pradyumna Narayana, Giulia DeSalvo, Michael S. Quinn, Bert Huang, Geoffrey Downs, Yang Yang:

Firebolt: Weak Supervision Under Weaker Assumptions. 8214-8259 - Yuqiao Chen, Sriraam Natarajan, Nicholas Ruozzi:

Relational Neural Markov Random Fields. 8260-8269 - Warren R. Morningstar, Alex Alemi, Joshua V. Dillon:

PACm-Bayes: Narrowing the Empirical Risk Gap in the Misspecified Bayesian Regime. 8270-8298 - Devansh Bisla, Jing Wang, Anna Choromanska:

Low-Pass Filtering SGD for Recovering Flat Optima in the Deep Learning Optimization Landscape. 8299-8339 - Aaron J. Fisher:

Online Control of the False Discovery Rate under "Decision Deadlines". 8340-8359 - Shuai Xiao, Zaifan Jiang, Shuang Yang:

Tile Networks: Learning Optimal Geometric Layout for Whole-page Recommendation. 8360-8369 - Zai Shi, Atilla Eryilmaz:

A Bayesian Approach for Stochastic Continuum-armed Bandit with Long-term Constraints. 8370-8391 - Saeid Naderiparizi, Adam Scibior, Andreas Munk, Mehrdad Ghadiri, Atilim Gunes Baydin, Bradley J. Gram-Hansen, Christian A. Schröder de Witt, Robert Zinkov, Philip H. S. Torr, Tom Rainforth, Yee Whye Teh, Frank Wood:

Amortized Rejection Sampling in Universal Probabilistic Programming. 8392-8412 - Chenjun Xiao, Ilbin Lee, Bo Dai, Dale Schuurmans, Csaba Szepesvári:

The Curse of Passive Data Collection in Batch Reinforcement Learning. 8413-8438 - Gideon Dresdner, Maria-Luiza Vladarean, Gunnar Rätsch, Francesco Locatello, Volkan Cevher

, Alp Yurtsever:
Faster One-Sample Stochastic Conditional Gradient Method for Composite Convex Minimization. 8439-8457 - Zhiyu Zhang, Ashok Cutkosky

, Ioannis Ch. Paschalidis:
Adversarial Tracking Control via Strongly Adaptive Online Learning with Memory. 8458-8492 - Benjamin Letham, Phillip Guan, Chase Tymms, Eytan Bakshy, Michael Shvartsman:

Look-Ahead Acquisition Functions for Bernoulli Level Set Estimation. 8493-8513 - Ningyuan Chen, Xuefeng Gao, Yi Xiong:

Debiasing Samples from Online Learning Using Bootstrap. 8514-8533 - Geelon So, Gaurav Mahajan, Sanjoy Dasgupta:

Convergence of online k-means. 8534-8569 - Abhinav Aggarwal, Shiva Prasad Kasiviswanathan, Zekun Xu, Oluwaseyi Feyisetan, Nathanael Teissier:

Reconstructing Test Labels from Noisy Loss Functions. 8570-8591 - Ashwini Pokle, Jinjin Tian, Yuchen Li, Andrej Risteski:

Contrasting the landscape of contrastive and non-contrastive learning. 8592-8618 - Sharan Vaswani, Olivier Bachem, Simone Totaro, Robert Müller, Shivam Garg, Matthieu Geist, Marlos C. Machado

, Pablo Samuel Castro, Nicolas Le Roux:
A general class of surrogate functions for stable and efficient reinforcement learning. 8619-8649 - Joshua K. Behne, Galen Reeves:

Fundamental limits for rank-one matrix estimation with groupwise heteroskedasticity. 8650-8672 - Yuheng Bu, Gholamali Aminian, Laura Toni, Gregory W. Wornell, Miguel R. D. Rodrigues:

Characterizing and Understanding the Generalization Error of Transfer Learning with Gibbs Algorithm. 8673-8699 - Sana Tonekaboni, Chun-Liang Li, Sercan Ö. Arik, Anna Goldenberg, Tomas Pfister:

Decoupling Local and Global Representations of Time Series. 8700-8714 - Hung Tran-The, Sunil Gupta, Santu Rana, Svetha Venkatesh:

Regret Bounds for Expected Improvement Algorithms in Gaussian Process Bandit Optimization. 8715-8737 - Ming Gao, Wai Ming Tai, Bryon Aragam:

Optimal estimation of Gaussian DAG models. 8738-8757 - Ali Vakilian

, Mustafa Yalçiner:
Improved Approximation Algorithms for Individually Fair Clustering. 8758-8779 - Yongchan Kwon, James Zou:

Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning. 8780-8802 - Guillaume G. Martinet, Alexander Strzalkowski, Barbara E. Engelhardt:

Variance Minimization in the Wasserstein Space for Invariant Causal Prediction. 8803-8851 - Shiji Zhou, Han Zhao, Shanghang Zhang, Lianzhe Wang, Heng Chang, Zhi Wang, Wenwu Zhu:

Online Continual Adaptation with Active Self-Training. 8852-8883 - Honggang Wang, Anirban Bhattacharya, Debdeep Pati, Yun Yang:

Structured variational inference in Bayesian state-space models. 8884-8905 - Shengchao Liu, Meng Qu, Zuobai Zhang, Huiyu Cai, Jian Tang:

Structured Multi-task Learning for Molecular Property Prediction. 8906-8920 - Masahiro Nakano, Ryo Nishikimi, Yasuhiro Fujiwara, Akisato Kimura, Takeshi Yamada, Naonori Ueda:

Nonparametric Relational Models with Superrectangulation. 8921-8937 - Sarah Huiyi Cen, Devavrat Shah:

Regret, stability & fairness in matching markets with bandit learners. 8938-8968 - Chirag Agarwal, Marinka Zitnik, Himabindu Lakkaraju:

Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of GNN Explanation Methods. 8969-8996 - Yeshu Li, Zhan Shi, Xinhua Zhang, Brian D. Ziebart:

Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks. 8997-9016 - Daniel Csillag, Carolina Piazza, Thiago Ramos, João Vitor Romano, Roberto I. Oliveira, Paulo Orenstein:

ExactBoost: Directly Boosting the Margin in Combinatorial and Non-decomposable Metrics. 9017-9049 - Margalit R. Glasgow, Honglin Yuan, Tengyu Ma:

Sharp Bounds for Federated Averaging (Local SGD) and Continuous Perspective. 9050-9090 - Yizhou Chen, Shizhuo Zhang, Bryan Kian Hsiang Low:

Near-Optimal Task Selection for Meta-Learning with Mutual Information and Online Variational Bayesian Unlearning. 9091-9113 - Zhenlin Wang, Andrew J. Wagenmaker, Kevin G. Jamieson:

Best Arm Identification with Safety Constraints. 9114-9146 - Jiaojiao Fan, Isabel Haasler, Johan Karlsson, Yongxin Chen:

On the complexity of the optimal transport problem with graph-structured cost. 9147-9165 - Robert Dyro, Edward Schmerling, Nikos Aréchiga, Marco Pavone:

Second-Order Sensitivity Analysis for Bilevel Optimization. 9166-9181 - Soumyabrata Pal, Arya Mazumdar:

On Learning Mixture Models with Sparse Parameters. 9182-9213 - Yubo Zhuang, Xiaohui Chen, Yun Yang:

Sketch-and-lift: scalable subsampled semidefinite program for K-means clustering. 9214-9246 - Margalit R. Glasgow, Mary Wootters:

Asynchronous Distributed Optimization with Stochastic Delays. 9247-9279 - Yizhe Xu, Steve Yadlowsky:

Calibration Error for Heterogeneous Treatment Effects. 9280-9303 - Jiachang Liu, Chudi Zhong, Margo I. Seltzer, Cynthia Rudin:

Fast Sparse Classification for Generalized Linear and Additive Models. 9304-9333 - Robin A. Brown, Edward Schmerling, Navid Azizan, Marco Pavone:

A Unified View of SDP-based Neural Network Verification through Completely Positive Programming. 9334-9355 - Ashish Katiyar, Soumya Basu, Vatsal Shah, Constantine Caramanis:

Recoverability Landscape of Tree Structured Markov Random Fields under Symmetric Noise. 9356-9399 - Arnab Bhattacharyya, Davin Choo, Rishikesh Gajjala, Sutanu Gayen, Yuhao Wang:

Learning Sparse Fixed-Structure Gaussian Bayesian Networks. 9400-9429 - Kulin Shah, Amit Deshpande, Navin Goyal:

Learning and Generalization in Overparameterized Normalizing Flows. 9430-9504 - Clayton Hendrick Sanford, Vaggos Chatziafratis:

Expressivity of Neural Networks via Chaotic Itineraries beyond Sharkovsky's Theorem. 9505-9549 - Arman Serikuly Zharmagambetov, Miguel Á. Carreira-Perpiñán:

Learning Interpretable, Tree-Based Projection Mappings for Nonlinear Embeddings. 9550-9570 - Matthew Engelhard, Ricardo Henao:

Disentangling Whether from When in a Neural Mixture Cure Model for Failure Time Data. 9571-9581 - Kishan Panaganti, Dileep M. Kalathil:

Sample Complexity of Robust Reinforcement Learning with a Generative Model. 9582-9602 - Rachit Chhaya, Anirban Dasgupta, Jayesh Choudhari, Supratim Shit:

On Coresets for Fair Regression and Individually Fair Clustering. 9603-9625 - Ehsan Amid, Rohan Anil, Manfred K. Warmuth:

LocoProp: Enhancing BackProp via Local Loss Optimization. 9626-9642 - Jianyu Xu, Yu-Xiang Wang:

Towards Agnostic Feature-based Dynamic Pricing: Linear Policies vs Linear Valuation with Unknown Noise. 9643-9662 - Yan Shuo Tan, Abhineet Agarwal, Bin Yu:

A cautionary tale on fitting decision trees to data from additive models: generalization lower bounds. 9663-9685 - Xiaolu Wang, Peng Wang, Anthony Man-Cho So:

Exact Community Recovery over Signed Graphs. 9686-9710 - Eduardo Pavez:

Laplacian Constrained Precision Matrix Estimation: Existence and High Dimensional Consistency. 9711-9722 - Daniil Tiapkin

, Alexander V. Gasnikov:
Primal-Dual Stochastic Mirror Descent for MDPs. 9723-9740 - Atsushi Nitanda, Denny Wu, Taiji Suzuki:

Convex Analysis of the Mean Field Langevin Dynamics. 9741-9757 - Sharu Theresa Jose, Sangwoo Park, Osvaldo Simeone:

Information-Theoretic Analysis of Epistemic Uncertainty in Bayesian Meta-learning. 9758-9775 - Saad Hamid, Sebastian Schulze, Michael A. Osborne, Stephen J. Roberts:

Marginalising over Stationary Kernels with Bayesian Quadrature. 9776-9792 - Chris Junchi Li, Yaodong Yu, Nicolas Loizou, Gauthier Gidel, Yi Ma, Nicolas Le Roux, Michael I. Jordan:

On the Convergence of Stochastic Extragradient for Bilinear Games using Restarted Iteration Averaging. 9793-9826 - Stephen Sheng, Keerthi Vasan G. C

, Chi Po P. Choi, James Sharpnack, Tucker Jones:
An Unsupervised Hunt for Gravitational Lenses. 9827-9843 - Tam Le, Truyen Nguyen, Dinh Phung, Viet Anh Nguyen:

Sobolev Transport: A Scalable Metric for Probability Measures with Graph Metrics. 9844-9868 - Antoine Chatalic, Luigi Carratino, Ernesto De Vito, Lorenzo Rosasco:

Mean Nyström Embeddings for Adaptive Compressive Learning. 9869-9889 - Da Sun Handason Tam, Siyue Xie

, Wing Cheong Lau:
GraphAdaMix: Enhancing Node Representations with Graph Adaptive Mixtures. 9890-9907 - Alexander Levine, Soheil Feizi:

Provable Adversarial Robustness for Fractional Lp Threat Models. 9908-9942 - Sarbojit Roy, Jyotishka Ray Choudhury

, Subhajit Dutta:
On Some Fast And Robust Classifiers For High Dimension, Low Sample Size Data. 9943-9968 - Sofia Ek, Dave Zachariah, Peter Stoica:

Learning Pareto-Efficient Decisions with Confidence. 9969-9981 - Harish Doddi, Deepjyoti Deka, Saurav Talukdar, Murti V. Salapaka:

Efficient and passive learning of networked dynamical systems driven by non-white exogenous inputs. 9982-9997 - Malte Nalenz, Thomas Augustin:

Compressed Rule Ensemble Learning. 9998-10014 - Nathanael Bosch, Filip Tronarp, Philipp Hennig:

Pick-and-Mix Information Operators for Probabilistic ODE Solvers. 10015-10027 - Khaled Eldowa

, Lorenzo Bisi, Marcello Restelli:
Finite Sample Analysis of Mean-Volatility Actor-Critic for Risk-Averse Reinforcement Learning. 10028-10066 - Van Bach Nguyen, Kanishka Ghosh Dastidar, Michael Granitzer, Wissam Siblini:

The Importance of Future Information in Credit Card Fraud Detection. 10067-10077 - Antoine Barrier, Aurélien Garivier, Tomás Kocák:

A Non-asymptotic Approach to Best-Arm Identification for Gaussian Bandits. 10078-10109 - Maxence Noble, Aurélien Bellet, Aymeric Dieuleveut:

Differentially Private Federated Learning on Heterogeneous Data. 10110-10145 - Augustin Chevallier, Frédéric Cazals, Paul Fearnhead:

Efficient computation of the the volume of a polytope in high-dimensions using Piecewise Deterministic Markov Processes. 10146-10160 - Nicholas J. Irons, Meyer Scetbon, Soumik Pal, Zaïd Harchaoui:

Triangular Flows for Generative Modeling: Statistical Consistency, Smoothness Classes, and Fast Rates. 10161-10195 - YooJung Choi

, Tal Friedman, Guy Van den Broeck:
Solving Marginal MAP Exactly by Probabilistic Circuit Transformations. 10196-10208 - Julia Herbinger, Bernd Bischl, Giuseppe Casalicchio:

REPID: Regional Effect Plots with implicit Interaction Detection. 10209-10233 - Yassir Jedra, Alexandre Proutière:

Minimal Expected Regret in Linear Quadratic Control. 10234-10321 - Nicole Mücke, Enrico Reiss, Jonas Rungenhagen, Markus Klein:

Data-splitting improves statistical performance in overparameterized regimes. 10322-10350 - Yae Jee Cho, Jianyu Wang, Gauri Joshi:

Towards Understanding Biased Client Selection in Federated Learning. 10351-10375 - Morgane Goibert, Stéphan Clémençon, Ekhine Irurozki, Pavlo Mozharovskyi:

Statistical Depth Functions for Ranking Distributions: Definitions, Statistical Learning and Applications. 10376-10406 - Kazuki Koyama, Keisuke Kiritoshi, Tomomi Okawachi, Tomonori Izumitani:

Effective Nonlinear Feature Selection Method based on HSIC Lasso and with Variational Inference. 10407-10421 - Prem Talwai, Ali Shameli, David Simchi-Levi:

Sobolev Norm Learning Rates for Conditional Mean Embeddings. 10422-10447 - Reinhard Heckel:

Provable Continual Learning via Sketched Jacobian Approximations. 10448-10470 - Fei Gao

, Jiang Zhang, Yan Zhang:
Neural Enhanced Dynamic Message Passing. 10471-10482 - Paulina Tomaszewska

, Adam Zychowski, Jacek Mandziuk:
Duel-based Deep Learning system for solving IQ tests. 10483-10492 - Rui Wang, Wangli Xu:

On a Connection Between Fast and Sparse Oblivious Subspace Embeddings. 10493-10517 - Yannick Rudolph, Ulf Brefeld:

Modeling Conditional Dependencies in Multiagent Trajectories. 10518-10533 - Lenon Minorics, Ali Caner Türkmen, David Kernert, Patrick Blöbaum, Laurent Callot, Dominik Janzing:

Testing Granger Non-Causality in Panels with Cross-Sectional Dependencies. 10534-10554 - Ilan Price, Stephan Rasp:

Increasing the accuracy and resolution of precipitation forecasts using deep generative models. 10555-10571 - Guillaume Wang, Konstantin Donhauser, Fanny Yang:

Tight bounds for minimum ℓ1-norm interpolation of noisy data. 10572-10602 - Kelvin Kan, François-Xavier Aubet, Tim Januschowski, Youngsuk Park, Konstantinos Benidis, Lars Ruthotto, Jan Gasthaus:

Multivariate Quantile Function Forecaster. 10603-10621 - Alaa Maalouf, Murad Tukan, Eric Price, Daniel M. Kane, Dan Feldman:

Coresets for Data Discretization and Sine Wave Fitting. 10622-10639 - Alexander V. Nikitin, S. T. John, Arno Solin, Samuel Kaski:

Non-separable Spatio-temporal Graph Kernels via SPDEs. 10640-10660 - Ted Moskovitz, Michael Arbel, Jack Parker-Holder, Aldo Pacchiano:

Towards an Understanding of Default Policies in Multitask Policy Optimization. 10661-10686 - Oskar Kviman, Harald Melin, Hazal Koptagel, Victor Elvira, Jens Lagergren:

Multiple Importance Sampling ELBO and Deep Ensembles of Variational Approximations. 10687-10702 - Arne Nix, Suhas Shrinivasan, Edgar Y. Walker, Fabian H. Sinz:

Can Functional Transfer Methods Capture Simple Inductive Biases? 10703-10717 - Nicolas Emmenegger, Rasmus Kyng, Ahad N. Zehmakan:

On the Oracle Complexity of Higher-Order Smooth Non-Convex Finite-Sum Optimization. 10718-10752 - Federico Bergamin, Pierre-Alexandre Mattei, Jakob Drachmann Havtorn, Hugo Sénétaire, Hugo Schmutz, Lars Maaløe, Søren Hauberg, Jes Frellsen:

Model-agnostic out-of-distribution detection using combined statistical tests. 10753-10776 - Xiwei Cheng, Sidharth Jaggi, Qiaoqiao Zhou:

Generalized Group Testing. 10777-10835 - Yang Liu, Yifan Zhou, Ping Li, Feifang Hu:

Adaptive A/B Test on Networks with Cluster Structures. 10836-10851 - Flavio Chierichetti, Alessandro Panconesi, Giuseppe Re, Luca Trevisan:

Spectral Robustness for Correlation Clustering Reconstruction in Semi-Adversarial Models. 10852-10880 - Arshdeep Sekhon, Zhe Wang, Yanjun Qi:

Beyond Data Samples: Aligning Differential Networks Estimation with Scientific Knowledge. 10881-10923 - Sijia Li, Martín López-García, Neil D. Lawrence, Luisa Cutillo:

Two-way Sparse Network Inference for Count Data. 10924-10938 - Quan Zhou, Aaron Smith:

Rapid Convergence of Informed Importance Tempering. 10939-10965 - Edo Cohen-Karlik, Avichai Ben David, Nadav Cohen, Amir Globerson:

On the Implicit Bias of Gradient Descent for Temporal Extrapolation. 10966-10981 - Sanmitra Ghosh, Paul J. Birrell, Daniela De Angelis:

Differentiable Bayesian inference of SDE parameters using a pathwise series expansion of Brownian motion. 10982-10998 - Fedor Pavutnitskiy, Sergei O. Ivanov, Evgeniy Abramov, Viacheslav Borovitskiy, Artem Klochkov, Viktor Vyalov, Anatolii Zaikovskii, Aleksandr Petiushko:

Quadric Hypersurface Intersection for Manifold Learning in Feature Space. 10999-11013 - Yue Wu, Tao Jin, Hao Lou, Pan Xu, Farzad Farnoud, Quanquan Gu:

Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise Comparisons. 11014-11036 - David A. Bruns-Smith, Avi Feller:

Outcome Assumptions and Duality Theory for Balancing Weights. 11037-11055 - Setareh Ariafar, Justin Gilmer, Zachary Nado, Jasper Snoek, Rodolphe Jenatton, George E. Dahl:

Predicting the utility of search spaces for black-box optimization: a simple, budget-aware approach. 11056-11071 - Peilin Yu, Tiffany Ding, Stephen H. Bach:

Learning from Multiple Noisy Partial Labelers. 11072-11095 - Michail Fasoulakis, Evangelos Markakis, Yannis Pantazis, Constantinos Varsos:

Forward Looking Best-Response Multiplicative Weights Update Methods for Bilinear Zero-sum Games. 11096-11117 - Bahman Pedrood, Carlotta Domeniconi, Kathryn B. Laskey:

Hypergraph Simultaneous Generators. 11118-11130 - Joel Dyer, Patrick W. Cannon, Sebastian M. Schmon:

Amortised Likelihood-free Inference for Expensive Time-series Simulators with Signatured Ratio Estimation. 11131-11144 - Anish Acharya, Abolfazl Hashemi, Prateek Jain, Sujay Sanghavi, Inderjit S. Dhillon, Ufuk Topcu:

Robust Training in High Dimensions via Block Coordinate Geometric Median Descent. 11145-11168 - Nathan Kallus, Angela Zhou:

Stateful Offline Contextual Policy Evaluation and Learning. 11169-11194 - Zaiwei Chen, Siva Theja Maguluri:

Sample Complexity of Policy-Based Methods under Off-Policy Sampling and Linear Function Approximation. 11195-11214 - Osama A. Hanna, Lin Yang

, Christina Fragouli:
Solving Multi-Arm Bandit Using a Few Bits of Communication. 11215-11236 - Ehsan Mokhtarian

, Fateme Jamshidi, Jalal Etesami, Negar Kiyavash:
Causal Effect Identification with Context-specific Independence Relations of Control Variables. 11237-11246 - Lang Liu, Soumik Pal, Zaïd Harchaoui:

Entropy Regularized Optimal Transport Independence Criterion. 11247-11279 - Zihao Deng, Siddartha Devic, Brendan Juba:

Polynomial Time Reinforcement Learning in Factored State MDPs with Linear Value Functions. 11280-11304 - Arun Padakandla, Abram Magner:

PAC Learning of Quantum Measurement Classes : Sample Complexity Bounds and Universal Consistency. 11305-11319 - Sheikh Shams Azam

, Taejin Kim, Seyyedali Hosseinalipour, Carlee Joe-Wong, Saurabh Bagchi, Christopher G. Brinton:
Can we Generalize and Distribute Private Representation Learning? 11320-11340 - Isaac Sebenius, Topi Paananen, Aki Vehtari:

Feature Collapsing for Gaussian Process Variable Ranking. 11341-11355 - Wanrong Zhang, Yajun Mei, Rachel Cummings:

Private Sequential Hypothesis Testing for Statisticians: Privacy, Error Rates, and Sample Size. 11356-11373 - Elnur Gasanov, Ahmed Khaled, Samuel Horváth, Peter Richtárik:

FLIX: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning. 11374-11421 - Xinlei Xu, Awni Y. Hannun, Laurens van der Maaten:

Data Appraisal Without Data Sharing. 11422-11437 - Trung Le, Anh Tuan Bui, Le Minh Tri Tue, He Zhao, Paul Montague, Quan Hung Tran, Dinh Q. Phung:

On Global-view Based Defense via Adversarial Attack and Defense Risk Guaranteed Bounds. 11438-11460 - Omar Montasser, Steve Hanneke, Nathan Srebro:

Transductive Robust Learning Guarantees. 11461-11471 - Jinhang Zuo, Xutong Liu, Carlee Joe-Wong, John C. S. Lui, Wei Chen:

Online Competitive Influence Maximization. 11472-11502 - Anna Korba, François Portier:

Adaptive Importance Sampling meets Mirror Descent : a Bias-variance Tradeoff. 11503-11527 - Nicholas M. Boffi, Stephen Tu, Jean-Jacques E. Slotine:

The role of optimization geometry in single neuron learning. 11528-11549 - Samuel Deng, Yilin Guo, Daniel Hsu, Debmalya Mandal:

Learning Tensor Representations for Meta-Learning. 11550-11580 - Alireza Farhadi, MohammadTaghi Hajiaghayi, Elaine Shi:

Differentially Private Densest Subgraph. 11581-11597 - Wenjia Zhang, Yikai Zhang, Xiaoling Hu, Mayank Goswami, Chao Chen, Dimitris N. Metaxas:

A Manifold View of Adversarial Risk. 11598-11614 - Luca Corinzia, Paolo Penna, Wojciech Szpankowski, Joachim M. Buhmann:

Statistical and computational thresholds for the planted k-densest sub-hypergraph problem. 11615-11640 - Amy E. Babay

, Michael Dinitz, Aravind Srinivasan, Leonidas Tsepenekas, Anil Vullikanti
:
Controlling Epidemic Spread using Probabilistic Diffusion Models on Networks. 11641-11654 - Bahar Azari, Deniz Erdogmus:

Equivariant Deep Dynamical Model for Motion Prediction. 11655-11668 - John Paul Ryan, Sebastian E. Ament, Carla P. Gomes, Anil Damle:

The Fast Kernel Transform. 11669-11690 - Sloan Nietert

, Ziv Goldfeld, Rachel Cummings:
Outlier-Robust Optimal Transport: Duality, Structure, and Statistical Analysis. 11691-11719 - Luis A. Ortega

, Rafael Cabañas, Andrés R. Masegosa:
Diversity and Generalization in Neural Network Ensembles. 11720-11743

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














