


Остановите войну!
for scientists:


default search action
Yarin Gal
Person information

- affiliation: University of Oxford, Department of Computer Science, UK
- affiliation: Alan Turing Institute, London, UK
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [i120]Maëlys Solal, Andrew Jesson, Yarin Gal, Alyson Douglas:
Using uncertainty-aware machine learning models to study aerosol-cloud interactions. CoRR abs/2301.11921 (2023) - [i119]Lorenz Kuhn, Yarin Gal, Sebastian Farquhar:
Semantic Uncertainty: Linguistic Invariances for Uncertainty Estimation in Natural Language Generation. CoRR abs/2302.09664 (2023) - [i118]Yashas Annadani, Panagiotis Tigas, Desi R. Ivanova, Andrew Jesson, Yarin Gal, Adam Foster, Stefan Bauer:
Differentiable Multi-Target Causal Bayesian Experimental Design. CoRR abs/2302.10607 (2023) - [i117]Yulin Zhou, Yiren Zhao, Ilia Shumailov, Robert D. Mullins, Yarin Gal:
Revisiting Automated Prompting: Are We Actually Doing Better? CoRR abs/2304.03609 (2023) - [i116]Freddie Bickford Smith, Andreas Kirsch, Sebastian Farquhar, Yarin Gal, Adam Foster, Tom Rainforth:
Prediction-Oriented Bayesian Active Learning. CoRR abs/2304.08151 (2023) - [i115]Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Yarin Gal, Nicolas Papernot, Ross J. Anderson:
The Curse of Recursion: Training on Generated Data Makes Models Forget. CoRR abs/2305.17493 (2023) - 2022
- [j7]Aidan N. Gomez, Oscar Key, Kuba Perlin, Stephen Gou, Nick Frosst, Jeff Dean, Yarin Gal:
Interlocking Backpropagation: Improving depthwise model-parallelism. J. Mach. Learn. Res. 23: 171:1-171:28 (2022) - [j6]Chetan Gohil, Evan Roberts, Ryan C. Timms, Alex Skates, Cameron Higgins, Andrew Quinn
, Usama Pervaiz, Joost van Amersfoort, Pascal Notin, Yarin Gal, Stanislaw Adaszewski, Mark W. Woolrich:
Mixtures of large-scale dynamic functional brain network modes. NeuroImage 263: 119595 (2022) - [j5]Raghav Mehta
, Thomas Christinck
, Tanya Nair, Aurélie Bussy
, Swapna Premasiri, Manuela Costantino
, M. Mallar Chakravarthy, Douglas L. Arnold
, Yarin Gal
, Tal Arbel:
Propagating Uncertainty Across Cascaded Medical Imaging Tasks for Improved Deep Learning Inference. IEEE Trans. Medical Imaging 41(2): 360-373 (2022) - [j4]Andreas Kirsch, Yarin Gal:
A Note on "Assessing Generalization of SGD via Disagreement". Trans. Mach. Learn. Res. 2022 (2022) - [j3]Andreas Kirsch, Yarin Gal:
Unifying Approaches in Active Learning and Active Sampling via Fisher Information and Information-Theoretic Quantities. Trans. Mach. Learn. Res. 2022 (2022) - [c62]Milad Alizadeh, Shyam A. Tailor, Luisa M. Zintgraf, Joost van Amersfoort, Sebastian Farquhar, Nicholas Donald Lane, Yarin Gal:
Prospect Pruning: Finding Trainable Weights at Initialization using Meta-Gradients. ICLR 2022 - [c61]Arash Mehrjou, Ashkan Soleymani, Andrew Jesson, Pascal Notin, Yarin Gal, Stefan Bauer, Patrick Schwab:
GeneDisco: A Benchmark for Experimental Design in Drug Discovery. ICLR 2022 - [c60]A. Tuan Nguyen, Toan Tran, Yarin Gal, Philip H. S. Torr, Atilim Gunes Baydin:
KL Guided Domain Adaptation. ICLR 2022 - [c59]Clare Lyle, Mark Rowland, Will Dabney, Marta Kwiatkowska, Yarin Gal:
Learning Dynamics and Generalization in Deep Reinforcement Learning. ICML 2022: 14560-14581 - [c58]Sören Mindermann, Jan Markus Brauner, Muhammed Razzak, Mrinank Sharma, Andreas Kirsch, Winnie Xu, Benedikt Höltgen, Aidan N. Gomez, Adrien Morisot, Sebastian Farquhar, Yarin Gal:
Prioritized Training on Points that are Learnable, Worth Learning, and not yet Learnt. ICML 2022: 15630-15649 - [c57]Pascal Notin, Mafalda Dias, Jonathan Frazer, Javier Marchena-Hurtado, Aidan N. Gomez, Debora S. Marks, Yarin Gal:
Tranception: Protein Fitness Prediction with Autoregressive Transformers and Inference-time Retrieval. ICML 2022: 16990-17017 - [c56]Tim G. J. Rudner, Freddie Bickford Smith, Qixuan Feng, Yee Whye Teh, Yarin Gal:
Continual Learning via Sequential Function-Space Variational Inference. ICML 2022: 18871-18887 - [c55]Andrew Jesson, Alyson Douglas, Peter Manshausen, Maëlys Solal, Nicolai Meinshausen, Philip Stier, Yarin Gal, Uri Shalit:
Scalable Sensitivity and Uncertainty Analyses for Causal-Effect Estimates of Continuous-Valued Interventions. NeurIPS 2022 - [c54]Jannik Kossen, Sebastian Farquhar, Yarin Gal, Thomas Rainforth:
Active Surrogate Estimators: An Active Learning Approach to Label-Efficient Model Evaluation. NeurIPS 2022 - [c53]Tim G. J. Rudner, Zonghao Chen, Yee Whye Teh, Yarin Gal:
Tractable Function-Space Variational Inference in Bayesian Neural Networks. NeurIPS 2022 - [c52]Panagiotis Tigas, Yashas Annadani, Andrew Jesson, Bernhard Schölkopf, Yarin Gal, Stefan Bauer:
Interventions, Where and How? Experimental Design for Causal Models at Scale. NeurIPS 2022 - [i114]Andreas Kirsch, Yarin Gal:
A Note on "Assessing Generalization of SGD via Disagreement". CoRR abs/2202.01851 (2022) - [i113]Jannik Kossen, Sebastian Farquhar, Yarin Gal, Tom Rainforth:
Active Surrogate Estimators: An Active Learning Approach to Label-Efficient Model Evaluation. CoRR abs/2202.06881 (2022) - [i112]Milad Alizadeh, Shyam A. Tailor, Luisa M. Zintgraf, Joost van Amersfoort, Sebastian Farquhar, Nicholas Donald Lane, Yarin Gal:
Prospect Pruning: Finding Trainable Weights at Initialization using Meta-Gradients. CoRR abs/2202.08132 (2022) - [i111]Panagiotis Tigas, Yashas Annadani, Andrew Jesson, Bernhard Schölkopf, Yarin Gal, Stefan Bauer:
Interventions, Where and How? Experimental Design for Causal Models at Scale. CoRR abs/2203.02016 (2022) - [i110]Andrew Jesson, Alyson Douglas, Peter Manshausen, Nicolai Meinshausen, Philip Stier, Yarin Gal, Uri Shalit:
Scalable Sensitivity and Uncertainty Analysis for Causal-Effect Estimates of Continuous-Valued Interventions. CoRR abs/2204.10022 (2022) - [i109]Andreas Kirsch, Jannik Kossen, Yarin Gal:
Marginal and Joint Cross-Entropies & Predictives for Online Bayesian Inference, Active Learning, and Active Sampling. CoRR abs/2205.08766 (2022) - [i108]Vishal Upendran, Panagiotis Tigas, Banafsheh Ferdousi, Téo Bloch, Mark C. M. Cheung, Siddha Ganju, Asti Bhatt, Ryan M. McGranaghan, Yarin Gal:
Global geomagnetic perturbation forecasting using Deep Learning. CoRR abs/2205.12734 (2022) - [i107]Pascal Notin, Mafalda Dias, Jonathan Frazer, Javier Marchena-Hurtado, Aidan N. Gomez, Debora S. Marks, Yarin Gal:
Tranception: protein fitness prediction with autoregressive transformers and inference-time retrieval. CoRR abs/2205.13760 (2022) - [i106]Clare Lyle, Mark Rowland, Will Dabney, Marta Kwiatkowska, Yarin Gal:
Learning Dynamics and Generalization in Reinforcement Learning. CoRR abs/2206.02126 (2022) - [i105]Sören Mindermann, Jan Markus Brauner, Muhammed Razzak, Mrinank Sharma, Andreas Kirsch, Winnie Xu, Benedikt Höltgen, Aidan N. Gomez, Adrien Morisot, Sebastian Farquhar, Yarin Gal:
Prioritized Training on Points that are Learnable, Worth Learning, and Not Yet Learnt. CoRR abs/2206.07137 (2022) - [i104]Dustin Tran, Jeremiah Z. Liu, Michael W. Dusenberry, Du Phan, Mark Collier, Jie Ren, Kehang Han, Zi Wang, Zelda Mariet, Huiyi Hu, Neil Band, Tim G. J. Rudner, Karan Singhal, Zachary Nado, Joost van Amersfoort, Andreas Kirsch, Rodolphe Jenatton, Nithum Thain, Honglin Yuan, Kelly Buchanan, Kevin Murphy, D. Sculley, Yarin Gal, Zoubin Ghahramani, Jasper Snoek, Balaji Lakshminarayanan:
Plex: Towards Reliability using Pretrained Large Model Extensions. CoRR abs/2207.07411 (2022) - [i103]Andreas Kirsch, Yarin Gal:
Unifying Approaches in Data Subset Selection via Fisher Information and Information-Theoretic Quantities. CoRR abs/2208.00549 (2022) - [i102]Valentina Salvatelli, Luiz F. G. dos Santos, Souvik Bose, Brad Neuberg, Mark C. M. Cheung, Miho Janvier, Meng Jin, Yarin Gal, Atilim Gunes Baydin:
Exploring the Limits of Synthetic Creation of Solar EUV Images via Image-to-Image Translation. CoRR abs/2208.09512 (2022) - [i101]Siddhartha Rao Kamalakara, Acyr Locatelli, Bharat Venkitesh, Jimmy Ba, Yarin Gal, Aidan N. Gomez:
Exploring Low Rank Training of Deep Neural Networks. CoRR abs/2209.13569 (2022) - [i100]Shreshth A. Malik, Nora L. Eisner, Chris J. Lintott, Yarin Gal:
Discovering Long-period Exoplanets using Deep Learning with Citizen Science Labels. CoRR abs/2211.06903 (2022) - [i99]Neil Band, Tim G. J. Rudner, Qixuan Feng, Angelos Filos, Zachary Nado, Michael W. Dusenberry, Ghassen Jerfel, Dustin Tran, Yarin Gal:
Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks. CoRR abs/2211.12717 (2022) - [i98]Lorenz Kuhn, Yarin Gal, Sebastian Farquhar:
CLAM: Selective Clarification for Ambiguous Questions with Large Language Models. CoRR abs/2212.07769 (2022) - [i97]Tim G. J. Rudner, Cong Lu, Michael A. Osborne, Yarin Gal, Yee Whye Teh:
On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations. CoRR abs/2212.13936 (2022) - 2021
- [j2]Luisa M. Zintgraf, Sebastian Schulze, Cong Lu, Leo Feng, Maximilian Igl, Kyriacos Shiarlis, Yarin Gal, Katja Hofmann, Shimon Whiteson:
VariBAD: Variational Bayes-Adaptive Deep RL via Meta-Learning. J. Mach. Learn. Res. 22: 289:1-289:39 (2021) - [c51]Lisa Schut, Oscar Key, Rory McGrath, Luca Costabello, Bogdan Sacaleanu, Medb Corcoran, Yarin Gal:
Generating Interpretable Counterfactual Explanations By Implicit Minimisation of Epistemic and Aleatoric Uncertainties. AISTATS 2021: 1756-1764 - [c50]Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, Sergey Levine:
Learning Invariant Representations for Reinforcement Learning without Reconstruction. ICLR 2021 - [c49]Sebastian Farquhar, Yarin Gal, Tom Rainforth:
On Statistical Bias In Active Learning: How and When to Fix It. ICLR 2021 - [c48]Angelos Filos, Clare Lyle, Yarin Gal, Sergey Levine, Natasha Jaques, Gregory Farquhar:
PsiPhi-Learning: Reinforcement Learning with Demonstrations using Successor Features and Inverse Temporal Difference Learning. ICML 2021: 3305-3317 - [c47]Andrew Jesson, Sören Mindermann, Yarin Gal, Uri Shalit:
Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding. ICML 2021: 4829-4838 - [c46]Jannik Kossen, Sebastian Farquhar, Yarin Gal, Tom Rainforth:
Active Testing: Sample-Efficient Model Evaluation. ICML 2021: 5753-5763 - [c45]Tim G. J. Rudner, Oscar Key, Yarin Gal, Tom Rainforth:
On Signal-to-Noise Ratio Issues in Variational Inference for Deep Gaussian Processes. ICML 2021: 9148-9156 - [c44]Neil Band, Tim G. J. Rudner, Qixuan Feng, Angelos Filos, Zachary Nado, Mike Dusenberry, Ghassen Jerfel, Dustin Tran, Yarin Gal:
Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks. NeurIPS Datasets and Benchmarks 2021 - [c43]Robin Ru, Clare Lyle, Lisa Schut, Miroslav Fil, Mark van der Wilk, Yarin Gal:
Speedy Performance Estimation for Neural Architecture Search. NeurIPS 2021: 4079-4092 - [c42]A. Tuan Nguyen, Toan Tran, Yarin Gal, Atilim Gunes Baydin:
Domain Invariant Representation Learning with Domain Density Transformations. NeurIPS 2021: 5264-5275 - [c41]Jannik Kossen, Neil Band, Clare Lyle, Aidan N. Gomez, Thomas Rainforth, Yarin Gal:
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning. NeurIPS 2021: 28742-28756 - [c40]Andrew Jesson, Panagiotis Tigas, Joost van Amersfoort, Andreas Kirsch, Uri Shalit, Yarin Gal:
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data. NeurIPS 2021: 30465-30478 - [c39]Andrey Malinin, Neil Band, Yarin Gal, Mark J. F. Gales, Alexander Ganshin, German Chesnokov, Alexey Noskov, Andrey Ploskonosov, Liudmila Prokhorenkova, Ivan Provilkov, Vatsal Raina, Vyas Raina, Denis Roginskiy, Mariya Shmatova, Panagiotis Tigas, Boris Yangel:
Shifts: A Dataset of Real Distributional Shift Across Multiple Large-Scale Tasks. NeurIPS Datasets and Benchmarks 2021 - [c38]Andrew Gordon Wilson, Pavel Izmailov, Matthew D. Hoffman, Yarin Gal, Yingzhen Li, Melanie F. Pradier, Sharad Vikram, Andrew Y. K. Foong, Sanae Lotfi, Sebastian Farquhar:
Evaluating Approximate Inference in Bayesian Deep Learning. NeurIPS (Competition and Demos) 2021: 113-124 - [c37]Pascal Notin, José Miguel Hernández-Lobato, Yarin Gal:
Improving black-box optimization in VAE latent space using decoder uncertainty. NeurIPS 2021: 802-814 - [c36]Tim G. J. Rudner, Vitchyr Pong, Rowan McAllister, Yarin Gal, Sergey Levine:
Outcome-Driven Reinforcement Learning via Variational Inference. NeurIPS 2021: 13045-13058 - [c35]Tim G. J. Rudner, Cong Lu, Michael A. Osborne, Yarin Gal, Yee Whye Teh:
On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations. NeurIPS 2021: 28376-28389 - [i96]Alexander Lavin, Ciarán M. Gilligan-Lee, Alessya Visnjic, Siddha Ganju, Dava Newman, Sujoy Ganguly, Danny Lange, Atilim Günes Baydin, Amit Sharma, Adam Gibson, Yarin Gal, Eric P. Xing, Chris Mattmann, James Parr:
Technology Readiness Levels for Machine Learning Systems. CoRR abs/2101.03989 (2021) - [i95]Sebastian Farquhar, Yarin Gal, Tom Rainforth:
On Statistical Bias In Active Learning: How and When To Fix It. CoRR abs/2101.11665 (2021) - [i94]Panagiotis Tigas, Téo Bloch
, Vishal Upendran, Banafsheh Ferdoushi, Mark C. M. Cheung, Siddha Ganju, Ryan M. McGranaghan
, Yarin Gal, Asti Bhatt:
Global Earth Magnetic Field Modeling and Forecasting with Spherical Harmonics Decomposition. CoRR abs/2102.01447 (2021) - [i93]A. Tuan Nguyen, Toan Tran, Yarin Gal, Atilim Günes Baydin:
Domain Invariant Representation Learning with Domain Density Transformations. CoRR abs/2102.05082 (2021) - [i92]Joost van Amersfoort, Lewis Smith, Andrew Jesson, Oscar Key, Yarin Gal:
Improving Deterministic Uncertainty Estimation in Deep Learning for Classification and Regression. CoRR abs/2102.11409 (2021) - [i91]Jishnu Mukhoti, Andreas Kirsch, Joost van Amersfoort, Philip H. S. Torr, Yarin Gal:
Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty. CoRR abs/2102.11582 (2021) - [i90]Angelos Filos, Clare Lyle, Yarin Gal, Sergey Levine, Natasha Jaques, Gregory Farquhar:
PsiPhi-Learning: Reinforcement Learning with Demonstrations using Successor Features and Inverse Temporal Difference Learning. CoRR abs/2102.12560 (2021) - [i89]Andrew Jesson, Sören Mindermann, Yarin Gal, Uri Shalit:
Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding. CoRR abs/2103.04850 (2021) - [i88]Jannik Kossen, Sebastian Farquhar, Yarin Gal, Tom Rainforth:
Active Testing: Sample-Efficient Model Evaluation. CoRR abs/2103.05331 (2021) - [i87]Lorenz Kuhn, Clare Lyle, Aidan N. Gomez, Jonas Rothfuss, Yarin Gal:
Robustness to Pruning Predicts Generalization in Deep Neural Networks. CoRR abs/2103.06002 (2021) - [i86]Lisa Schut, Oscar Key, Rory McGrath, Luca Costabello, Bogdan Sacaleanu, Medb Corcoran, Yarin Gal:
Generating Interpretable Counterfactual Explanations By Implicit Minimisation of Epistemic and Aleatoric Uncertainties. CoRR abs/2103.08951 (2021) - [i85]Björn Lütjens, Brandon Leshchinskiy, Christian Requena-Mesa, Farrukh Chishtie, Natalia Díaz Rodríguez, Océane Boulais, Aruna Sankaranarayanan, Aaron Piña, Yarin Gal, Chedy Raïssi, Alexander Lavin, Dava Newman:
Physically-Consistent Generative Adversarial Networks for Coastal Flood Visualization. CoRR abs/2104.04785 (2021) - [i84]Tim G. J. Rudner
, Vitchyr H. Pong, Rowan McAllister, Yarin Gal, Sergey Levine:
Outcome-Driven Reinforcement Learning via Variational Inference. CoRR abs/2104.10190 (2021) - [i83]Lewis Smith, Joost van Amersfoort, Haiwen Huang, Stephen J. Roberts, Yarin Gal:
Can convolutional ResNets approximately preserve input distances? A frequency analysis perspective. CoRR abs/2106.02469 (2021) - [i82]Jannik Kossen, Neil Band, Clare Lyle, Aidan N. Gomez, Tom Rainforth, Yarin Gal:
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning. CoRR abs/2106.02584 (2021) - [i81]Zachary Nado, Neil Band, Mark Collier, Josip Djolonga, Michael W. Dusenberry, Sebastian Farquhar, Angelos Filos, Marton Havasi, Rodolphe Jenatton, Ghassen Jerfel, Jeremiah Z. Liu, Zelda Mariet, Jeremy Nixon, Shreyas Padhy, Jie Ren, Tim G. J. Rudner
, Yeming Wen, Florian Wenzel, Kevin Murphy, D. Sculley, Balaji Lakshminarayanan, Jasper Snoek, Yarin Gal, Dustin Tran:
Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep Learning. CoRR abs/2106.04015 (2021) - [i80]A. Tuan Nguyen, Toan Tran, Yarin Gal, Philip H. S. Torr, Atilim Günes Baydin:
KL Guided Domain Adaptation. CoRR abs/2106.07780 (2021) - [i79]Andreas Kirsch, Tom Rainforth, Yarin Gal:
Active Learning under Pool Set Distribution Shift and Noisy Data. CoRR abs/2106.11719 (2021) - [i78]Andreas Kirsch, Sebastian Farquhar, Yarin Gal:
A Simple Baseline for Batch Active Learning with Stochastic Acquisition Functions. CoRR abs/2106.12059 (2021) - [i77]Andreas Kirsch, Yarin Gal:
A Practical & Unified Notation for Information-Theoretic Quantities in ML. CoRR abs/2106.12062 (2021) - [i76]Pascal Notin, José Miguel Hernández-Lobato, Yarin Gal:
Improving black-box optimization in VAE latent space using decoder uncertainty. CoRR abs/2107.00096 (2021) - [i75]Sören Mindermann, Muhammed Razzak, Winnie Xu, Andreas Kirsch, Mrinank Sharma, Adrien Morisot, Aidan N. Gomez, Sebastian Farquhar, Jan Markus Brauner, Yarin Gal:
Prioritized training on points that are learnable, worth learning, and not yet learned. CoRR abs/2107.02565 (2021) - [i74]Andrey Malinin, Neil Band, Alexander Ganshin, German Chesnokov, Yarin Gal, Mark J. F. Gales, Alexey Noskov, Andrey Ploskonosov, Liudmila Prokhorenkova, Ivan Provilkov, Vatsal Raina, Vyas Raina, Mariya Shmatova, Panos Tigas, Boris Yangel:
Shifts: A Dataset of Real Distributional Shift Across Multiple Large-Scale Tasks. CoRR abs/2107.07455 (2021) - [i73]Owen Convery, Lewis Smith, Yarin Gal, Adi Hanuka:
Quantifying Uncertainty for Machine Learning Based Diagnostic. CoRR abs/2107.14261 (2021) - [i72]Arash Mehrjou, Ashkan Soleymani, Andrew Jesson, Pascal Notin, Yarin Gal, Stefan Bauer, Patrick Schwab:
GeneDisco: A Benchmark for Experimental Design in Drug Discovery. CoRR abs/2110.11875 (2021) - [i71]Andrew Jesson, Peter Manshausen, Alyson Douglas, Duncan Watson-Parris, Yarin Gal, Philip Stier:
Using Non-Linear Causal Models to Study Aerosol-Cloud Interactions in the Southeast Pacific. CoRR abs/2110.15084 (2021) - [i70]Jishnu Mukhoti, Joost van Amersfoort, Philip H. S. Torr, Yarin Gal:
Deep Deterministic Uncertainty for Semantic Segmentation. CoRR abs/2111.00079 (2021) - [i69]Andrew Jesson, Panagiotis Tigas, Joost van Amersfoort, Andreas Kirsch, Uri Shalit, Yarin Gal:
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data. CoRR abs/2111.02275 (2021) - [i68]Muhammed Razzak, Gonzalo Mateo-Garcia, Luis Gómez-Chova, Yarin Gal, Freddie Kalaitzis:
Multi-Spectral Multi-Image Super-Resolution of Sentinel-2 with Radiometric Consistency Losses and Its Effect on Building Delineation. CoRR abs/2111.03231 (2021) - [i67]Masanori Koyama, Kentaro Minami, Takeru Miyato, Yarin Gal:
Contrastive Representation Learning with Trainable Augmentation Channel. CoRR abs/2111.07679 (2021) - [i66]Benedikt Höltgen, Lisa Schut, Jan Markus Brauner, Yarin Gal:
DeDUCE: Generating Counterfactual Explanations Efficiently. CoRR abs/2111.15639 (2021) - [i65]Haiwen Huang, Joost van Amersfoort, Yarin Gal:
Decomposing Representations for Deterministic Uncertainty Estimation. CoRR abs/2112.00856 (2021) - [i64]Raghav Mehta, Angelos Filos, Ujjwal Baid, Chiharu Sako, Richard McKinley, Michael Rebsamen, Katrin Dätwyler, Raphael Meier, Piotr Radojewski, Gowtham Krishnan Murugesan, Sahil S. Nalawade, Chandan Ganesh, Benjamin C. Wagner, Fang F. Yu, Baowei Fei, Ananth J. Madhuranthakam, Joseph A. Maldjian, Laura Alexandra Daza, Catalina Gómez, Pablo Arbeláez, Chengliang Dai, Shuo Wang, Hadrien Raynaud, Yuanhan Mo, Elsa D. Angelini, Yike Guo, Wenjia Bai, Subhashis Banerjee, Linmin Pei, Murat Ak, Sarahi Rosas-González, Ilyess Zemmoura, Clovis Tauber, Minh H. Vu, Tufve Nyholm, Tommy Löfstedt, Laura Mora Ballestar, Verónica Vilaplana, Hugh McHugh, Gonzalo D. Maso Talou, Alan Wang, Jay B. Patel, Ken Chang, Katharina Hoebel, Mishka Gidwani, Nishanth Thumbavanam Arun, Sharut Gupta, Mehak Aggarwal, Praveer Singh, Elizabeth R. Gerstner, Jayashree Kalpathy-Cramer, Nicolas Boutry, Alexis Huard, Lasitha Vidyaratne, Md Monibor Rahman, Khan M. Iftekharuddin, Joseph Chazalon, Élodie Puybareau, Guillaume Tochon, Jun Ma, Mariano Cabezas, Xavier Lladó, Arnau Oliver, Liliana Valencia, Sergi Valverde, Mehdi Amian, Mohammadreza Soltaninejad, Andriy Myronenko, Ali Hatamizadeh, Xue Feng, Quan Dou, Nicholas J. Tustison, Craig H. Meyer, Nisarg A. Shah, Sanjay N. Talbar, Marc-André Weber, Abhishek Mahajan, András Jakab, Roland Wiest, Hassan M. Fathallah-Shaykh, Arash Nazeri, Mikhail Milchenko, Daniel S. Marcus, Aikaterini Kotrotsou, Rivka Colen, John B. Freymann, Justin S. Kirby, Christos Davatzikos, Bjoern H. Menze, Spyridon Bakas, Yarin Gal, Tal Arbel:
QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation - Analysis of Ranking Metrics and Benchmarking Results. CoRR abs/2112.10074 (2021) - [i63]Miroslav Fil, Binxin Ru, Clare Lyle, Yarin Gal:
DARTS without a Validation Set: Optimizing the Marginal Likelihood. CoRR abs/2112.13023 (2021) - 2020
- [j1]Iryna Korshunova, Yarin Gal, Arthur Gretton
, Joni Dambre
:
Conditional BRUNO: A neural process for exchangeable labelled data. Neurocomputing 416: 305-309 (2020) - [c34]Sebastian Farquhar, Michael A. Osborne, Yarin Gal:
Radial Bayesian Neural Networks: Beyond Discrete Support In Large-Scale Bayesian Deep Learning. AISTATS 2020: 1352-1362 - [c33]Binxin Ru, Adam D. Cobb, Arno Blaas, Yarin Gal:
BayesOpt Adversarial Attack. ICLR 2020 - [c32]Luisa M. Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann, Shimon Whiteson:
VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning. ICLR 2020 - [c31]Angelos Filos, Panagiotis Tigas, Rowan McAllister, Nicholas Rhinehart, Sergey Levine, Yarin Gal:
Can Autonomous Vehicles Identify, Recover From, and Adapt to Distribution Shifts? ICML 2020: 3145-3153 - [c30]Tim G. J. Rudner, Dino Sejdinovic, Yarin Gal:
Inter-domain Deep Gaussian Processes. ICML 2020: 8286-8294 - [c29]Joost van Amersfoort, Lewis Smith, Yee Whye Teh, Yarin Gal:
Uncertainty Estimation Using a Single Deep Deterministic Neural Network. ICML 2020: 9690-9700 - [c28]Amy Zhang, Clare Lyle, Shagun Sodhani, Angelos Filos, Marta Kwiatkowska, Joelle Pineau, Yarin Gal, Doina Precup:
Invariant Causal Prediction for Block MDPs. ICML 2020: 11214-11224 - [c27]Rhiannon Michelmore, Matthew Wicker, Luca Laurenti, Luca Cardelli, Yarin Gal, Marta Kwiatkowska:
Uncertainty Quantification with Statistical Guarantees in End-to-End Autonomous Driving Control. ICRA 2020: 7344-7350 - [c26]Marc Rußwurm, Mohsin Ali, Xiaoxiang Zhu, Yarin Gal, Marco Körner:
Model and Data Uncertainty for Satellite Time Series Forecasting with Deep Recurrent Models. IGARSS 2020: 7025-7028 - [c25]Sebastian Farquhar, Lewis Smith, Yarin Gal:
Liberty or Depth: Deep Bayesian Neural Nets Do Not Need Complex Weight Posterior Approximations. NeurIPS 2020 - [c24]Andrew Jesson, Sören Mindermann, Uri Shalit, Yarin Gal:
Identifying Causal-Effect Inference Failure with Uncertainty-Aware Models. NeurIPS 2020 - [c23]Clare Lyle, Lisa Schut, Robin Ru, Yarin Gal, Mark van der Wilk:
A Bayesian Perspective on Training Speed and Model Selection. NeurIPS 2020 - [c22]Mrinank Sharma, Sören Mindermann, Jan Markus Brauner, Gavin Leech, Anna B. Stephenson, Tomas Gavenciak, Jan Kulveit, Yee Whye Teh, Leonid Chindelevitch, Yarin Gal:
How Robust are the Estimated Effects of Nonpharmaceutical Interventions against COVID-19? NeurIPS 2020 - [i62]Sebastian Farquhar, Lewis Smith, Yarin Gal:
Try Depth Instead of Weight Correlations: Mean-field is a Less Restrictive Assumption for Deeper Networks. CoRR abs/2002.03704 (2020) - [i61]Joost van Amersfoort, Lewis Smith, Yee Whye Teh, Yarin Gal:
Simple and Scalable Epistemic Uncertainty Estimation Using a Single Deep Deterministic Neural Network. CoRR abs/2003.02037 (2020) - [i60]Amy Zhang
, Clare Lyle, Shagun Sodhani, Angelos Filos, Marta Kwiatkowska, Joelle Pineau, Yarin Gal, Doina Precup:
Invariant Causal Prediction for Block MDPs. CoRR abs/2003.06016 (2020) - [i59]Yarin Gal, Vishnu Jejjala, Damian Kaloni Mayorga Pena, Challenger Mishra:
Baryons from Mesons: A Machine Learning Perspective. CoRR abs/2003.10445 (2020) - [i58]Andreas Kirsch
, Clare Lyle, Yarin Gal:
Unpacking Information Bottlenecks: Unifying Information-Theoretic Objectives in Deep Learning. CoRR abs/2003.12537 (2020) - [i57]Lewis Smith, Lisa Schut, Yarin Gal, Mark van der Wilk:
Capsule Networks - A Probabilistic Perspective. CoRR abs/2004.03553 (2020) - [i56]Clare Lyle, Mark van der Wilk, Marta Kwiatkowska, Yarin Gal, Benjamin Bloem-Reddy:
On the Benefits of Invariance in Neural Networks. CoRR abs/2005.00178 (2020) - [i55]