default search action
Fang-Xiang Wu
Person information
- affiliation: University of Saskatchewan, Saskatoon, SK, Canada
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j204]Minghan Fu, Ming Fang, Rayyan Azam Khan, Bo Liao, Zhanli Hu, Fang-Xiang Wu:
SG-Fusion: A swin-transformer and graph convolution-based multi-modal deep neural network for glioma prognosis. Artif. Intell. Medicine 157: 102972 (2024) - [j203]Ming Fang, Minghan Fu, Bo Liao, Xiujuan Lei, Fang-Xiang Wu:
Deep integrated fusion of local and global features for cervical cell classification. Comput. Biol. Medicine 171: 108153 (2024) - [j202]Ming Fang, Bo Liao, Xiujuan Lei, Fang-Xiang Wu:
A systematic review on deep learning based methods for cervical cell image analysis. Neurocomputing 610: 128630 (2024) - [j201]Minghan Fu, Na Zhang, Zhenxing Huang, Chao Zhou, Xu Zhang, Jianmin Yuan, Qiang He, Yongfeng Yang, Hairong Zheng, Dong Liang, Fang-Xiang Wu, Wei Fan, Zhanli Hu:
OIF-Net: An Optical Flow Registration-Based PET/MR Cross-Modal Interactive Fusion Network for Low-Count Brain PET Image Denoising. IEEE Trans. Medical Imaging 43(4): 1554-1567 (2024) - [c105]Minghan Fu, Fang-Xiang Wu:
QLABGrad: A Hyperparameter-Free and Convergence-Guaranteed Scheme for Deep Learning. AAAI 2024: 12072-12081 - [c104]Rawshon Raha, Qiang Liu, Fang-Xiang Wu:
An Ensemble Learning Model for Predicting Unseen TCR-Epitope Interactions. ISBRA (1) 2024: 449-460 - 2023
- [j200]Yiming Li, Min Zeng, Fuhao Zhang, Fang-Xiang Wu, Min Li:
DeepCellEss: cell line-specific essential protein prediction with attention-based interpretable deep learning. Bioinform. 39(1) (2023) - [j199]Xuhua Yan, Ruiqing Zheng, Fang-Xiang Wu, Min Li:
CLAIRE: contrastive learning-based batch correction framework for better balance between batch mixing and preservation of cellular heterogeneity. Bioinform. 39(3) (2023) - [j198]Ze-Gang Wei, Peng-Yu Bu, Xiao-Dan Zhang, Fei Liu, Yu Qian, Fang-Xiang Wu:
invMap: a sensitive mapping tool for long noisy reads with inversion structural variants. Bioinform. 39(12) (2023) - [j197]Rayyan Azam Khan, Yigang Luo, Fang-Xiang Wu:
Multi-level GAN based enhanced CT scans for liver cancer diagnosis. Biomed. Signal Process. Control. 81: 104450 (2023) - [j196]Xiaoman Duan, Xiao Fan Ding, Naitao Li, Fang-Xiang Wu, Xiongbiao Chen, Ning Zhu:
Sparse2Noise: Low-dose synchrotron X-ray tomography without high-quality reference data. Comput. Biol. Medicine 165: 107473 (2023) - [j195]Yuchen Zhang, Xiujuan Lei, Cai Dai, Yi Pan, Fang-Xiang Wu:
Identify potential circRNA-disease associations through a multi-objective evolutionary algorithm. Inf. Sci. 647: 119437 (2023) - [j194]Rayyan Azam Khan, Minghan Fu, Brent Burbridge, Yigang Luo, Fang-Xiang Wu:
A multi-modal deep neural network for multi-class liver cancer diagnosis. Neural Networks 165: 553-561 (2023) - [j193]Ali Akbar Jamali, Anthony J. Kusalik, Fang-Xiang Wu:
NMTF-DTI: A Nonnegative Matrix Tri-factorization Approach With Multiple Kernel Fusion for Drug-Target Interaction Prediction. IEEE ACM Trans. Comput. Biol. Bioinform. 20(1): 586-594 (2023) - [j192]Yulian Ding, Xiujuan Lei, Bo Liao, Fang-Xiang Wu:
Biomarker Identification via a Factorization Machine-Based Neural Network With Binary Pairwise Encoding. IEEE ACM Trans. Comput. Biol. Bioinform. 20(3): 2136-2146 (2023) - [j191]Minghan Fu, Meiyun Wang, Yaping Wu, Na Zhang, Yongfeng Yang, Haining Wang, Yun Zhou, Yue Shang, Fang-Xiang Wu, Hairong Zheng, Dong Liang, Zhanli Hu:
A Two-Branch Neural Network for Short-Axis PET Image Quality Enhancement. IEEE J. Biomed. Health Informatics 27(6): 2864-2875 (2023) - [c103]Kang Jiang, Bo Liao, Petros Papagerakis, Fang-Xiang Wu:
Imputing single-cell RNA-seq data by graph autoencoder with multi-kernel. BIBM 2023: 228-232 - [c102]Yajun Liu, Ru Li, Aimin Li, Rong Fei, Guo Xie, Fang-Xiang Wu:
Prediction of piRNA-mRNA interactions based on an interactive inference network. BIBM 2023: 251-254 - [c101]Yuekun Dai, Chongyi Li, Shangchen Zhou, Ruicheng Feng, Qingpeng Zhu, Qianhui Sun, Wenxiu Sun, Chen Change Loy, Jinwei Gu, Shuai Liu, Hao Wang, Chaoyu Feng, Luyang Wang, Guangqi Shao, Chenguang Zhang, Xiaotao Wang, Lei Lei, Dafeng Zhang, Xiangyu Kong, Guanqun Liu, Mengmeng Bai, Jia Ouyang, Xiaobing Wang, Jiahui Yuan, Xinpeng Li, Chengzhi Jiang, Ting Jiang, Wenjie Lin, Qi Wu, Mingyan Han, Jinting Luo, Lei Yu, Haoqiang Fan, Shuaicheng Liu, Bo Yan, Zhuang Li, Yadong Li, Hongbin Wang, Soonyong Song, Minghan Fu, Rayyan Azam Khan, Fang-Xiang Wu, Zhao Zhang, Suiyi Zhao, Huan Zheng, Yangcheng Gao, Yanyan Wei, Jiahuan Ren, Bo Wang, Yan Luo, Shuaibo Gao, Wenhui Wu, Sicong Kang, Nikhil Akalwadi, Ankit Raichur, Vinod Patil, Allabakash Ghodesawar, Swaroop Adrashyappanamath, Amogh Joshi, Chaitra Desai, Ramesh Ashok Tabib, Ujwala Patil, Uma Mudenagudi, Sicheng Li, Ruoxi Zhu, Jiazheng Lian, Shusong Xu, Zihao Liu, Sabari Nathan, Priya Kansal:
MIPI 2023 Challenge on Nighttime Flare Removal: Methods and Results. CVPR Workshops 2023: 2853-2863 - [i1]Minghan Fu, Fang-Xiang Wu:
QLAB: Quadratic Loss Approximation-Based Optimal Learning Rate for Deep Learning. CoRR abs/2302.00252 (2023) - 2022
- [j190]Ming Fang, Xiujuan Lei, Bo Liao, Fang-Xiang Wu:
A Deep Neural Network for Cervical Cell Classification Based on Cytology Images. IEEE Access 10: 130968-130980 (2022) - [j189]Rayyan Azam Khan, Yigang Luo, Fang-Xiang Wu:
RMS-UNet: Residual multi-scale UNet for liver and lesion segmentation. Artif. Intell. Medicine 124: 102231 (2022) - [j188]Ying An, Xianyun Xia, Xianlai Chen, Fang-Xiang Wu, Jianxin Wang:
Chinese clinical named entity recognition via multi-head self-attention based BiLSTM-CRF. Artif. Intell. Medicine 127: 102282 (2022) - [j187]Cui-Xiang Lin, Hong-Dong Li, Chao Deng, Weisheng Liu, Shannon Erhardt, Fang-Xiang Wu, Xing-Ming Zhao, Yuanfang Guan, Jun Wang, Daifeng Wang, Bin Hu, Jianxin Wang:
An integrated brain-specific network identifies genes associated with neuropathologic and clinical traits of Alzheimer's disease. Briefings Bioinform. 23(1) (2022) - [j186]Fei Wang, Xiujuan Lei, Bo Liao, Fang-Xiang Wu:
Predicting drug-drug interactions by graph convolutional network with multi-kernel. Briefings Bioinform. 23(1) (2022) - [j185]Min Zeng, Yifan Wu, Chengqian Lu, Fuhao Zhang, Fang-Xiang Wu, Min Li:
DeepLncLoc: a deep learning framework for long non-coding RNA subcellular localization prediction based on subsequence embedding. Briefings Bioinform. 23(1) (2022) - [j184]Ju Xiang, Jiashuai Zhang, Yichao Zhao, Fang-Xiang Wu, Min Li:
Biomedical data, computational methods and tools for evaluating disease-disease associations. Briefings Bioinform. 23(2) (2022) - [j183]Yulian Ding, Xiujuan Lei, Bo Liao, Fang-Xiang Wu:
MLRDFM: a multi-view Laplacian regularized DeepFM model for predicting miRNA-disease associations. Briefings Bioinform. 23(3) (2022) - [j182]Ju Xiang, Xiangmao Meng, Yichao Zhao, Fang-Xiang Wu, Min Li:
HyMM: hybrid method for disease-gene prediction by integrating multiscale module structure. Briefings Bioinform. 23(3) (2022) - [j181]Caimao Zhou, Dejun Peng, Bo Liao, Ranran Jia, Fang-Xiang Wu:
ACP_MS: prediction of anticancer peptides based on feature extraction. Briefings Bioinform. 23(6) (2022) - [j180]Cheng Yan, Guihua Duan, Na Li, Lishen Zhang, Fang-Xiang Wu, Jianxin Wang:
PDMDA: predicting deep-level miRNA-disease associations with graph neural networks and sequence features. Bioinform. 38(8): 2226-2234 (2022) - [j179]Chunyan Fan, Xiujuan Lei, Jiaojiao Tie, Yuchen Zhang, Fang-Xiang Wu, Yi Pan:
CircR2Disease v2.0: An Updated Web Server for Experimentally Validated circRNA-disease Associations and Its Application. Genom. Proteom. Bioinform. 20(3): 435-445 (2022) - [j178]Rayyan Azam Khan, Yigang Luo, Fang-Xiang Wu:
Multi-scale GAN with residual image learning for removing heterogeneous blur. IET Image Process. 16(9): 2412-2431 (2022) - [j177]Rayyan Azam Khan, Yigang Luo, Fang-Xiang Wu:
Machine learning based liver disease diagnosis: A systematic review. Neurocomputing 468: 492-509 (2022) - [j176]Fang-Xiang Wu, Min Li, Lukasz A. Kurgan, Luis Rueda:
Guest editorial: Deep neural networks for precision medicine. Neurocomputing 469: 330-331 (2022) - [j175]Wutao Yin, Longhai Li, Fang-Xiang Wu:
Deep learning for brain disorder diagnosis based on fMRI images. Neurocomputing 469: 332-345 (2022) - [j174]Yifan Wu, Min Zeng, Zhihui Fei, Ying Yu, Fang-Xiang Wu, Min Li:
KAICD: A knowledge attention-based deep learning framework for automatic ICD coding. Neurocomputing 469: 376-383 (2022) - [j173]Wutao Yin, Longhai Li, Fang-Xiang Wu:
A semi-supervised autoencoder for autism disease diagnosis. Neurocomputing 483: 140-147 (2022) - [j172]Wutao Yin, Longhai Li, Fang-Xiang Wu:
Corrigendum to "Deep learning for brain disorder diagnosis based on fMRI images" [Neurocomputing 469 (2022) 332-345]. Neurocomputing 509: 271 (2022) - [j171]Cheng Yan, Guihua Duan, Yayan Zhang, Fang-Xiang Wu, Yi Pan, Jianxin Wang:
Predicting Drug-Drug Interactions Based on Integrated Similarity and Semi-Supervised Learning. IEEE ACM Trans. Comput. Biol. Bioinform. 19(1): 168-179 (2022) - [j170]Fei Wang, Yulian Ding, Xiujuan Lei, Bo Liao, Fang-Xiang Wu:
Identifying Gene Signatures for Cancer Drug Repositioning Based on Sample Clustering. IEEE ACM Trans. Comput. Biol. Bioinform. 19(2): 953-965 (2022) - [j169]Haonan Feng, Ruiqing Zheng, Jianxin Wang, Fang-Xiang Wu, Min Li:
NIMCE: A Gene Regulatory Network Inference Approach Based on Multi Time Delays Causal Entropy. IEEE ACM Trans. Comput. Biol. Bioinform. 19(2): 1042-1049 (2022) - [j168]Liangliang Liu, Shaojie Tang, Fang-Xiang Wu, Yu-Ping Wang, Jianxin Wang:
An Ensemble Hybrid Feature Selection Method for Neuropsychiatric Disorder Classification. IEEE ACM Trans. Comput. Biol. Bioinform. 19(3): 1459-1471 (2022) - [j167]Xiangmao Meng, Ju Xiang, Ruiqing Zheng, Fang-Xiang Wu, Min Li:
DPCMNE: Detecting Protein Complexes From Protein-Protein Interaction Networks Via Multi-Level Network Embedding. IEEE ACM Trans. Comput. Biol. Bioinform. 19(3): 1592-1602 (2022) - [j166]Xingyi Li, Ju Xiang, Fang-Xiang Wu, Min Li:
A Dual Ranking Algorithm Based on the Multiplex Network for Heterogeneous Complex Disease Analysis. IEEE ACM Trans. Comput. Biol. Bioinform. 19(4): 1993-2002 (2022) - [j165]Zhongjian Cheng, Cheng Yan, Fang-Xiang Wu, Jianxin Wang:
Drug-Target Interaction Prediction Using Multi-Head Self-Attention and Graph Attention Network. IEEE ACM Trans. Comput. Biol. Bioinform. 19(4): 2208-2218 (2022) - [j164]Yulian Ding, Xiujuan Lei, Bo Liao, Fang-Xiang Wu:
Predicting miRNA-Disease Associations Based On Multi-View Variational Graph Auto-Encoder With Matrix Factorization. IEEE J. Biomed. Health Informatics 26(1): 446-457 (2022) - [j163]Xiangmao Meng, Wenkai Li, Ju Xiang, Hayat Dino Bedru, Wenkang Wang, Fang-Xiang Wu, Min Li:
Temporal-Spatial Analysis of the Essentiality of Hub Proteins in Protein-Protein Interaction Networks. IEEE Trans. Netw. Sci. Eng. 9(5): 3504-3514 (2022) - [c100]Yajun Liu, Yulian Ding, Aimin Li, Rong Fei, Guo Xie, Fang-Xiang Wu:
Prediction of exosomal piRNAs based on deep learning for sequence embedding with attention mechanism. BIBM 2022: 158-161 - [c99]Siqi Chen, Ruiqing Zheng, Luyi Tian, Fang-Xiang Wu, Min Li:
BayesImpute: a Bayesian imputation method for single-cell RNA-seq data. BIBM 2022: 194-199 - [c98]Cheng Yan, Guihua Duan, Fang-Xiang Wu:
EMDS: predicting essential miRNAs based on deep learning and sequences. BIBM 2022: 613-618 - [c97]Rawshon Raha, Yulian Ding, Qiang Liu, Fang-Xiang Wu:
Unseen Epitope-TCR Interaction Prediction based on Amino Acid Physicochemical Properties. BIBM 2022: 3122-3129 - 2021
- [j162]Huimin Luo, Min Li, Mengyun Yang, Fang-Xiang Wu, Yaohang Li, Jianxin Wang:
Biomedical data and computational models for drug repositioning: a comprehensive review. Briefings Bioinform. 22(2): 1604-1619 (2021) - [j161]Jiancheng Zhong, Yusui Sun, Minzhu Xie, Wei Peng, Chushu Zhang, Fang-Xiang Wu, Jianxin Wang:
Proteoform characterization based on top-down mass spectrometry. Briefings Bioinform. 22(2): 1729-1750 (2021) - [j160]Xiaoqing Peng, Hong-Dong Li, Fang-Xiang Wu, Jianxin Wang:
Identifying the tissues-of-origin of circulating cell-free DNAs is a promising way in noninvasive diagnostics. Briefings Bioinform. 22(3) (2021) - [j159]Zhongqi Wen, Cheng Yan, Guihua Duan, Suning Li, Fang-Xiang Wu, Jianxin Wang:
A survey on predicting microbe-disease associations: biological data and computational methods. Briefings Bioinform. 22(3) (2021) - [j158]You Zou, Yuejie Zhu, Yaohang Li, Fang-Xiang Wu, Jianxin Wang:
Parallel computing for genome sequence processing. Briefings Bioinform. 22(5) (2021) - [j157]Chengqian Lu, Min Zeng, Fang-Xiang Wu, Min Li, Jianxin Wang:
Improving circRNA-disease association prediction by sequence and ontology representations with convolutional and recurrent neural networks. Bioinform. 36(24): 5656-5664 (2021) - [j156]Hong-Dong Li, Changhuo Yang, Zhimin Zhang, Mengyun Yang, Fang-Xiang Wu, Gilbert S. Omenn, Jianxin Wang:
IsoResolve: predicting splice isoform functions by integrating gene and isoform-level features with domain adaptation. Bioinform. 37(4): 522-530 (2021) - [j155]Yuanyuan Li, Ping Luo, Yi Lu, Fang-Xiang Wu:
Identifying cell types from single-cell data based on similarities and dissimilarities between cells. BMC Bioinform. 22(1): 255 (2021) - [j154]Jin Liu, Dejiao Zeng, Rui Guo, Mingming Lu, Fang-Xiang Wu, Jianxin Wang:
MMHGE: detecting mild cognitive impairment based on multi-atlas multi-view hybrid graph convolutional networks and ensemble learning. Clust. Comput. 24(1): 103-113 (2021) - [j153]Shuting Dong, Jianxin Wang, Hongze Luo, Haodong Wang, Fang-Xiang Wu:
A dynamic predictor selection algorithm for predicting stock market movement. Expert Syst. Appl. 186: 115836 (2021) - [j152]Zhenlan Liang, Min Li, Ruiqing Zheng, Yu Tian, Xuhua Yan, Jin Chen, Fang-Xiang Wu, Jianxin Wang:
SSRE: Cell Type Detection Based on Sparse Subspace Representation and Similarity Enhancement. Genom. Proteom. Bioinform. 19(2): 282-291 (2021) - [j151]Wutao Yin, Sakib Mostafa, Fang-Xiang Wu:
Diagnosis of Autism Spectrum Disorder Based on Functional Brain Networks with Deep Learning. J. Comput. Biol. 28(2): 146-165 (2021) - [j150]Nian Wang, Min Zeng, Yiming Li, Fang-Xiang Wu, Min Li:
Essential Protein Prediction Based on node2vec and XGBoost. J. Comput. Biol. 28(7): 687-700 (2021) - [j149]Min Zeng, Min Li, Zhihui Fei, Fang-Xiang Wu, Yaohang Li, Yi Pan, Jianxin Wang:
A Deep Learning Framework for Identifying Essential Proteins by Integrating Multiple Types of Biological Information. IEEE ACM Trans. Comput. Biol. Bioinform. 18(1): 296-305 (2021) - [j148]Ruiqing Zheng, Min Li, Xiang Chen, Siyu Zhao, Fang-Xiang Wu, Yi Pan, Jianxin Wang:
An Ensemble Method to Reconstruct Gene Regulatory Networks Based on Multivariate Adaptive Regression Splines. IEEE ACM Trans. Comput. Biol. Bioinform. 18(1): 347-354 (2021) - [j147]Yunpei Xu, Hong-Dong Li, Yi Pan, Feng Luo, Fang-Xiang Wu, Jianxin Wang:
A Gene Rank Based Approach for Single Cell Similarity Assessment and Clustering. IEEE ACM Trans. Comput. Biol. Bioinform. 18(2): 431-442 (2021) - [j146]Huimin Luo, Jianxin Wang, Cheng Yan, Min Li, Fang-Xiang Wu, Yi Pan:
A Novel Drug Repositioning Approach Based on Collaborative Metric Learning. IEEE ACM Trans. Comput. Biol. Bioinform. 18(2): 463-471 (2021) - [j145]Min Li, Yake Wang, Ruiqing Zheng, Xinghua Shi, Yaohang Li, Fang-Xiang Wu, Jianxin Wang:
DeepDSC: A Deep Learning Method to Predict Drug Sensitivity of Cancer Cell Lines. IEEE ACM Trans. Comput. Biol. Bioinform. 18(2): 575-582 (2021) - [j144]Cheng Yan, Guihua Duan, Fang-Xiang Wu, Yi Pan, Jianxin Wang:
MCHMDA: Predicting Microbe-Disease Associations Based on Similarities and Low-Rank Matrix Completion. IEEE ACM Trans. Comput. Biol. Bioinform. 18(2): 611-620 (2021) - [j143]Zhen Zhang, Junwei Luo, Juan Shang, Min Li, Fang-Xiang Wu, Yi Pan, Jianxin Wang:
Deletion Detection Method Using the Distribution of Insert Size and a Precise Alignment Strategy. IEEE ACM Trans. Comput. Biol. Bioinform. 18(3): 1070-1081 (2021) - [j142]Ying An, Nengjun Huang, Xianlai Chen, Fang-Xiang Wu, Jianxin Wang:
High-Risk Prediction of Cardiovascular Diseases via Attention-Based Deep Neural Networks. IEEE ACM Trans. Comput. Biol. Bioinform. 18(3): 1093-1105 (2021) - [j141]Xingyu Liao, Min Li, Junwei Luo, You Zou, Fang-Xiang Wu, Yi Pan, Feng Luo, Jianxin Wang:
EPGA-SC : A Framework for de novo Assembly of Single-Cell Sequencing Reads. IEEE ACM Trans. Comput. Biol. Bioinform. 18(4): 1492-1503 (2021) - [j140]Fuhao Zhang, Hong Song, Min Zeng, Fang-Xiang Wu, Yaohang Li, Yi Pan, Min Li:
A Deep Learning Framework for Gene Ontology Annotations With Sequence- and Network-Based Information. IEEE ACM Trans. Comput. Biol. Bioinform. 18(6): 2208-2217 (2021) - [j139]Min Zeng, Chengqian Lu, Zhihui Fei, Fang-Xiang Wu, Yaohang Li, Jianxin Wang, Min Li:
DMFLDA: A Deep Learning Framework for Predicting lncRNA-Disease Associations. IEEE ACM Trans. Comput. Biol. Bioinform. 18(6): 2353-2363 (2021) - [j138]Xingyi Li, Ju Xiang, Jianxin Wang, Jinyan Li, Fang-Xiang Wu, Min Li:
FUNMarker: Fusion Network-Based Method to Identify Prognostic and Heterogeneous Breast Cancer Biomarkers. IEEE ACM Trans. Comput. Biol. Bioinform. 18(6): 2483-2491 (2021) - [j137]Chengqian Lu, Min Zeng, Fuhao Zhang, Fang-Xiang Wu, Min Li, Jianxin Wang:
Deep Matrix Factorization Improves Prediction of Human CircRNA-Disease Associations. IEEE J. Biomed. Health Informatics 25(3): 891-899 (2021) - [j136]Bo Liu, Fang-Xiang Wu, Xiufen Zou:
scASK: A Novel Ensemble Framework for Classifying Cell Types Based on Single-cell RNA-seq Data. IEEE J. Biomed. Health Informatics 25(8): 3230-3239 (2021) - [j135]Fei Wang, Yulian Ding, Xiujuan Lei, Bo Liao, Fang-Xiang Wu:
Human Protein Complex-Based Drug Signatures for Personalized Cancer Medicine. IEEE J. Biomed. Health Informatics 25(11): 4079-4088 (2021) - [j134]Ping Luo, Bolin Chen, Bo Liao, Fang-Xiang Wu:
Predicting disease-associated genes: Computational methods, databases, and evaluations. WIREs Data Mining Knowl. Discov. 11(2) (2021) - [c96]Min Zeng, Nian Wang, Yifan Wu, Yiming Li, Fang-Xiang Wu, Min Li:
Improving human essential protein prediction using only protein sequences via ensemble learning. BIBM 2021: 98-103 - [c95]Wutao Yin, Longhai Li, Fang-Xiang Wu:
A Graph Attention Neural Network for Diagnosing ASD with fMRI Data. BIBM 2021: 1131-1136 - [c94]Wenjing Zhang, Yuting Tan, Fang-Xiang Wu:
Single Cell Clustering with Sparse Similarity Matrix Learning. BIBM 2021: 1165-1170 - [c93]Zohair Ahmed, Junwen Duan, Fang-Xiang Wu, Jianxin Wang:
EFCA: An Extended Formal Concept Analysis Method for Aspect Extraction in Healthcare Informatics. BIBM 2021: 1241-1244 - 2020
- [j133]Wen Zhu, Kaimei Huang, Xiaofang Xiao, Bo Liao, Yuhua Yao, Fang-Xiang Wu:
ALSBMF: Predicting lncRNA-Disease Associations by Alternating Least Squares Based on Matrix Factorization. IEEE Access 8: 26190-26198 (2020) - [j132]Tao Li, Shaokai Wang, Feng Luo, Fang-Xiang Wu, Jianxin Wang:
MultiGuideScan: a multi-processing tool for designing CRISPR guide RNA libraries. Bioinform. 36(3): 920-921 (2020) - [j131]Min Zeng, Fuhao Zhang, Fang-Xiang Wu, Yaohang Li, Jianxin Wang, Min Li:
Protein-protein interaction site prediction through combining local and global features with deep neural networks. Bioinform. 36(4): 1114-1120 (2020) - [j130]Ali Akbar Jamali, Anthony J. Kusalik, Fang-Xiang Wu:
MDIPA: a microRNA-drug interaction prediction approach based on non-negative matrix factorization. Bioinform. 36(20): 5061-5067 (2020) - [j129]Cheng Yan, Fang-Xiang Wu, Jianxin Wang, Guihua Duan:
PESM: predicting the essentiality of miRNAs based on gradient boosting machines and sequences. BMC Bioinform. 21(1): 111 (2020) - [j128]Xingyu Liao, Xin Gao, Xiankai Zhang, Fang-Xiang Wu, Jianxin Wang:
RepAHR: an improved approach for de novo repeat identification by assembly of the high-frequency reads. BMC Bioinform. 21(1): 463 (2020) - [j127]Ping Luo, Li-Ping Tian, Bolin Chen, Qianghua Xiao, Fang-Xiang Wu:
Ensemble disease gene prediction by clinical sample-based networks. BMC Bioinform. 21-S(2): 79 (2020) - [j126]Xinyu Hu, Li Tang, Linconghua Wang, Fang-Xiang Wu, Min Li:
MADA: a web service for analysing DNA methylation array data. BMC Bioinform. 21-S(6): 403 (2020) - [j125]Yulian Ding, Bolin Chen, Xiujuan Lei, Bo Liao, Fang-Xiang Wu:
Predicting novel CircRNA-disease associations based on random walk and logistic regression model. Comput. Biol. Chem. 87: 107287 (2020) - [j124]Xiaoshu Zhu, Lilu Guo, Rongyuan Li, Yunpei Xu, Fang-Xiang Wu, Xiaoqing Peng, Hong-Dong Li:
A network enhancement-based method for clustering of single cell RNA-seq data. Int. J. Data Min. Bioinform. 24(4): 306-325 (2020) - [j123]Liangliang Liu, Shaowu Chen, Xiaofeng Zhu, Xing-Ming Zhao, Fang-Xiang Wu, Jianxin Wang:
Deep convolutional neural network for accurate segmentation and quantification of white matter hyperintensities. Neurocomputing 384: 231-242 (2020) - [j122]Jin Liu, Yi Pan, Fang-Xiang Wu, Jianxin Wang:
Enhancing the feature representation of multi-modal MRI data by combining multi-view information for MCI classification. Neurocomputing 400: 322-332 (2020) - [j121]Liangliang Liu, Jianhong Cheng, Quan Quan, Fang-Xiang Wu, Yu-Ping Wang, Jianxin Wang:
A survey on U-shaped networks in medical image segmentations. Neurocomputing 409: 244-258 (2020) - [j120]Liangliang Liu, Lukasz A. Kurgan, Fang-Xiang Wu, Jianxin Wang:
Attention convolutional neural network for accurate segmentation and quantification of lesions in ischemic stroke disease. Medical Image Anal. 65: 101791 (2020) - [j119]Liangliang Liu, Shaowu Chen, Fuhao Zhang, Fang-Xiang Wu, Yi Pan, Jianxin Wang:
Deep convolutional neural network for automatically segmenting acute ischemic stroke lesion in multi-modality MRI. Neural Comput. Appl. 32(11): 6545-6558 (2020) - [j118]Xingyu Liao, Min Li, Junwei Luo, You Zou, Fang-Xiang Wu, Yi Pan, Feng Luo, Jianxin Wang:
Improving de novo Assembly Based on Read Classification. IEEE ACM Trans. Comput. Biol. Bioinform. 17(1): 177-188 (2020) - [j117]Tao Li, Xiankai Zhang, Feng Luo, Fang-Xiang Wu, Jianxin Wang:
MultiMotifMaker: A Multi-Thread Tool for Identifying DNA Methylation Motifs from Pacbio Reads. IEEE ACM Trans. Comput. Biol. Bioinform. 17(1): 220-225 (2020) - [j116]