


default search action
NIPS 2000: Denver, CO, USA
- Todd K. Leen, Thomas G. Dietterich, Volker Tresp:

Advances in Neural Information Processing Systems 13, Papers from Neural Information Processing Systems (NIPS) 2000, Denver, CO, USA. MIT Press 2001 - Ranit Aharonov-Barki, Isaac Meilijson, Eytan Ruppin:

Who Does What? A Novel Algorithm to Determine Function Localization. 3-9 - Shimon Edelman, Nathan Intrator:

A Productive, Systematic Framework for the Representation of Visual Structure. 10-16 - David B. Grimes, Michael Mozer:

The Interplay of Symbolic and Subsymbolic Processes in Anagram Problem Solving. 17-23 - Szabolcs Káli, Peter Dayan:

Hippocampally-Dependent Consolidation in a Hierarchical Model of Neocortex. 24-30 - Zhaoping Li, Peter Dayan:

Position Variance, Recurrence and Perceptual Learning. 31-37 - In Jae Myung, Mark A. Pitt, Shaobo Zhang, Vijay Balasubramanian:

The Use of MDL to Select among Computational Models of Cognition. 38-44 - Jonathan D. Nelson, Javier R. Movellan:

Active Inference in Concept Learning. 45-51 - Mark A. Smith, Garrison W. Cottrell, Karen L. Anderson:

The Early Word Catches the Weights. 52-58 - Joshua B. Tenenbaum, Thomas L. Griffiths:

Structure Learning in Human Causal Induction. 59-65 - Bosco S. Tjan:

Adaptive Object Representation with Hierarchically-Distributed Memory Sites. 66-72 - Blaise Agüera y Arcas, Adrienne L. Fairhall, William Bialek:

What Can a Single Neuron Compute? 75-81 - Kevin A. Archie, Bartlett W. Mel:

Dendritic Compartmentalization Could Underlie Competition and Attentional Biasing of Simultaneous Visual Stimuli. 82-88 - Angelo Arleo, Fabrizio Smeraldi, Stéphane Hug, Wulfram Gerstner:

Place Cells and Spatial Navigation Based on 2D Visual Feature Extraction, Path Integration, and Reinforcement Learning. 89-95 - Suzanna Becker, Neil Burgess:

Modelling Spatial Recall, Mental Imagery and Neglect. 96-102 - William Bialek:

Stability and Noise in Biochemical Switches. 103-109 - Gal Chechik, Naftali Tishby:

Temporally Dependent Plasticity: An Information Theoretic Account. 110-116 - Sophie Denève, Jean-René Duhamel, Alexandre Pouget:

A New Model of Spatial Representation in Multimodal Brain Areas. 117-123 - Adrienne L. Fairhall, Geoffrey D. Lewen, William Bialek, Robert R. de Ruyter van Steveninck:

Multiple Timescales of Adaptation in a Neural Code. 124-130 - Sham M. Kakade, Peter Dayan:

Dopamine Bonuses. 131-137 - Thomas Natschläger, Wolfgang Maass:

Finding the Key to a Synapse. 138-144 - Thomas Natschläger, Wolfgang Maass, Eduardo D. Sontag, Anthony M. Zador:

Processing of Time Series by Neural Circuits with Biologically Realistic Synaptic Dynamics. 145-151 - Silvia Scarpetta, Zhaoping Li, John A. Hertz:

Spike-Timing-Dependent Learning for Oscillatory Networks. 152-158 - Elad Schneidman, Naama Brenner, Naftali Tishby, Robert R. de Ruyter van Steveninck, William Bialek:

Universality and Individuality in a Neural Code. 159-165 - Odelia Schwartz, Eero P. Simoncelli:

Natural Sound Statistics and Divisive Normalization in the Auditory System. 166-172 - Mario F. Simoni, Gennady S. Cymbalyuk, Michael Elliott Sorensen, Ronald L. Calabrese, Stephen P. DeWeerth:

Development of Hybrid Systems: Interfacing a Silicon Neuron to a Leech Heart Interneuron. NIPS 2000: 173-179 - Carl van Vreeswijk:

Whence Sparseness? 180-186 - Shai Ben-David, Hans Ulrich Simon:

Efficient Learning of Linear Perceptrons. 189-195 - Olivier Bousquet, André Elisseeff:

Algorithmic Stability and Generalization Performance. 196-202 - Peter Dayan:

Competition and Arbors in Ocular Dominance. 203-209 - Thore Graepel, Ralf Herbrich, Robert C. Williamson:

From Margin to Sparsity. 210-216 - Richard H. R. Hahnloser, H. Sebastian Seung:

Permitted and Forbidden Sets in Symmetric Threshold-Linear Networks. 217-223 - Ralf Herbrich, Thore Graepel:

A PAC-Bayesian Margin Bound for Linear Classifiers: Why SVMs work. 224-230 - Tony Jebara, Alex Pentland:

On Reversing Jensen's Inequality. 231-237 - Hilbert J. Kappen, Wim Wiegerinck:

Second Order Approximations for Probability Models. 238-244 - Vladimir Koltchinskii, Dmitriy Panchenko, Fernando Lozano:

Some New Bounds on the Generalization Error of Combined Classifiers. 245-251 - Adam Kowalczyk:

Sparsity of Data Representation of Optimal Kernel Machine and Leave-one-out Estimator. 252-258 - Robert Legenstein, Wolfgang Maass:

Foundations for a Circuit Complexity Theory of Sensory Processing. 259-265 - Martijn A. R. Leisink, Hilbert J. Kappen:

A Tighter Bound for Graphical Models. 266-272 - Dörthe Malzahn, Manfred Opper:

Learning Curves for Gaussian Processes Regression: A Framework for Good Approximations. 273-279 - Shie Mannor, Ron Meir:

Weak Learners and Improved Rates of Convergence in Boosting. 280-286 - Ilya Nemenman, William Bialek:

Learning Continuous Distributions: Simulations With Field Theoretic Priors. 287-293 - Carl Edward Rasmussen, Zoubin Ghahramani:

Occam's Razor. 294-300 - Bernhard Schölkopf:

The Kernel Trick for Distances. 301-307 - Alexander J. Smola, Zoltán L. Óvári, Robert C. Williamson:

Regularization with Dot-Product Kernels. 308-314 - Toshiyuki Tanaka:

Analysis of Bit Error Probability of Direct-Sequence CDMA Multiuser Demodulators. 315-321 - Renato Vicente, David Saad, Yoshiyuki Kabashima:

Error-correcting Codes on a Bethe-like Lattice. 322-328 - Sumio Watanabe:

Algebraic Information Geometry for Learning Machines with Singularities. 329-335 - Ole Winther:

Computing with Finite and Infinite Networks. 336-342 - K. Y. Michael Wong, Hidetoshi Nishimori:

Stagewise Processing in Error-correcting Codes and Image Restoration. 343-349 - Xiaohui Xie, Richard H. R. Hahnloser, H. Sebastian Seung:

Learning Winner-take-all Competition Between Groups of Neurons in Lateral Inhibitory Networks. 350-356 - Tong Zhang:

Convergence of Large Margin Separable Linear Classification. 357-363 - Asa Ben-Hur, David Horn, Hava T. Siegelmann, Vladimir Vapnik:

A Support Vector Method for Clustering. 367-373 - Chiranjib Bhattacharyya, S. Sathiya Keerthi:

A Variational Mean-Field Theory for Sigmoidal Belief Networks. 374-380 - Timothy X. Brown:

Direct Classification with Indirect Data. 381-387 - Igor V. Cadez, Padhraic Smyth:

Model Complexity, Goodness of Fit and Diminishing Returns. 388-394 - Colin Campbell, Kristin P. Bennett:

A Linear Programming Approach to Novelty Detection. 395-401 - Rich Caruana, Steve Lawrence, C. Lee Giles

:
Overfitting in Neural Nets: Backpropagation, Conjugate Gradient, and Early Stopping. 402-408 - Gert Cauwenberghs, Tomaso A. Poggio:

Incremental and Decremental Support Vector Machine Learning. 409-415 - Olivier Chapelle, Jason Weston, Léon Bottou, Vladimir Vapnik:

Vicinal Risk Minimization. 416-422 - Scott Saobing Chen, Ramesh A. Gopinath:

Gaussianization. 423-429 - David A. Cohn, Thomas Hofmann:

The Missing Link - A Probabilistic Model of Document Content and Hypertext Connectivity. 430-436 - Koby Crammer, Yoram Singer:

Improved Output Coding for Classification Using Continuous Relaxation. 437-443 - Lehel Csató, Manfred Opper:

Sparse Representation for Gaussian Process Models. 444-450 - Peter Dayan, Sham M. Kakade:

Explaining Away in Weight Space. 451-457 - Carlotta Domeniconi, Jing Peng, Dimitrios Gunopulos:

An Adaptive Metric Machine for Pattern Classification. 458-464 - Oliver B. Downs:

High-temperature Expansions for Learning Models of Nonnegative Data. 465-471 - Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, René Garcia:

Incorporating Second-Order Functional Knowledge for Better Option Pricing. 472-478 - Gal Elidan, Noam Lotner, Nir Friedman, Daphne Koller:

Discovering Hidden Variables: A Structure-Based Approach. 479-485 - Brendan J. Frey, Anitha Kannan:

Accumulator Networks: Suitors of Local Probability Propagation. 486-492 - Brendan J. Frey, Relu Patrascu, Tommi S. Jaakkola, Jodi Moran:

Sequentially Fitting "Inclusive" Trees for Inference in Noisy-OR Networks. 493-499 - Claudio Gentile:

A New Approximate Maximal Margin Classification Algorithm. 500-506 - Zoubin Ghahramani, Matthew J. Beal:

Propagation Algorithms for Variational Bayesian Learning. 507-513 - Thore Graepel, Ralf Herbrich:

The Kernel Gibbs Sampler. 514-520 - Alexander G. Gray, Andrew W. Moore:

'N-Body' Problems in Statistical Learning. 521-527 - Ralf Herbrich, Thore Graepel:

Large Scale Bayes Point Machines. 528-534 - Sepp Hochreiter, Michael Mozer:

Beyond Maximum Likelihood and Density Estimation: A Sample-Based Criterion for Unsupervised Learning of Complex Models. 535-541 - Pedro A. d. F. R. Højen-Sørensen, Ole Winther, Lars Kai Hansen

:
Ensemble Learning and Linear Response Theory for ICA. 542-548 - Ulrik Kjems, Lars Kai Hansen

, Stephen C. Strother:
Generalizable Singular Value Decomposition for Ill-posed Datasets. 549-555 - Daniel D. Lee, H. Sebastian Seung:

Algorithms for Non-negative Matrix Factorization. 556-562 - Huma Lodhi, John Shawe-Taylor, Nello Cristianini, Christopher J. C. H. Watkins:

Text Classification using String Kernels. 563-569 - Wei Lu, Jagath C. Rajapakse:

Constrained Independent Component Analysis. 570-576 - Olvi L. Mangasarian, David R. Musicant:

Active Support Vector Machine Classification. 577-583 - Rudolph van der Merwe, Arnaud Doucet, Nando de Freitas, Eric A. Wan:

The Unscented Particle Filter. 584-590 - Sebastian Mika, Gunnar Rätsch, Klaus-Robert Müller:

A Mathematical Programming Approach to the Kernel Fisher Algorithm. 591-597 - Thomas P. Minka:

Automatic Choice of Dimensionality for PCA. 598-604 - Eiji Mizutani, James Demmel:

On Iterative Krylov-Dogleg Trust-Region Steps for Solving Neural Networks Nonlinear Least Squares Problems. 605-611 - Oren Shriki, Haim Sompolinsky, Daniel D. Lee:

An Information Maximization Approach to Overcomplete and Recurrent Representations. 612-618 - Alexander J. Smola, Peter L. Bartlett:

Sparse Greedy Gaussian Process Regression. 619-625 - Martin Szummer, Tommi S. Jaakkola:

Kernel Expansions with Unlabeled Examples. 626-632 - Michael E. Tipping:

Sparse Kernel Principal Component Analysis. 633-639 - Naftali Tishby, Noam Slonim:

Data Clustering by Markovian Relaxation and the Information Bottleneck Method. 640-646 - Simon Tong, Daphne Koller:

Active Learning for Parameter Estimation in Bayesian Networks. 647-653 - Volker Tresp:

Mixtures of Gaussian Processes. 654-660 - Martin J. Wainwright, Erik B. Sudderth, Alan S. Willsky:

Tree-Based Modeling and Estimation of Gaussian Processes on Graphs with Cycles. 661-667 - Jason Weston, Sayan Mukherjee, Olivier Chapelle, Massimiliano Pontil, Tomaso A. Poggio, Vladimir Vapnik:

Feature Selection for SVMs. 668-674 - Christopher K. I. Williams:

On a Connection between Kernel PCA and Metric Multidimensional Scaling. 675-681 - Christopher K. I. Williams, Matthias W. Seeger:

Using the Nyström Method to Speed Up Kernel Machines. 682-688 - Jonathan S. Yedidia, William T. Freeman, Yair Weiss:

Generalized Belief Propagation. 689-695 - Richard S. Zemel, Toniann Pitassi:

A Gradient-Based Boosting Algorithm for Regression Problems. 696-702 - Tong Zhang:

Regularized Winnow Methods. 703-709 - David Hsu, Miguel E. Figueroa, Chris Diorio:

A Silicon Primitive for Competitive Learning. 713-719 - Hiroyuki Kurino, Masaki Nakagawa, Kang Wook Lee, Tomonori Nakamura, Yuusuke Yamada, Ki Tae Park, Mitsumasa Koyanagi:

Smart Vision Chip Fabricated Using Three Dimensional Integration Technology. 720-726 - Shih-Chii Liu, Bradley A. Minch:

Homeostasis in a Silicon Integrate and Fire Neuron. 727-733 - Fernando Pérez-Cruz, Pedro Luis Alarcón-Diana, Ángel Navia-Vázquez, Antonio Artés-Rodríguez:

Fast Training of Support Vector Classifiers. 734-740 - Susanne Still, Bernhard Schölkopf, Klaus Hepp, Rodney J. Douglas:

Four-legged Walking Gait Control Using a Neuromorphic Chip Interfaced to a Support Vector Learning Algorithm. 741-747 - Hervé Bourlard, Samy Bengio, Katrin Weber:

New Approaches Towards Robust, Adaptive Speech Recognition (invited paper). 751-757 - Hagai Attias, John C. Platt, Alex Acero, Li Deng:

Speech Denoising and Dereverberation Using Probabilistic Models. 758-764 - Un-Min Bae, Soo-Young Lee:

Combining ICA and Top-Down Attention for Robust Speech Recognition. 765-771 - John W. Fisher III, Trevor Darrell, William T. Freeman, Paul A. Viola:

Learning Joint Statistical Models for Audio-Visual Fusion and Segregation. 772-778 - Mark J. F. Gales:

Factored Semi-Tied Covariance Matrices. 779-785 - Lucas C. Parra, Clay Spence, Paul Sajda:

Higher-Order Statistical Properties Arising from the Non-Stationarity of Natural Signals. 786-792 - Sam T. Roweis:

One Microphone Source Separation. 793-799 - George Saon, Mukund Padmanabhan:

Minimum Bayes Error Feature Selection for Continuous Speech Recognition. 800-806 - Lawrence K. Saul, Jont B. Allen:

Periodic Component Analysis: An Eigenvalue Method for Representing Periodic Structure in Speech. 807-813 - Malcolm Slaney, Michele Covell:

FaceSync: A Linear Operator for Measuring Synchronization of Video Facial Images and Audio Tracks. 814-820 - Jürgen Tchorz, Michael Kleinschmidt, Birger Kollmeier:

Noise Suppression Based on Neurophysiologically-motivated SNR Estimation for Robust Speech Recognition. 821-827 - Serge J. Belongie, Jitendra Malik, Jan Puzicha:

Shape Context: A New Descriptor for Shape Matching and Object Recognition. 831-837 - Rafal Bogacz, Malcolm W. Brown, Christophe G. Giraud-Carrier:

Emergence of Movement Sensitive Neurons' Properties by Learning a Sparse Code for Natural Moving Images. 838-844 - James M. Coughlan, Alan L. Yuille:

The Manhattan World Assumption: Regularities in Scene Statistics which Enable Bayesian Inference. 845-851 - Frank Dellaert, Steven M. Seitz, Sebastian Thrun, Charles E. Thorpe:

Feature Correspondence: A Markov Chain Monte Carlo Approach. 852-858 - Trausti T. Kristjansson, Brendan J. Frey:

Keeping Flexible Active Contours on Track using Metropolis Updates. 859-865 - Te-Won Lee, Thomas Wachtler, Terrence J. Sejnowski:

Color Opponency Constitutes a Sparse Representation for the Chromatic Structure of Natural Scenes. 866-872 - Marina Meila, Jianbo Shi:

Learning Segmentation by Random Walks. 873-879 - Javier R. Movellan, Paul Mineiro, Ruth J. Williams:

Partially Observable SDE Models for Image Sequence Recognition Tasks. 880-886 - Bruno A. Olshausen, Phil Sallee, Michael S. Lewicki:

Learning Sparse Image Codes using a Wavelet Pyramid Architecture. 887-893 - Dirk Ormoneit, Hedvig Sidenbladh, Michael J. Black, Trevor Hastie:

Learning and Tracking Cyclic Human Motion. 894-900 - Penio S. Penev:

Redundancy and Dimensionality Reduction in Sparse-Distributed Representations of Natural Objects in Terms of Their Local Features. 901-907 - Yee Whye Teh, Geoffrey E. Hinton:

Rate-coded Restricted Boltzmann Machines for Face Recognition. 908-914 - Barbara Zenger, Christof Koch:

Divisive and Subtractive Mask Effects: Linking Psychophysics and Biophysics. 915-921 - Cynthia Archer, Todd K. Leen:

From Mixtures of Mixtures to Adaptive Transform Coding. 925-931 - Yoshua Bengio, Réjean Ducharme, Pascal Vincent:

A Neural Probabilistic Language Model. 932-938 - Michael S. Gray, Terrence J. Sejnowski, Javier R. Movellan:

A Comparison of Image Processing Techniques for Visual Speech Recognition Applications. 939-945 - Paul M. Hayton, Bernhard Schölkopf, Lionel Tarassenko, Paul Anuzis:

Support Vector Novelty Detection Applied to Jet Engine Vibration Spectra. 946-952 - Guy Mayraz, Geoffrey E. Hinton:

Recognizing Hand-written Digits Using Hierarchical Products of Experts. 953-959 - Baback Moghaddam, Ming-Hsuan Yang:

Sex with Support Vector Machines. 960-966 - Milind R. Naphade, Igor Kozintsev, Thomas S. Huang:

Probabilistic Semantic Video Indexing. 967-973 - Predrag Neskovic, Philip C. Davis, Leon N. Cooper:

Interactive Parts Model: An Application to Recognition of On-line Cursive Script. 974-980 - Vladimir Pavlovic

, James M. Rehg, John MacCormick:
Learning Switching Linear Models of Human Motion. 981-987 - Liam Pedersen, Dimitrios Apostolopoulos, William Whittaker:

Bayes Networks on Ice: Robotic Search for Antarctic Meteorites. 988-994 - Vasin Punyakanok, Dan Roth:

The Use of Classifiers in Sequential Inference. 995-1001 - Arno Schödl, Irfan A. Essa:

Machine Learning for Video-Based Rendering. 1002-1008 - Nuno Vasconcelos, Andrew Lippman:

Bayesian Video Shot Segmentation. 1009-1015 - David Andre, Stuart J. Russell:

Programmable Reinforcement Learning Agents. 1019-1025 - Justin A. Boyan, Michael L. Littman:

Exact Solutions to Time-Dependent MDPs. 1026-1032 - Jakob Carlström:

Decomposition of Reinforcement Learning for Admission Control of Self-Similar Call Arrival Processes. 1033-1039 - Geoffrey J. Gordon:

Reinforcement Learning with Function Approximation Converges to a Region. 1040-1046 - Natalia Hernandez-Gardiol, Sridhar Mahadevan:

Hierarchical Memory-Based Reinforcement Learning. 1047-1053 - Anders Jonsson, Andrew G. Barto:

Automated State Abstraction for Options using the U-Tree Algorithm. 1054-1060 - Jun Morimoto, Kenji Doya:

Robust Reinforcement Learning. 1061-1067 - Dirk Ormoneit, Peter W. Glynn:

Kernel-Based Reinforcement Learning in Average-Cost Problems: An Application to Optimal Portfolio Choice. 1068-1074 - Brian Sallans, Geoffrey E. Hinton:

Using Free Energies to Represent Q-values in a Multiagent Reinforcement Learning Task. 1075-1081 - Christian R. Shelton:

Balancing Multiple Sources of Reward in Reinforcement Learning. 1082-1088 - Robert St-Aubin, Jesse Hoey, Craig Boutilier:

APRICODD: Approximate Policy Construction Using Decision Diagrams. 1089-1095

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














