


default search action
NIPS 2002: Vancouver, British Columbia, Canada
- Suzanna Becker, Sebastian Thrun, Klaus Obermayer:

Advances in Neural Information Processing Systems 15 [Neural Information Processing Systems, NIPS 2002, December 9-14, 2002, Vancouver, British Columbia, Canada]. MIT Press 2003, ISBN 0-262-02550-7 - Dan Klein, Christopher D. Manning:

Fast Exact Inference with a Factored Model for Natural Language Parsing. 3-10 - Thomas L. Griffiths, Mark Steyvers:

Prediction and Semantic Association. 11-18 - Szabolcs Káli, Peter Dayan:

Replay, Repair and Consolidation. 19-26 - Emanuel Todorov, Michael I. Jordan:

A Minimal Intervention Principle for Coordinated Movement. 27-34 - David Fass, Jacob Feldman:

Categorization Under Complexity: A Unified MDL Account of Human Learning of Regular and Irregular Categories. 35-34 - Joshua B. Tenenbaum, Thomas L. Griffiths:

Theory-Based Causal Inference. 35-42 - Willem H. Zuidema:

How the Poverty of the Stimulus Solves the Poverty of the Stimulus. 43-50 - Neville E. Sanjana, Joshua B. Tenenbaum:

Bayesian Models of Inductive Generalization. 51-58 - Kenneth J. Malmberg, René Zeelenberg, Richard M. Shiffrin:

Modeling Midazolam's Effect on the Hippocampus and Recognition Memory. 67-66 - David Danks, Thomas L. Griffiths, Joshua B. Tenenbaum:

Dynamical Causal Learning. 67-74 - Robert A. Jacobs, Melissa Dominguez:

Visual Development Aids the Acquisition of Motion Velocity Sensitivities. 75-82 - Nathaniel D. Daw, Aaron C. Courville, David S. Touretzky:

Timing and Partial Observability in the Dopamine System. 83-90 - Zach Solan, Eytan Ruppin, David Horn, Shimon Edelman:

Automatic Acquisition and Efficient Representation of Syntactic Structures. 91-98 - Michael Robert DeWeese, Anthony M. Zador:

Binary Coding in Auditory Cortex. 101-108 - Maneesh Sahani, Jennifer F. Linden:

How Linear are Auditory Cortical Responses?. 109-116 - Wei Wu, Michael J. Black, Yun Gao, Elie Bienenstock, Mijail Serruya, A. Shaikhouni, John P. Donoghue:

Neural Decoding of Cursor Motion Using a Kalman Filter. 117-124 - Lavi Shpigelman, Yoram Singer, Rony Paz, Eilon Vaadia:

Spikernels: Embedding Spiking Neurons in Inner-Product Spaces. 125-132 - Christian K. Machens, Michael Wehr, Anthony M. Zador:

Spectro-Temporal Receptive Fields of Subthreshold Responses in Auditory Cortex. 133-140 - Jarmo Hurri, Aapo Hyvärinen:

Temporal Coherence, Natural Image Sequences, and the Visual Cortex. 141-148 - David Barber:

Learning in Spiking Neural Assemblies. 149-156 - Angela J. Yu, Peter Dayan:

Expected and Unexpected Uncertainty: ACh and NE in the Neocortex. 157-164 - Aaron J. Gruber, Sara A. Solla, James C. Houk:

Dopamine Induced Bistability Enhances Signal Processing in Spiny Neurons. 165-172 - Liam Paninski:

Convergence Properties of Some Spike-Triggered Analysis Techniques. 173-180 - Dmitri B. Chklovskii, Armen Stepanyants:

Branching Law for Axons. 181-188 - Matthias Bethge, David Rotermund, Klaus Pawelzik:

Binary Tuning is Optimal for Neural Rate Coding with High Temporal Resolution. 189-196 - Elad Schneidman, William Bialek, Michael J. Berry II:

An Information Theoretic Approach to the Functional Classification of Neurons. 197-204 - Javier R. Movellan, Thomas Wachtler, Thomas D. Albright, Terrence J. Sejnowski:

Factorial Coding of Color in Primary Visual Cortex. 205-212 - Wolfgang Maass, Thomas Natschläger, Henry Markram:

A Model for Real-Time Computation in Generic Neural Microcircuits. 213-220 - Peter Dayan, Maneesh Sahani, Gregoire Deback:

Adaptation and Unsupervised Learning. 221-228 - Alex Holub, Gilles Laurent, Pietro Perona:

A Digital Antennal Lobe for Pattern Equalization: Analysis and Design. 229-236 - Michael Eisele, Kenneth D. Miller:

Hidden Markov Model of Cortical Synaptic Plasticity: Derivation of the Learning Rule. 237-244 - Luk-Chong Yeung, Brian S. Blais, Leon N. Cooper, Harel Z. Shouval:

Selectivity and Metaplasticity in a Unified Calcium-Dependent Model. 245-252 - Alistair Bray, Dominique Martinez:

Kernel-Based Extraction of Slow Features: Complex Cells Learn Disparity and Translation Invariance from Natural Images. 253-260 - Tatyana O. Sharpee, Nicole C. Rust, William Bialek:

Maximally Informative Dimensions: Analyzing Neural Responses to Natural Signals. 261-268 - Arunava Banerjee, Alexandre Pouget:

Dynamical Constraints on Computing with Spike Timing in the Cortex. 269-276 - Patrik O. Hoyer, Aapo Hyvärinen:

Interpreting Neural Response Variability as Monte Carlo Sampling of the Posterior. 277-284 - Alon Fishbach, Bradford J. May:

A Neural Edge-Detection Model for Enhanced Auditory Sensitivity in Modulated Noise. 285-292 - Christian W. Eurich:

An Estimation-Theoretic Framework for the Presentation of Multiple Stimuli. 293-300 - Maneesh Sahani, Jennifer F. Linden:

Evidence Optimization Techniques for Estimating Stimulus-Response Functions. 301-308 - Duane Q. Nykamp:

Reconstructing Stimulus-Driven Neural Networks from Spike Times. 309-316 - Ron Meir, Tong Zhang:

Data-Dependent Bounds for Bayesian Mixture Methods. 319-326 - Dörthe Malzahn, Manfred Opper:

A Statistical Mechanics Approach to Approximate Analytical Bootstrap Averages. 327-334 - Noam Slonim, Yair Weiss:

Maximum Likelihood and the Information Bottleneck. 335-342 - Tom Heskes:

Stable Fixed Points of Loopy Belief Propagation Are Local Minima of the Bethe Free Energy. 343-350 - David A. McAllester, Luis E. Ortiz:

Concentration Inequalities for the Missing Mass and for Histogram Rule Error. 351-358 - Clayton D. Scott, Robert D. Nowak:

Dyadic Classification Trees via Structural Risk Minimization. 359-366 - John Shawe-Taylor, Christopher K. I. Williams:

The Stability of Kernel Principal Components Analysis and its Relation to the Process Eigenspectrum. 367-374 - John D. Lafferty, Guy Lebanon:

Information Diffusion Kernels. 375-382 - Jonathan L. Shapiro:

Scaling of Probability-Based Optimization Algorithms. 383-390 - Sumio Watanabe, Shun-ichi Amari:

The Effect of Singularities in a Learning Machine when the True Parameters Do Not Lie on such Singularities. 391-398 - Olivier Bousquet, Daniel J. L. Herrmann:

On the Complexity of Learning the Kernel Matrix. 399-406 - Tatsuto Murayama, Masato Okada:

Rate Distortion Function in the Spin Glass State: A Toy Model. 407-414 - Guy Lebanon, John D. Lafferty:

Conditional Models on the Ranking Poset. 415-422 - John Langford, John Shawe-Taylor:

PAC-Bayes & Margins. 423-430 - Eric Allender, Sanjeev Arora, Michael J. Kearns, Cristopher Moore, Alexander Russell:

A Note on the Representational Incompatibility of Function Approximation and Factored Dynamics. 431-437 - Wim Wiegerinck, Tom Heskes:

Fractional Belief Propagation. 438-445 - Jon M. Kleinberg:

An Impossibility Theorem for Clustering. 446-453 - Tong Zhang:

Effective Dimension and Generalization of Kernel Learning. 454-461 - Koby Crammer, Ran Gilad-Bachrach, Amir Navot, Naftali Tishby:

Margin Analysis of the LVQ Algorithm. 462-469 - Nicolò Cesa-Bianchi, Alex Conconi, Claudio Gentile:

Margin-Based Algorithms for Information Filtering. 470-477 - Cheng Soon Ong, Alexander J. Smola, Robert C. Williamson:

Hyperkernels. 478-485 - Carl Edward Rasmussen, Zoubin Ghahramani:

Bayesian Monte Carlo. 489-496 - Bin Wu, K. Y. Michael Wong, David Bodoff:

Mean Field Approach to a Probabilistic Model in Information Retrieval. 497-504 - Eric P. Xing, Andrew Y. Ng, Michael I. Jordan, Stuart Russell:

Distance Metric Learning with Application to Clustering with Side-Information. 505-512 - Gunnar Rätsch, Alexander J. Smola, Sebastian Mika:

Adapting Codes and Embeddings for Polychotomies. 513-520 - Glenn Fung, Olvi L. Mangasarian, Jude W. Shavlik:

Knowledge-Based Support Vector Machine Classifiers. 521-528 - Agathe Girard, Carl Edward Rasmussen, Joaquin Quiñonero Candela, Roderick Murray-Smith:

Gaussian Process Priors with Uncertain Inputs - Application to Multiple-Step Ahead Time Series Forecasting. 529-536 - Koby Crammer, Joseph Keshet, Yoram Singer:

Kernel Design Using Boosting. 537-544 - Sepp Hochreiter, Michael Mozer, Klaus Obermayer:

Coulomb Classifiers: Generalizing Support Vector Machines via an Analogy to Electrostatic Systems. 545-552 - Yves Grandvalet, Stéphane Canu:

Adaptive Scaling for Feature Selection in SVMs. 553-560 - Stuart Andrews, Ioannis Tsochantaridis, Thomas Hofmann:

Support Vector Machines for Multiple-Instance Learning. 561-568 - S. V. N. Vishwanathan, Alexander J. Smola:

Fast Kernels for String and Tree Matching. 569-576 - Geoffrey J. Gordon:

Generalized2 Linear2 Models. 577-584 - Olivier Chapelle, Jason Weston, Bernhard Schölkopf:

Cluster Kernels for Semi-Supervised Learning. 585-592 - Herbert Jaeger:

Adaptive Nonlinear System Identification with Echo State Networks. 593-600 - Corinna Cortes, Patrick Haffner, Mehryar Mohri:

Rational Kernels. 601-608 - Neil D. Lawrence, Matthias W. Seeger, Ralf Herbrich:

Fast Sparse Gaussian Process Methods: The Informative Vector Machine. 609-616 - Tilman Lange, Mikio L. Braun, Volker Roth, Joachim M. Buhmann:

Stability-Based Model Selection. 617-624 - Martin H. C. Law, Anil K. Jain, Mário A. T. Figueiredo:

Feature Selection in Mixture-Based Clustering. 625-632 - Craig Saunders, John Shawe-Taylor, Alexei Vinokourov:

String Kernels, Fisher Kernels and Finite State Automata. 633-640 - Saharon Rosset, Eran Segal:

Boosting Density Estimation. 641-648 - Trevor Hastie, Robert Tibshirani:

Independent Components Analysis through Product Density Estimation. 649-656 - Jaz S. Kandola, John Shawe-Taylor, Nello Cristianini:

Learning Semantic Similarity. 657-664 - Max Welling, Richard S. Zemel, Geoffrey E. Hinton:

Self Supervised Boosting. 665-672 - Alexander G. Gray, Bernd Fischer, Johann Schumann, Wray L. Buntine:

Automatic Derivation of Statistical Algorithms: The EM Family and Beyond. 673-680 - Balázs Kégl:

Intrinsic Dimension Estimation Using Packing Numbers. 681-688 - Chakra Chennubhotla, Allan D. Jepson:

Half-Lives of EigenFlows for Spectral Clustering. 689-696 - Harald Steck, Tommi S. Jaakkola:

On the Dirichlet Prior and Bayesian Regularization. 697-704 - Vin de Silva, Joshua B. Tenenbaum:

Global Versus Local Methods in Nonlinear Dimensionality Reduction. 705-712 - David Barber:

Dynamic Bayesian Networks with Deterministic Latent Tables. 713-720 - Naonori Ueda, Kazumi Saito:

Parametric Mixture Models for Multi-Labeled Text. 721-728 - Koji Tsuda, Motoaki Kawanabe, Klaus-Robert Müller:

Clustering with the Fisher Score. 729-736 - Peter Sykacek, Stephen J. Roberts:

Adaptive Classification by Variational Kalman Filtering. 737-744 - Baback Moghaddam, Gregory Shakhnarovich:

Boosted Dyadic Kernel Discriminants. 745-752 - Finnegan Southey, Dale Schuurmans, Ali Ghodsi:

Regularized Greedy Importance Sampling. 753-760 - Elzbieta Pekalska, David M. J. Tax, Robert P. W. Duin:

One-Class LP Classifiers for Dissimilarity Representations. 761-768 - Thomas Strohmann, Gregory Z. Grudic:

A Formulation for Minimax Probability Machine Regression. 769-776 - Christopher M. Bishop, David J. Spiegelhalter, John M. Winn:

VIBES: A Variational Inference Engine for Bayesian Networks. 777-784 - James D. Park, Adnan Darwiche:

A Differential Semantics for Jointree Algorithms. 785-784 - Sariel Har-Peled

, Dan Roth, Dav Zimak:
Constraint Classification for Multiclass Classification and Ranking. 785-792 - Luis E. Ortiz, Michael J. Kearns:

Nash Propagation for Loopy Graphical Games. 793-800 - Dan Pelleg, Andrew W. Moore:

Using Tarjan's Red Rule for Fast Dependency Tree Construction. 801-808 - Martin J. Wainwright, Tommi S. Jaakkola, Alan S. Willsky:

Exact MAP Estimates by (Hyper)tree Agreement. 809-816 - Volker Roth, Julian Laub, Joachim M. Buhmann, Klaus-Robert Müller:

Going Metric: Denoising Pairwise Data. 817-824 - Pascal Vincent, Yoshua Bengio:

Manifold Parzen Windows. 825-832 - Geoffrey E. Hinton, Sam T. Roweis:

Stochastic Neighbor Embedding. 833-840 - Yee Whye Teh, Sam T. Roweis:

Automatic Alignment of Local Representations. 841-848 - David Cohn:

Informed Projections. 849-856 - Gal Chechik, Naftali Tishby:

Extracting Relevant Structures with Side Information. 857-864 - Kenji Fukumizu, Shotaro Akaho, Shun-ichi Amari:

Critical Lines in Symmetry of Mixture Models and its Application to Component Splitting. 865-872 - Jason Weston, Olivier Chapelle, André Elisseeff, Bernhard Schölkopf, Vladimir Vapnik:

Kernel Dependency Estimation. 873-880 - Kwokleung Chan, Te-Won Lee, Terrence J. Sejnowski:

Handling Missing Data with Variational Bayesian Learning of ICA. 881-888 - Sepp Hochreiter, Klaus Obermayer:

Feature Selection and Classification on Matrix Data: From Large Margins to Small Covering Numbers. 889-896 - Rong Jin, Zoubin Ghahramani:

Learning with Multiple Labels. 897-904 - Gert R. G. Lanckriet, Laurent El Ghaoui, Michael I. Jordan:

Robust Novelty Detection with Single-Class MPM. 905-912 - Nicholas P. Hughes, David Lowe:

Artefactual Structure from Least-Squares Multidimensional Scaling. 913-920 - Marina Sokolova, Mario Marchand, Nathalie Japkowicz, John Shawe-Taylor:

The Decision List Machine. 921-928 - Mikhail Belkin, Partha Niyogi:

Using Manifold Stucture for Partially Labeled Classification. 929-936 - Amnon Shashua, Anat Levin:

Ranking with Large Margin Principle: Two Approaches. 937-944 - Ofer Dekel, Yoram Singer:

Multiclass Learning by Probabilistic Embeddings. 945-952 - Anton Schwaighofer, Volker Tresp:

Transductive and Inductive Methods for Approximate Gaussian Process Regression. 953-960 - Matthew Brand:

Charting a Manifold. 961-968 - Albert E. Parker, Tomás Gedeon, Alexander Dimitrov:

Annealing and the Rate Distortion Problem. 969-976 - Yasemin Altun, Thomas Hofmann, Mark Johnson:

Discriminative Learning for Label Sequences via Boosting. 977-984 - Peter Meinicke, Thorsten Twellmann, Helge J. Ritter:

Discriminative Densities from Maximum Contrast Estimation. 985-992 - Stan Z. Li, ZhenQiu Zhang, Heung-Yeung Shum, HongJiang Zhang:

FloatBoost Learning for Classification. 993-1000 - Joaquin Quiñonero Candela, Ole Winther:

Incremental Gaussian Processes. 1001-1008 - Francis R. Bach, Michael I. Jordan:

Learning Graphical Models with Mercer Kernels. 1009-1016 - David A. Ross, Richard S. Zemel:

Multiple Cause Vector Quantization. 1017-1024 - Martin Szummer, Tommi S. Jaakkola:

Information Regularization with Partially Labeled Data. 1025-1032 - E. Solak, Roderick Murray-Smith, William E. Leithead, Douglas J. Leith, Carl Edward Rasmussen:

Derivative Observations in Gaussian Process Models of Dynamic Systems. 1033-1040 - Fei Sha, Lawrence K. Saul, Daniel D. Lee:

Multiplicative Updates for Nonnegative Quadratic Programming in Support Vector Machines. 1041-1048 - Ali Rahimi, Trevor Darrell:

Location Estimation with a Differential Update Network. 1049-1056 - Cody C. T. Kwok, Dieter Fox, Marina Meila:

Real-Time Particle Filters. 1057-1064 - Alexandre R. S. Romariz, Kelvin H. Wagner:

Optoelectronic Implementation of a FitzHugh-Nagumo Neural Model. 1067-1074 - Shih-Chii Liu, Malte Boegershausen, Pascal Suter:

Circuit Model of Short-Term Synaptic Dynamics. 1075-1082 - David Hsu, Seth Bridges, Miguel E. Figueroa, Chris Diorio:

Adaptive Quantization and Density Estimation in Silicon. 1083-1090 - Giacomo Indiveri:

Neuromorphic Bistable VLSI Synapses with Spike-Timing-Dependent Plasticity. 1091-1098 - Ricardo Carmona-Galán, Francisco Jiménez-Garrido, Rafael Domínguez-Castro, Servando Espejo-Meana, Ángel Rodríguez-Vázquez:

Retinal Processing Emulation in a Programmable 2-Layer Analog Array Processor CMOS Chip. 1099-1106 - Peter Meinicke, Matthias Kaper, Florian Hoppe, Manfred Heumann, Helge J. Ritter:

Improving Transfer Rates in Brain Computer Interfacing: A Case Study. 1107-1114 - Guido Dornhege, Benjamin Blankertz, Gabriel Curio, Klaus-Robert Müller:

Combining Features for BCI. 1115-1122 - Jakob Heinzle, Alan Stocker:

Classifying Patterns of Visual Motion - a Neuromorphic Approach. 1123-1130 - Terry Elliott, Jörg Kramer:

Developing Topography and Ocular Dominance Using Two aVLSI Vision Sensors and a Neurotrophic Model of Plasticity. 1131-1138 - Brian Taba, Kwabena Boahen:

Topographic Map Formation by Silicon Growth Cones. 1139-1146 - R. Jacob Vogelstein, Francesco Tenore, Ralf Philipp, Miriam S. Adlerstein, David H. Goldberg, Gert Cauwenberghs:

Spike Timing-Dependent Plasticity in the Address Domain. 1147-1154 - Seth Bridges, Miguel E. Figueroa, David Hsu, Chris Diorio:

Field-Programmable Learning Arrays. 1155-1162 - Shantanu Chakrabartty, Gert Cauwenberghs:

Forward-Decoding Kernel-Based Phone Recognition. 1165-1172 - Gil-Jin Jang, Te-Won Lee:

A Probabilistic Approach to Single Channel Blind Signal Separation. 1173-1180 - Lawrence K. Saul, Daniel D. Lee, Charles L. Isbell Jr., Yann LeCun:

Real Time Voice Processing with Audiovisual Feedback: Toward Autonomous Agents with Perfect Pitch. 1181-1188 - Sachin S. Kajarekar, Hynek Hermansky:

Analysis of Information in Speech Based on MANOVA. 1189-1196 - Patrick J. Wolfe, Simon J. Godsill:

Bayesian Estimation of Time-Frequency Coefficients for Audio Signal Enhancement. 1197-1204 - Hagai Attias:

Source Separation with a Sensor Array Using Graphical Models and Subband Filtering. 1205-1212 - Samy Bengio:

An Asynchronous Hidden Markov Model for Audio-Visual Speech Recognition. 1213-1220 - Guoning Hu, DeLiang L. Wang:

Monaural Speech Separation. 1221-1228 - Ehud Ben-Reuven, Yoram Singer:

Discriminative Binaural Sound Localization. 1229-1236 - Shinji Watanabe, Yasuhiro Minami, Atsushi Nakamura, Naonori Ueda:

Application of Variational Bayesian Approach to Speech Recognition. 1237-1244 - Anat Levin, Assaf Zomet, Yair Weiss:

Learning to Perceive Transparency from the Statistics of Natural Scenes. 1247-1254 - David R. Martin, Charless C. Fowlkes, Jitendra Malik:

Learning to Detect Natural Image Boundaries Using Brightness and Texture. 1255-1262 - Anitha Kannan, Nebojsa Jojic, Brendan J. Frey:

Fast Transformation-Invariant Factor Analysis. 1263-1270 - Marian Stewart Bartlett, Gwen Littlewort, Bjorn Braathen, Terrence J. Sejnowski, Javier R. Movellan:

A Prototype for Automatic Recognition of Spontaneous Facial Actions. 1271-1278 - Michael E. Tipping, Christopher M. Bishop:

Bayesian Image Super-Resolution. 1279-1286 - David B. Grimes, Rajesh P. N. Rao:

A Bilinear Model for Sparse Coding. 1287-1294 - Amos J. Storkey:

Dynamic Structure Super-Resolution. 1295-1302 - Kinh Tieu, Erik G. Miller:

Unsupervised Color Constancy. 1303-1310 - Leonid Taycher, John W. Fisher III, Trevor Darrell:

Recovering Articulated Model Topology from Observed Rigid Motion. 1311-1318 - Matthias O. Franz, Javaan S. Chahl:

Linear Combinations of Optic Flow Vectors for Estimating Self-Motion - a Real-World Test of a Neural Model. 1319-1326 - Phil Sallee, Bruno A. Olshausen:

Learning Sparse Multiscale Image Representations. 1327-1334 - William T. Freeman, Antonio Torralba:

Shape Recipes: Scene Representations that Refer to the Image. 1335-1342 - Marshall F. Tappen, William T. Freeman, Edward H. Adelson:

Recovering Intrinsic Images from a Single Image. 1343-1350 - Nuno Vasconcelos:

Feature Selection by Maximum Marginal Diversity. 1351-1358 - Max Welling, Geoffrey E. Hinton, Simon Osindero:

Learning Sparse Topographic Representations with Products of Student-t Distributions. 1359-1366 - Yan Karklin, Michael S. Lewicki:

A Model for Learning Variance Components of Natural Images. 1367-1374 - Barbara Caputo, Gyuri Dorkó:

How to Combine Color and Shape Information for 3D Object Recognition: Kernels do the Trick. 1375-1382 - Stella X. Yu, Ralph Gross, Jianbo Shi:

Concurrent Object Recognition and Segmentation by Graph Partitioning. 1383-1390 - Christopher K. I. Williams, Michalis K. Titsias:

Learning About Multiple Objects in Images: Factorial Learning without Factorial Search. 1391-1398 - Hanna Pasula, Bhaskara Marthi, Brian Milch, Stuart Russell, Ilya Shpitser:

Identity Uncertainty and Citation Matching. 1401-1408 - Anton Schwaighofer, Volker Tresp, Peter Mayer, Alexander K. Scheel, Gerhard A. Müller:

The RA Scanner: Prediction of Rheumatoid Joint Inflammation Based on Laser Imaging. 1409-1416 - Christina S. Leslie, Eleazar Eskin, Jason Weston, William Stafford Noble:

Mismatch String Kernels for SVM Protein Classification. 1417-1424 - Jean-Philippe Vert, Minoru Kanehisa:

Graph-Driven Feature Extraction From Microarray Data Using Diffusion Kernels and Kernel CCA. 1425-1432 - Rubén Morales-Menéndez, Nando de Freitas, David Poole:

Real-Time Monitoring of Complex Industrial Processes with Particle Filters. 1433-1440 - Dmitry Pavlov, David M. Pennock:

A Maximum Entropy Approach to Collaborative Filtering in Dynamic, Sparse, High-Dimensional Domains. 1441-1448 - Gianluca Pollastri, Pierre Baldi, Alessandro Vullo, Paolo Frasconi:

Prediction of Protein Topologies Using Generalized IOHMMS and RNNs. 1449-1456 - Chen Yanover, Yair Weiss:

Approximate Inference and Protein-Folding. 1457-1464 - Robert B. Gramacy, Manfred K. Warmuth, Scott A. Brandt, Ismail Ari:

Adaptive Caching by Refetching. 1465-1472 - Alexei Vinokourov, John Shawe-Taylor, Nello Cristianini:

Inferring a Semantic Representation of Text via Cross-Language Correlation Analysis. 1473-1480 - William W. Cohen:

Improving a Page Classifier with Anchor Extraction and Link Analysis. 1481-1488 - Eric P. Xing, Michael I. Jordan, Richard M. Karp, Stuart Russell:

A Hierarchical Bayesian Markovian Model for Motifs in Biopolymer Sequences. 1489-1496 - Sergey Kirshner, Igor V. Cadez, Padhraic Smyth, Chandrika Kamath:

Learning to Classify Galaxy Shapes Using the EM Algorithm. 1497-1504 - Eric Brochu, Nando de Freitas:

"Name That Song!" A Probabilistic Approach to Querying on Music and Text. 1505-1512 - Matthew G. Snover, Michael R. Brent:

A Probabilistic Model for Learning Concatenative Morphology. 1513-1520 - Auke Jan Ijspeert, Jun Nakanishi, Stefan Schaal:

Learning Attractor Landscapes for Learning Motor Primitives. 1523-1530 - Bernd Porr, Florentin Wörgötter:

Learning a Forward Model of a Reflex. 1531-1538 - Jun Morimoto, Christopher G. Atkeson:

Minimax Differential Dynamic Programming: An Application to Robust Biped Walking. 1539-1546 - Jürgen Schmidhuber:

Bias-Optimal Incremental Problem Solving. 1547-1546 - Pascal Poupart, Craig Boutilier:

Value-Directed Compression of POMDPs. 1547-1554 - Ralf Schoknecht:

Optimality of Reinforcement Learning Algorithms with Linear Function Approximation. 1555-1562 - Maxim Likhachev, Sven Koenig:

Speeding up the Parti-Game Algorithm. 1563-1570 - Xiaofeng Wang, Tuomas Sandholm:

Reinforcement Learning to Play an Optimal Nash Equilibrium in Team Markov Games. 1571-1578 - Ralf Schoknecht, Artur Merke:

Convergent Combinations of Reinforcement Learning with Linear Function Approximation. 1579-1586 - Daniela Pucci de Farias, Benjamin Van Roy:

Approximate Linear Programming for Average-Cost Dynamic Programming. 1587-1594 - Theodore J. Perkins, Doina Precup:

A Convergent Form of Approximate Policy Iteration. 1595-1602 - Ronen I. Brafman, Moshe Tennenholtz:

Efficient Learning Equilibrium. 1603-1610 - Christopher G. Atkeson, Jun Morimoto:

Nonparametric Representation of Policies and Value Functions: A Trajectory-Based Approach. 1611-1618 - Khashayar Rohanimanesh, Sridhar Mahadevan:

Learning to Take Concurrent Actions. 1619-1626 - Michail G. Lagoudakis, Ronald Parr:

Learning in Zero-Sum Team Markov Games Using Factored Value Functions. 1627-1634 - Nicholas Roy, Geoffrey J. Gordon:

Exponential Family PCA for Belief Compression in POMDPs. 1635-1642

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














