default search action
Tuo Zhao
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j26]Hao Liu, Haizhao Yang, Minshuo Chen, Tuo Zhao, Wenjing Liao:
Deep Nonparametric Estimation of Operators between Infinite Dimensional Spaces. J. Mach. Learn. Res. 25: 24:1-24:67 (2024) - [j25]Zhenghao Xu, Xiang Ji, Minshuo Chen, Mengdi Wang, Tuo Zhao:
Sample Complexity of Neural Policy Mirror Descent for Policy Optimization on Low-Dimensional Manifolds. J. Mach. Learn. Res. 25: 226:1-226:67 (2024) - [j24]Yan Li, Guanghui Lan, Tuo Zhao:
Homotopic policy mirror descent: policy convergence, algorithmic regularization, and improved sample complexity. Math. Program. 207(1): 457-513 (2024) - [j23]Tingting Zhao, Guixi Li, Tuo Zhao, Yarui Chen, Ning Xie, Gang Niu, Masashi Sugiyama:
Learning explainable task-relevant state representation for model-free deep reinforcement learning. Neural Networks 180: 106741 (2024) - [c111]Haoyu Wang, Tianci Liu, Ruirui Li, Monica Xiao Cheng, Tuo Zhao, Jing Gao:
RoseLoRA: Row and Column-wise Sparse Low-rank Adaptation of Pre-trained Language Model for Knowledge Editing and Fine-tuning. EMNLP 2024: 996-1008 - [c110]Haoyu Wang, Ruirui Li, Haoming Jiang, Jinjin Tian, Zhengyang Wang, Chen Luo, Xianfeng Tang, Monica Xiao Cheng, Tuo Zhao, Jing Gao:
BlendFilter: Advancing Retrieval-Augmented Large Language Models via Query Generation Blending and Knowledge Filtering. EMNLP 2024: 1009-1025 - [c109]Alexander Bukharin, Shiyang Li, Zhengyang Wang, Jingfeng Yang, Bing Yin, Xian Li, Chao Zhang, Tuo Zhao, Haoming Jiang:
Data Diversity Matters for Robust Instruction Tuning. EMNLP (Findings) 2024: 3411-3425 - [c108]Tuo Zhao, Xinxue Wang, Tingting Zhao, Yuan Wang, Yarui Chen, Jucheng Yang:
Hybrid Deep Generative and Sequential Learning Approach for Stock Market Prediction. ICIC (LNAI 5) 2024: 263-274 - [c107]Yixiao Li, Yifan Yu, Chen Liang, Nikos Karampatziakis, Pengcheng He, Weizhu Chen, Tuo Zhao:
LoftQ: LoRA-Fine-Tuning-aware Quantization for Large Language Models. ICLR 2024 - [c106]Qingru Zhang, Chandan Singh, Liyuan Liu, Xiaodong Liu, Bin Yu, Jianfeng Gao, Tuo Zhao:
Tell Your Model Where to Attend: Post-hoc Attention Steering for LLMs. ICLR 2024 - [c105]Zichong Li, Qunzhi Xu, Zhenghao Xu, Yajun Mei, Tuo Zhao, Hongyuan Zha:
Beyond Point Prediction: Score Matching-based Pseudolikelihood Estimation of Neural Marked Spatio-Temporal Point Process. ICML 2024 - [c104]Zi-Hao Qiu, Siqi Guo, Mao Xu, Tuo Zhao, Lijun Zhang, Tianbao Yang:
To Cool or not to Cool? Temperature Network Meets Large Foundation Models via DRO. ICML 2024 - [c103]Zhen Shao, Tuo Zhao, Lin Zhang, Yu Liu:
Trust in Digital Commerce: the Moderating Effect of Blockchain Teability Labels. PACIS 2024 - [i120]Haoyu Wang, Tuo Zhao, Jing Gao:
BlendFilter: Advancing Retrieval-Augmented Large Language Models via Query Generation Blending and Knowledge Filtering. CoRR abs/2402.11129 (2024) - [i119]Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, Tuo Zhao:
GEAR: An Efficient KV Cache Compression Recipe for Near-Lossless Generative Inference of LLM. CoRR abs/2403.05527 (2024) - [i118]Hoang Huy Nguyen, Yan Li, Tuo Zhao:
Stochastic Constrained Decentralized Optimization for Machine Learning with Fewer Data Oracles: a Gradient Sliding Approach. CoRR abs/2404.02511 (2024) - [i117]Zi-Hao Qiu, Siqi Guo, Mao Xu, Tuo Zhao, Lijun Zhang, Tianbao Yang:
To Cool or not to Cool? Temperature Network Meets Large Foundation Models via DRO. CoRR abs/2404.04575 (2024) - [i116]Ilgee Hong, Zichong Li, Alexander Bukharin, Yixiao Li, Haoming Jiang, Tianbao Yang, Tuo Zhao:
Adaptive Preference Scaling for Reinforcement Learning with Human Feedback. CoRR abs/2406.02764 (2024) - [i115]Haoyu Wang, Tianci Liu, Tuo Zhao, Jing Gao:
RoseLoRA: Row and Column-wise Sparse Low-rank Adaptation of Pre-trained Language Model for Knowledge Editing and Fine-tuning. CoRR abs/2406.10777 (2024) - [i114]Alexander Bukharin, Ilgee Hong, Haoming Jiang, Qingru Zhang, Zixuan Zhang, Tuo Zhao:
Robust Reinforcement Learning from Corrupted Human Feedback. CoRR abs/2406.15568 (2024) - [i113]Qingru Zhang, Xiaodong Yu, Chandan Singh, Xiaodong Liu, Liyuan Liu, Jianfeng Gao, Tuo Zhao, Dan Roth, Hao Cheng:
Model Tells Itself Where to Attend: Faithfulness Meets Automatic Attention Steering. CoRR abs/2409.10790 (2024) - [i112]Kuan Wang, Alexander Bukharin, Haoming Jiang, Qingyu Yin, Zhengyang Wang, Tuo Zhao, Jingbo Shang, Chao Zhang, Bing Yin, Xian Li, Jianshu Chen, Shiyang Li:
RNR: Teaching Large Language Models to Follow Roles and Rules. CoRR abs/2409.13733 (2024) - [i111]Zhenghao Xu, Yuqing Wang, Tuo Zhao, Rachel Ward, Molei Tao:
Provable Acceleration of Nesterov's Accelerated Gradient for Rectangular Matrix Factorization and Linear Neural Networks. CoRR abs/2410.09640 (2024) - 2023
- [j22]Ethan X. Fang, Yajun Mei, Yuyang Shi, Qunzhi Xu, Tuo Zhao:
Pivotal Estimation of Linear Discriminant Analysis in High Dimensions. J. Mach. Learn. Res. 24: 302:1-302:45 (2023) - [j21]Guanghui Lan, Yan Li, Tuo Zhao:
Block Policy Mirror Descent. SIAM J. Optim. 33(3): 2341-2378 (2023) - [c102]Simiao Zuo, Qingyu Yin, Haoming Jiang, Shaohui Xi, Bing Yin, Chao Zhang, Tuo Zhao:
Context-Aware Query Rewriting for Improving Users' Search Experience on E-commerce Websites. ACL (industry) 2023: 616-628 - [c101]Jiachen Yang, Tarik Dzanic, Brenden K. Petersen, Jun Kudo, Ketan Mittal, Vladimir Z. Tomov, Jean-Sylvain Camier, Tuo Zhao, Hongyuan Zha, Tzanio V. Kolev, Robert W. Anderson, Daniel M. Faissol:
Reinforcement Learning for Adaptive Mesh Refinement. AISTATS 2023: 5997-6014 - [c100]Qingru Zhang, Dhananjay Ram, Cole Hawkins, Sheng Zha, Tuo Zhao:
Efficient Long-Range Transformers: You Need to Attend More, but Not Necessarily at Every Layer. EMNLP (Findings) 2023: 2775-2786 - [c99]Haoyu Wang, Yaqing Wang, Tianci Liu, Tuo Zhao, Jing Gao:
HadSkip: Homotopic and Adaptive Layer Skipping of Pre-trained Language Models for Efficient Inference. EMNLP (Findings) 2023: 4283-4294 - [c98]Suliang Bu, Tuo Zhao, Yunxin Zhao:
Joint Estimation of DOA and Distance in Noisy Reverberant Conditions. ICASSP 2023: 1-5 - [c97]Xiang Ji, Minshuo Chen, Mengdi Wang, Tuo Zhao:
Sample Complexity of Nonparametric Off-Policy Evaluation on Low-Dimensional Manifolds using Deep Networks. ICLR 2023 - [c96]Chen Liang, Haoming Jiang, Zheng Li, Xianfeng Tang, Bing Yin, Tuo Zhao:
HomoDistil: Homotopic Task-Agnostic Distillation of Pre-trained Transformers. ICLR 2023 - [c95]Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, Tuo Zhao:
Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning. ICLR 2023 - [c94]Alexander Bukharin, Tianyi Liu, Shengjie Wang, Simiao Zuo, Weihao Gao, Wen Yan, Tuo Zhao:
Machine Learning Force Fields with Data Cost Aware Training. ICML 2023: 3219-3232 - [c93]Minshuo Chen, Kaixuan Huang, Tuo Zhao, Mengdi Wang:
Score Approximation, Estimation and Distribution Recovery of Diffusion Models on Low-Dimensional Data. ICML 2023: 4672-4712 - [c92]Zichong Li, Yanbo Xu, Simiao Zuo, Haoming Jiang, Chao Zhang, Tuo Zhao, Hongyuan Zha:
SMURF-THP: Score Matching-based UnceRtainty quantiFication for Transformer Hawkes Process. ICML 2023: 20210-20220 - [c91]Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, Tuo Zhao:
LoSparse: Structured Compression of Large Language Models based on Low-Rank and Sparse Approximation. ICML 2023: 20336-20350 - [c90]Chen Liang, Simiao Zuo, Qingru Zhang, Pengcheng He, Weizhu Chen, Tuo Zhao:
Less is More: Task-aware Layer-wise Distillation for Language Model Compression. ICML 2023: 20852-20867 - [c89]Zixuan Zhang, Minshuo Chen, Mengdi Wang, Wenjing Liao, Tuo Zhao:
Effective Minkowski Dimension of Deep Nonparametric Regression: Function Approximation and Statistical Theories. ICML 2023: 40911-40931 - [c88]Haoyu Wang, Ruirui Li, Haoming Jiang, Zhengyang Wang, Xianfeng Tang, Bin Bi, Monica Xiao Cheng, Bing Yin, Yaqing Wang, Tuo Zhao, Jing Gao:
LightToken: A Task and Model-agnostic Lightweight Token Embedding Framework for Pre-trained Language Models. KDD 2023: 2302-2313 - [c87]Chen Liang, Jiahui Yu, Ming-Hsuan Yang, Matthew Brown, Yin Cui, Tuo Zhao, Boqing Gong, Tianyi Zhou:
Module-wise Adaptive Distillation for Multimodality Foundation Models. NeurIPS 2023 - [c86]Alexander Bukharin, Yan Li, Yue Yu, Qingru Zhang, Zhehui Chen, Simiao Zuo, Chao Zhang, Songan Zhang, Tuo Zhao:
Robust Multi-Agent Reinforcement Learning via Adversarial Regularization: Theoretical Foundation and Stable Algorithms. NeurIPS 2023 - [c85]Shenao Zhang, Boyi Liu, Zhaoran Wang, Tuo Zhao:
Model-Based Reparameterization Policy Gradient Methods: Theory and Practical Algorithms. NeurIPS 2023 - [i110]Minshuo Chen, Kaixuan Huang, Tuo Zhao, Mengdi Wang:
Score Approximation, Estimation and Distribution Recovery of Diffusion Models on Low-Dimensional Data. CoRR abs/2302.07194 (2023) - [i109]Chen Liang, Haoming Jiang, Zheng Li, Xianfeng Tang, Bin Yin, Tuo Zhao:
HomoDistil: Homotopic Task-Agnostic Distillation of Pre-trained Transformers. CoRR abs/2302.09632 (2023) - [i108]Biraj Dahal, Alexander Havrilla, Minshuo Chen, Tuo Zhao, Wenjing Liao:
On Deep Generative Models for Approximation and Estimation of Distributions on Manifolds. CoRR abs/2302.13183 (2023) - [i107]Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, Tuo Zhao:
Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning. CoRR abs/2303.10512 (2023) - [i106]Alexander Bukharin, Tianyi Liu, Shengjie Wang, Simiao Zuo, Weihao Gao, Wen Yan, Tuo Zhao:
Machine Learning Force Fields with Data Cost Aware Training. CoRR abs/2306.03109 (2023) - [i105]Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, Tuo Zhao:
LoSparse: Structured Compression of Large Language Models based on Low-Rank and Sparse Approximation. CoRR abs/2306.11222 (2023) - [i104]Zixuan Zhang, Minshuo Chen, Mengdi Wang, Wenjing Liao, Tuo Zhao:
Effective Minkowski Dimension of Deep Nonparametric Regression: Function Approximation and Statistical Theories. CoRR abs/2306.14859 (2023) - [i103]Kaiqi Zhang, Zixuan Zhang, Minshuo Chen, Mengdi Wang, Tuo Zhao, Yu-Xiang Wang:
Nonparametric Classification on Low Dimensional Manifolds using Overparameterized Convolutional Residual Networks. CoRR abs/2307.01649 (2023) - [i102]Xiang Ji, Huazheng Wang, Minshuo Chen, Tuo Zhao, Mengdi Wang:
Provable Benefits of Policy Learning from Human Preferences in Contextual Bandit Problems. CoRR abs/2307.12975 (2023) - [i101]Alexander Bukharin, Yixiao Li, Pengcheng He, Weizhu Chen, Tuo Zhao:
Deep Reinforcement Learning from Hierarchical Weak Preference Feedback. CoRR abs/2309.02632 (2023) - [i100]Zhenghao Xu, Xiang Ji, Minshuo Chen, Mengdi Wang, Tuo Zhao:
Sample Complexity of Neural Policy Mirror Descent for Policy Optimization on Low-Dimensional Manifolds. CoRR abs/2309.13915 (2023) - [i99]Chen Liang, Jiahui Yu, Ming-Hsuan Yang, Matthew Brown, Yin Cui, Tuo Zhao, Boqing Gong, Tianyi Zhou:
Module-wise Adaptive Distillation for Multimodality Foundation Models. CoRR abs/2310.04550 (2023) - [i98]Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos Karampatziakis, Weizhu Chen, Tuo Zhao:
LoftQ: LoRA-Fine-Tuning-Aware Quantization for Large Language Models. CoRR abs/2310.08659 (2023) - [i97]Alexander Bukharin, Yan Li, Yue Yu, Qingru Zhang, Zhehui Chen, Simiao Zuo, Chao Zhang, Songan Zhang, Tuo Zhao:
Robust Multi-Agent Reinforcement Learning via Adversarial Regularization: Theoretical Foundation and Stable Algorithms. CoRR abs/2310.10810 (2023) - [i96]Qingru Zhang, Dhananjay Ram, Cole Hawkins, Sheng Zha, Tuo Zhao:
Efficient Long-Range Transformers: You Need to Attend More, but Not Necessarily at Every Layer. CoRR abs/2310.12442 (2023) - [i95]Zichong Li, Qunzhi Xu, Zhenghao Xu, Yajun Mei, Tuo Zhao, Hongyuan Zha:
Score Matching-based Pseudolikelihood Estimation of Neural Marked Spatio-Temporal Point Process with Uncertainty Quantification. CoRR abs/2310.16310 (2023) - [i94]Zichong Li, Yanbo Xu, Simiao Zuo, Haoming Jiang, Chao Zhang, Tuo Zhao, Hongyuan Zha:
SMURF-THP: Score Matching-based UnceRtainty quantiFication for Transformer Hawkes Process. CoRR abs/2310.16336 (2023) - [i93]Yuqing Wang, Zhenghao Xu, Tuo Zhao, Molei Tao:
Good regularity creates large learning rate implicit biases: edge of stability, balancing, and catapult. CoRR abs/2310.17087 (2023) - [i92]Shenao Zhang, Boyi Liu, Zhaoran Wang, Tuo Zhao:
Model-Based Reparameterization Policy Gradient Methods: Theory and Practical Algorithms. CoRR abs/2310.19927 (2023) - [i91]Qingru Zhang, Chandan Singh, Liyuan Liu, Xiaodong Liu, Bin Yu, Jianfeng Gao, Tuo Zhao:
Tell Your Model Where to Attend: Post-hoc Attention Steering for LLMs. CoRR abs/2311.02262 (2023) - [i90]Alexander Bukharin, Tuo Zhao:
Data Diversity Matters for Robust Instruction Tuning. CoRR abs/2311.14736 (2023) - 2022
- [j20]Zhen Shao, Lin Zhang, Susan A. Brown, Tuo Zhao:
Understanding users' trust transfer mechanism in a blockchain-enabled platform: A mixed methods study. Decis. Support Syst. 155: 113716 (2022) - [j19]Suliang Bu, Yunxin Zhao, Tuo Zhao, Shaojun Wang, Mei Han:
Modeling Speech Structure to Improve T-F Masks for Speech Enhancement and Recognition. IEEE ACM Trans. Audio Speech Lang. Process. 30: 2705-2715 (2022) - [c84]Chen Liang, Pengcheng He, Yelong Shen, Weizhu Chen, Tuo Zhao:
CAMERO: Consistency Regularized Ensemble of Perturbed Language Models with Weight Sharing. ACL (1) 2022: 7162-7175 - [c83]Tianyi Liu, Yan Li, Enlu Zhou, Tuo Zhao:
Noise Regularizes Over-parameterized Rank One Matrix Recovery, Provably. AISTATS 2022: 2784-2802 - [c82]Jiachen Yang, Ethan Wang, Rakshit Trivedi, Tuo Zhao, Hongyuan Zha:
Adaptive Incentive Design with Multi-Agent Meta-Gradient Reinforcement Learning. AAMAS 2022: 1436-1445 - [c81]Yan Li, Dhruv Choudhary, Xiaohan Wei, Baichuan Yuan, Bhargav Bhushanam, Tuo Zhao, Guanghui Lan:
Frequency-aware SGD for Efficient Embedding Learning with Provable Benefits. ICLR 2022 - [c80]Chen Liang, Haoming Jiang, Simiao Zuo, Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, Tuo Zhao:
No Parameters Left Behind: Sensitivity Guided Adaptive Learning Rate for Training Large Transformer Models. ICLR 2022 - [c79]Yuqing Wang, Minshuo Chen, Tuo Zhao, Molei Tao:
Large Learning Rate Tames Homogeneity: Convergence and Balancing Effect. ICLR 2022 - [c78]Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim, Hany Hassan, Ruofei Zhang, Jianfeng Gao, Tuo Zhao:
Taming Sparsely Activated Transformer with Stochastic Experts. ICLR 2022 - [c77]Hao Liu, Minshuo Chen, Siawpeng Er, Wenjing Liao, Tong Zhang, Tuo Zhao:
Benefits of Overparameterized Convolutional Residual Networks: Function Approximation under Smoothness Constraint. ICML 2022: 13669-13703 - [c76]Qingru Zhang, Simiao Zuo, Chen Liang, Alexander Bukharin, Pengcheng He, Weizhu Chen, Tuo Zhao:
PLATON: Pruning Large Transformer Models with Upper Confidence Bound of Weight Importance. ICML 2022: 26809-26823 - [c75]Suliang Bu, Yunxin Zhao, Tuo Zhao:
Steering vector correction in MVDR beamformer for speech enhancement. INTERSPEECH 2022: 5468-5472 - [c74]Zhigen Zhao, Simiao Zuo, Tuo Zhao, Ye Zhao:
Adversarially Regularized Policy Learning Guided by Trajectory Optimization. L4DC 2022: 844-857 - [c73]Rui Feng, Chen Luo, Qingyu Yin, Bing Yin, Tuo Zhao, Chao Zhang:
CERES: Pretraining of Graph-Conditioned Transformer for Semi-Structured Session Data. NAACL-HLT 2022: 219-230 - [c72]Simiao Zuo, Yue Yu, Chen Liang, Haoming Jiang, Siawpeng Er, Chao Zhang, Tuo Zhao, Hongyuan Zha:
Self-Training with Differentiable Teacher. NAACL-HLT (Findings) 2022: 933-949 - [c71]Simiao Zuo, Qingru Zhang, Chen Liang, Pengcheng He, Tuo Zhao, Weizhu Chen:
MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation. NAACL-HLT 2022: 1610-1623 - [c70]Biraj Dahal, Alexander Havrilla, Minshuo Chen, Tuo Zhao, Wenjing Liao:
On Deep Generative Models for Approximation and Estimation of Distributions on Manifolds. NeurIPS 2022 - [c69]Suliang Bu, Tuo Zhao, Yunxin Zhao:
TDOA Estimation of Speech Source in Noisy Reverberant Environments. SLT 2022: 1059-1066 - [i89]Hao Liu, Haizhao Yang, Minshuo Chen, Tuo Zhao, Wenjing Liao:
Deep Nonparametric Estimation of Operators between Infinite Dimensional Spaces. CoRR abs/2201.00217 (2022) - [i88]Siawpeng Er, Edward Liu, Minshuo Chen, Yan Li, Yuqi Liu, Tuo Zhao, Hua Wang:
Deep Learning Assisted End-to-End Synthesis of mm-Wave Passive Networks with 3D EM Structures: A Study on A Transformer-Based Matching Network. CoRR abs/2201.02141 (2022) - [i87]Guanghui Lan, Yan Li, Tuo Zhao:
Block Policy Mirror Descent. CoRR abs/2201.05756 (2022) - [i86]Yan Li, Tuo Zhao, Guanghui Lan:
Homotopic Policy Mirror Descent: Policy Convergence, Implicit Regularization, and Improved Sample Complexity. CoRR abs/2201.09457 (2022) - [i85]Chen Liang, Haoming Jiang, Simiao Zuo, Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, Tuo Zhao:
No Parameters Left Behind: Sensitivity Guided Adaptive Learning Rate for Training Large Transformer Models. CoRR abs/2202.02664 (2022) - [i84]Tianyi Liu, Yan Li, Enlu Zhou, Tuo Zhao:
Noise Regularizes Over-parameterized Rank One Matrix Recovery, Provably. CoRR abs/2202.03535 (2022) - [i83]Rui Feng, Chen Luo, Qingyu Yin, Bing Yin, Tuo Zhao, Chao Zhang:
CERES: Pretraining of Graph-Conditioned Transformer for Semi-Structured Session Data. CoRR abs/2204.04303 (2022) - [i82]Chen Liang, Pengcheng He, Yelong Shen, Weizhu Chen, Tuo Zhao:
CAMERO: Consistency Regularized Ensemble of Perturbed Language Models with Weight Sharing. CoRR abs/2204.06625 (2022) - [i81]Simiao Zuo, Qingru Zhang, Chen Liang, Pengcheng He, Tuo Zhao, Weizhu Chen:
MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation. CoRR abs/2204.07675 (2022) - [i80]Jie Wang, Minshuo Chen, Tuo Zhao, Wenjing Liao, Yao Xie:
A Manifold Two-Sample Test Study: Integral Probability Metric with Neural Networks. CoRR abs/2205.02043 (2022) - [i79]Xiang Ji, Minshuo Chen, Mengdi Wang, Tuo Zhao:
Sample Complexity of Nonparametric Off-Policy Evaluation on Low-Dimensional Manifolds using Deep Networks. CoRR abs/2206.02887 (2022) - [i78]Hao Liu, Minshuo Chen, Siawpeng Er, Wenjing Liao, Tong Zhang, Tuo Zhao:
Benefits of Overparameterized Convolutional Residual Networks: Function Approximation under Smoothness Constraint. CoRR abs/2206.04569 (2022) - [i77]Qingru Zhang, Simiao Zuo, Chen Liang, Alexander Bukharin, Pengcheng He, Weizhu Chen, Tuo Zhao:
PLATON: Pruning Large Transformer Models with Upper Confidence Bound of Weight Importance. CoRR abs/2206.12562 (2022) - [i76]Simiao Zuo, Tianyi Liu, Tuo Zhao, Hongyuan Zha:
Differentially Private Estimation of Hawkes Process. CoRR abs/2209.07303 (2022) - [i75]Simiao Zuo, Haoming Jiang, Qingyu Yin, Xianfeng Tang, Bing Yin, Tuo Zhao:
DiP-GNN: Discriminative Pre-Training of Graph Neural Networks. CoRR abs/2209.07499 (2022) - [i74]Simiao Zuo, Qingyu Yin, Haoming Jiang, Shaohui Xi, Bing Yin, Chao Zhang, Tuo Zhao:
Context-Aware Query Rewriting for Improving Users' Search Experience on E-commerce Websites. CoRR abs/2209.07584 (2022) - [i73]Yan Li, Tuo Zhao, Guanghui Lan:
First-order Policy Optimization for Robust Markov Decision Process. CoRR abs/2209.10579 (2022) - [i72]Chen Liang, Simiao Zuo, Qingru Zhang, Pengcheng He, Weizhu Chen, Tuo Zhao:
Less is More: Task-aware Layer-wise Distillation for Language Model Compression. CoRR abs/2210.01351 (2022) - [i71]Jiahui Cheng, Minshuo Chen, Hao Liu, Tuo Zhao, Wenjing Liao:
High Dimensional Binary Classification under Label Shift: Phase Transition and Regularization. CoRR abs/2212.00700 (2022) - [i70]Simiao Zuo, Xiaodong Liu, Jian Jiao, Denis Charles, Eren Manavoglu, Tuo Zhao, Jianfeng Gao:
Efficient Long Sequence Modeling via State Space Augmented Transformer. CoRR abs/2212.08136 (2022) - 2021
- [j18]Lewis Liu, Songtao Lu, Tuo Zhao, Zhaoran Wang:
Spectrum Truncation Power Iteration for Agnostic Matrix Phase Retrieval. IEEE Trans. Signal Process. 69: 3991-4006 (2021) - [c68]Haoming Jiang, Danqing Zhang, Tianyu Cao, Bing Yin, Tuo Zhao:
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data. ACL/IJCNLP (1) 2021: 1775-1789 - [c67]Chen Liang, Simiao Zuo, Minshuo Chen, Haoming Jiang, Xiaodong Liu, Pengcheng He, Tuo Zhao, Weizhu Chen:
Super Tickets in Pre-Trained Language Models: From Model Compression to Improving Generalization. ACL/IJCNLP (1) 2021: 6524-6538 - [c66]Haoming Jiang, Zhehui Chen, Yuyang Shi, Bo Dai, Tuo Zhao:
Learning to Defend by Learning to Attack. AISTATS 2021: 577-585 - [c65]Tianyi Liu, Yan Li, Song Wei, Enlu Zhou, Tuo Zhao:
Noisy Gradient Descent Converges to Flat Minima for Nonconvex Matrix Factorization. AISTATS 2021: 1891-1899 - [c64]Danqing Zhang, Zheng Li, Tianyu Cao, Chen Luo, Tony Wu, Hanqing Lu, Yiwei Song, Bing Yin, Tuo Zhao, Qiang Yang:
QUEACO: Borrowing Treasures from Weakly-labeled Behavior Data for Query Attribute Value Extraction. CIKM 2021: 4362-4372 - [c63]Chen Liang, Haoming Jiang, Xiaodong Liu, Pengcheng He, Weizhu Chen, Jianfeng Gao, Tuo Zhao:
Token-wise Curriculum Learning for Neural Machine Translation. EMNLP (Findings) 2021: 3658-3670 - [c62]Simiao Zuo, Chen Liang, Haoming Jiang, Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, Tuo Zhao:
ARCH: Efficient Adversarial Regularized Training with Caching. EMNLP (Findings) 2021: 4118-4131 - [c61]Simiao Zuo, Chen Liang, Haoming Jiang, Xiaodong Liu, Pengcheng He, Jianfeng Gao, Weizhu Chen, Tuo Zhao:
Adversarial Regularization as Stackelberg Game: An Unrolled Optimization Approach. EMNLP (1) 2021: 6562-6577 - [c60]Haoming Jiang, Bo Dai, Mengjiao Yang, Tuo Zhao, Wei Wei:
Towards Automatic Evaluation of Dialog Systems: A Model-Free Off-Policy Evaluation Approach. EMNLP (1) 2021: 7419-7451 - [c59]