


default search action
23. NIPS 2010: Vancouver, British Columbia, Canada
- John D. Lafferty, Christopher K. I. Williams, John Shawe-Taylor, Richard S. Zemel, Aron Culotta:

Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a meeting held 6-9 December 2010, Vancouver, British Columbia, Canada. Curran Associates, Inc. 2010 - Jacob D. Abernethy, Manfred K. Warmuth:

Repeated Games against Budgeted Adversaries. 1-9 - Margareta Ackerman, Shai Ben-David, David Loker:

Towards Property-Based Classification of Clustering Paradigms. 10-18 - Ryan Prescott Adams, Zoubin Ghahramani, Michael I. Jordan:

Tree-Structured Stick Breaking for Hierarchical Data. 19-27 - Felix V. Agakov, Paul McKeigue, Jon Krohn, Amos J. Storkey:

Sparse Instrumental Variables (SPIV) for Genome-Wide Studies. 28-36 - Alekh Agarwal, Sahand N. Negahban, Martin J. Wainwright:

Fast global convergence rates of gradient methods for high-dimensional statistical recovery. 37-45 - Arvind Agarwal, Hal Daumé III, Samuel Gerber:

Learning Multiple Tasks using Manifold Regularization. 46-54 - Mauricio A. Álvarez, Jan Peters, Bernhard Schölkopf, Neil D. Lawrence:

Switched Latent Force Models for Movement Segmentation. 55-63 - Mauricio Araya-López, Olivier Buffet, Vincent Thomas, François Charpillet:

A POMDP Extension with Belief-dependent Rewards. 64-72 - Nimar S. Arora, Stuart Russell, Paul Kidwell, Erik B. Sudderth:

Global seismic monitoring as probabilistic inference. 73-81 - Joseph L. Austerweil, Thomas L. Griffiths:

Learning invariant features using the Transformed Indian Buffet Process. 82-90 - Pranjal Awasthi, Reza Bosagh Zadeh:

Supervised Clustering. 91-99 - Alper Ayvaci, Michalis Raptis, Stefano Soatto:

Occlusion Detection and Motion Estimation with Convex Optimization. 100-108 - Javad Azimi, Alan Fern, Xiaoli Z. Fern:

Batch Bayesian Optimization via Simulation Matching. 109-117 - Francis R. Bach:

Structured sparsity-inducing norms through submodular functions. 118-126 - Stephen H. Bach, Marcus A. Maloof:

A Bayesian Approach to Concept Drift. 127-135 - Chris Barber, Joseph Bockhorst, Paul Roebber:

Auto-Regressive HMM Inference with Incomplete Data for Short-Horizon Wind Forecasting. 136-144 - Mohsen Bayati, José Bento, Andrea Montanari:

The LASSO risk: asymptotic results and real world examples. 145-153 - Gowtham Bellala, Suresh K. Bhavnani, Clayton Scott:

Extensions of Generalized Binary Search to Group Identification and Exponential Costs. 154-162 - Samy Bengio, Jason Weston, David Grangier:

Label Embedding Trees for Large Multi-Class Tasks. 163-171 - Alessandro Bergamo, Lorenzo Torresani:

Exploiting weakly-labeled Web images to improve object classification: a domain adaptation approach. 181-189 - Andrey Bernstein, Shie Mannor, Nahum Shimkin:

Online Classification with Specificity Constraints. 190-198 - Alina Beygelzimer, Daniel J. Hsu, John Langford, Tong Zhang:

Agnostic Active Learning Without Constraints. 199-207 - Danny Bickson, Carlos Guestrin:

Inference with Multivariate Heavy-Tails in Linear Models. 208-216 - Jacob Bien, Ya Xu, Michael W. Mahoney:

CUR from a Sparse Optimization Viewpoint. 217-225 - Gilles Blanchard, Nicole Krämer:

Optimal learning rates for Kernel Conjugate Gradient regression. 226-234 - Matthew B. Blaschko, Andrea Vedaldi, Andrew Zisserman:

Simultaneous Object Detection and Ranking with Weak Supervision. 235-243 - Liefeng Bo, Xiaofeng Ren, Dieter Fox:

Kernel Descriptors for Visual Recognition. 244-252 - Sander M. Bohté, Jaldert O. Rombouts:

Fractionally Predictive Spiking Neurons. 253-261 - Edwin V. Bonilla, Shengbo Guo, Scott Sanner:

Gaussian Process Preference Elicitation. 262-270 - Byron Boots, Geoffrey J. Gordon:

Predictive State Temporal Difference Learning. 271-279 - Alexandre Bouchard-Côté, Michael I. Jordan:

Variational Inference over Combinatorial Spaces. 280-288 - Abdeslam Boularias, Brahim Chaib-draa:

Bootstrapping Apprenticeship Learning. 289-297 - Christos Boutsidis, Anastasios Zouzias, Petros Drineas

:
Random Projections for $k$-means Clustering. 298-306 - William Brendel, Sinisa Todorovic:

Segmentation as Maximum-Weight Independent Set. 307-315 - Matthias Broecheler, Lise Getoor:

Computing Marginal Distributions over Continuous Markov Networks for Statistical Relational Learning. 316-324 - Serhat Selcuk Bucak, Rong Jin, Anil K. Jain:

Multi-label Multiple Kernel Learning by Stochastic Approximation: Application to Visual Object Recognition. 325-333 - America Chambers, Padhraic Smyth, Mark Steyvers:

Learning concept graphs from text with stick-breaking priors. 334-342 - Kamalika Chaudhuri, Sanjoy Dasgupta:

Rates of convergence for the cluster tree. 343-351 - Anton Chechetka, Carlos Guestrin:

Evidence-Specific Structures for Rich Tractable CRFs. 352-360 - Ning Chen, Jun Zhu, Eric P. Xing:

Predictive Subspace Learning for Multi-view Data: a Large Margin Approach. 361-369 - Wei Chen, Tie-Yan Liu, Zhiming Ma:

Two-Layer Generalization Analysis for Ranking Using Rademacher Average. 370-378 - Sylvain Chevallier, Hélène Paugam-Moisy, Michèle Sebag:

SpikeAnts, a spiking neuron network modelling the emergence of organization in a complex system. 379-387 - Silvia Chiappa, Jan Peters:

Movement extraction by detecting dynamics switches and repetitions. 388-396 - Alessandro Chiuso, Gianluigi Pillonetto:

Learning sparse dynamic linear systems using stable spline kernels and exponential hyperpriors. 397-405 - Andreas Christmann, Ingo Steinwart:

Universal Kernels on Non-Standard Input Spaces. 406-414 - Tom Claassen, Tom Heskes:

Causal discovery in multiple models from different experiments. 415-423 - Shay B. Cohen, Noah A. Smith:

Empirical Risk Minimization with Approximations of Probabilistic Grammars. 424-432 - Elaine A. Corbett, Eric J. Perreault, Konrad P. Körding:

Mixture of time-warped trajectory models for movement decoding. 433-441 - Corinna Cortes, Yishay Mansour, Mehryar Mohri:

Learning Bounds for Importance Weighting. 442-450 - Koby Crammer, Daniel D. Lee:

Learning via Gaussian Herding. 451-459 - Rémi Cuingnet, Marie Chupin, Habib Benali, Olivier Colliot:

Spatial and anatomical regularization of SVM for brain image analysis. 460-468 - George E. Dahl, Marc'Aurelio Ranzato, Abdel-rahman Mohamed, Geoffrey E. Hinton:

Phone Recognition with the Mean-Covariance Restricted Boltzmann Machine. 469-477 - Aman Dhesi, Purushottam Kar:

Random Projection Trees Revisited. 496-504 - Uwe Dick, Peter Haider, Thomas Vanck, Michael Brückner, Tobias Scheffer:

Throttling Poisson Processes. 505-513 - Nan Ding, S. V. N. Vishwanathan:

t-logistic regression. 514-522 - Justin Domke:

Implicit Differentiation by Perturbation. 523-531 - Finale Doshi-Velez, David Wingate, Nicholas Roy, Joshua B. Tenenbaum:

Nonparametric Bayesian Policy Priors for Reinforcement Learning. 532-540 - Shaul Druckmann, Dmitri B. Chklovskii:

Over-complete representations on recurrent neural networks can support persistent percepts. 541-549 - John C. Duchi, Alekh Agarwal, Martin J. Wainwright:

Distributed Dual Averaging In Networks. 550-558 - Gal Elidan:

Copula Bayesian Networks. 559-567 - Amir Massoud Farahmand, Rémi Munos, Csaba Szepesvári:

Error Propagation for Approximate Policy and Value Iteration. 568-576 - Mahdi Milani Fard, Joelle Pineau:

PAC-Bayesian Model Selection for Reinforcement Learning. 1624-1632 - Alan Fern, Prasad Tadepalli

:
A Computational Decision Theory for Interactive Assistants. 577-585 - Sarah Filippi, Olivier Cappé, Aurélien Garivier, Csaba Szepesvári:

Parametric Bandits: The Generalized Linear Case. 586-594 - Nicholas Fisher, Arunava Banerjee:

A Novel Kernel for Learning a Neuron Model from Spike Train Data. 595-603 - Rina Foygel, Mathias Drton:

Extended Bayesian Information Criteria for Gaussian Graphical Models. 604-612 - Bela A. Frigyik, Maya R. Gupta, Yihua Chen:

Shadow Dirichlet for Restricted Probability Modeling. 613-621 - Mario Fritz, Kate Saenko, Trevor Darrell:

Size Matters: Metric Visual Search Constraints from Monocular Metadata. 622-630 - Vicky Froyen, Jacob Feldman, Manish Singh:

A Bayesian Framework for Figure-Ground Interpretation. 631-639 - C. C. Alan Fung, K. Y. Michael Wong, He Wang, Si Wu:

Attractor Dynamics with Synaptic Depression. 640-648 - Kun Gai, Guangyun Chen, Changshui Zhang:

Learning Kernels with Radiuses of Minimum Enclosing Balls. 649-657 - Surya Ganguli, Haim Sompolinsky:

Short-term memory in neuronal networks through dynamical compressed sensing. 667-675 - Deep Ganguli, Eero P. Simoncelli:

Implicit encoding of prior probabilities in optimal neural populations. 658-666 - Pierre Garrigues, Bruno A. Olshausen:

Group Sparse Coding with a Laplacian Scale Mixture Prior. 676-684 - Jan Gasthaus, Yee Whye Teh:

Improvements to the Sequence Memoizer. 685-693 - Andrew Gelfand, Yutian Chen, Laurens van der Maaten, Max Welling:

On Herding and the Perceptron Cycling Theorem. 694-702 - Felipe Gerhard, Wulfram Gerstner:

Rescaling, thinning or complementing? On goodness-of-fit procedures for point process models and Generalized Linear Models. 703-711 - Samuel Gershman, Robert Wilson:

The Neural Costs of Optimal Control. 712-720 - Mohammad Ghavamzadeh, Alessandro Lazaric, Odalric-Ambrym Maillard, Rémi Munos:

LSTD with Random Projections. 721-729 - Bryan R. Gibson, Xiaojin Zhu, Timothy T. Rogers, Chuck Kalish, Joseph Harrison:

Humans Learn Using Manifolds, Reluctantly. 730-738 - Tobias Glasmachers:

Universal Consistency of Multi-Class Support Vector Classification. 739-747 - Vibhav Gogate

, William Austin Webb, Pedro M. Domingos:
Learning Efficient Markov Networks. 748-756 - Andrew B. Goldberg, Xiaojin Zhu, Ben Recht, Jun-Ming Xu, Robert D. Nowak:

Transduction with Matrix Completion: Three Birds with One Stone. 757-765 - Daniel Golovin, Andreas Krause, Debajyoti Ray:

Near-Optimal Bayesian Active Learning with Noisy Observations. 766-774 - Ryan Gomes, Andreas Krause, Pietro Perona:

Discriminative Clustering by Regularized Information Maximization. 775-783 - Dan F. M. Goodman, Romain Brette:

Learning to localise sounds with spiking neural networks. 784-792 - David Grangier, Iain Melvin:

Feature Set Embedding for Incomplete Data. 793-801 - Yuhong Guo:

Active Instance Sampling via Matrix Partition. 802-810 - Yanjun Han, Qing Tao, Jue Wang:

Avoiding False Positive in Multi-Instance Learning. 811-819 - Lauren Hannah, Warren B. Powell, David M. Blei:

Nonparametric Density Estimation for Stochastic Optimization with an Observable State Variable. 820-828 - Stefan Harmeling, Michael Hirsch, Bernhard Schölkopf:

Space-Variant Single-Image Blind Deconvolution for Removing Camera Shake. 829-837 - Hado van Hasselt:

Double Q-learning. 2613-2621 - Tamir Hazan, Raquel Urtasun:

A Primal-Dual Message-Passing Algorithm for Approximated Large Scale Structured Prediction. 838-846 - Matthias Hein, Thomas Bühler:

An Inverse Power Method for Nonlinear Eigenproblems with Applications in 1-Spectral Clustering and Sparse PCA. 847-855 - Matthew D. Hoffman, David M. Blei, Francis R. Bach:

Online Learning for Latent Dirichlet Allocation. 856-864 - Diane Hu, Laurens van der Maaten, Youngmin Cho, Lawrence K. Saul, Sorin Lerner:

Latent Variable Models for Predicting File Dependencies in Large-Scale Software Development. 865-873 - Ling Huang, Jinzhu Jia, Bin Yu, Byung-Gon Chun, Petros Maniatis, Mayur Naik:

Predicting Execution Time of Computer Programs Using Sparse Polynomial Regression. 883-891 - Sheng-Jun Huang, Rong Jin, Zhi-Hua Zhou:

Active Learning by Querying Informative and Representative Examples. 892-900 - Jim C. Huang, Nebojsa Jojic, Christopher Meek:

Exact inference and learning for cumulative distribution functions on loopy graphs. 874-882 - Dirk Husmeier, Frank Dondelinger, Sophie Lèbre:

Inter-time segment information sharing for non-homogeneous dynamic Bayesian networks. 901-909 - Hal Daumé III, Abhishek Kumar, Avishek Saha:

Co-regularization Based Semi-supervised Domain Adaptation. 478-486 - Guy Isley, Christopher J. Hillar, Friedrich T. Sommer:

Deciphering subsampled data: adaptive compressive sampling as a principle of brain communication. 910-918 - Katsuhiko Ishiguro, Tomoharu Iwata, Naonori Ueda, Joshua B. Tenenbaum:

Dynamic Infinite Relational Model for Time-varying Relational Data Analysis. 919-927 - Prateek Jain, Brian Kulis, Inderjit S. Dhillon:

Inductive Regularized Learning of Kernel Functions. 946-954 - Prateek Jain, Sudheendra Vijayanarasimhan, Kristen Grauman:

Hashing Hyperplane Queries to Near Points with Applications to Large-Scale Active Learning. 928-936 - Prateek Jain, Raghu Meka, Inderjit S. Dhillon:

Guaranteed Rank Minimization via Singular Value Projection. 937-945 - Ali Jalali, Pradeep Ravikumar, Sujay Sanghavi, Chao Ruan:

A Dirty Model for Multi-task Learning. 964-972 - Abhay Kumar Jha, Vibhav Gogate

, Alexandra Meliou, Dan Suciu:
Lifted Inference Seen from the Other Side : The Tractable Features. 973-981 - Yangqing Jia, Mathieu Salzmann, Trevor Darrell:

Factorized Latent Spaces with Structured Sparsity. 982-990 - Albert Xin Jiang, Kevin Leyton-Brown:

Bayesian Action-Graph Games. 991-999 - Jie Tang, Pieter Abbeel:

On a Connection between Importance Sampling and the Likelihood Ratio Policy Gradient. 1000-1008 - Jeffrey Johns, Christopher Painter-Wakefield, Ronald Parr:

Linear Complementarity for Regularized Policy Evaluation and Improvement. 1009-1017 - Mark Johnson, Katherine Demuth, Michael C. Frank, Bevan K. Jones:

Synergies in learning words and their referents. 1018-1026 - Nebojsa Jojic, Alessandro Perina, Vittorio Murino:

Structural epitome: a way to summarize one's visual experience. 1027-1035 - Peter B. Jones, Venkatesh Saligrama, Sanjoy K. Mitter:

Probabilistic Belief Revision with Structural Constraints. 1036-1044 - Armand Joulin, Francis R. Bach, Jean Ponce:

Efficient Optimization for Discriminative Latent Class Models. 1045-1053 - Satyen Kale, Lev Reyzin, Robert E. Schapire:

Non-Stochastic Bandit Slate Problems. 1054-1062 - Nikos Karampatziakis:

Static Analysis of Binary Executables Using Structural SVMs. 1063-1071 - Leonid Karlinsky, Michael Dinerstein, Shimon Ullman:

Using body-anchored priors for identifying actions in single images. 1072-1080 - Kentaro Katahira, Kazuo Okanoya, Masato Okada:

Effects of Synaptic Weight Diffusion on Learning in Decision Making Networks. 1081-1089 - Koray Kavukcuoglu, Pierre Sermanet, Y-Lan Boureau, Karol Gregor, Michaël Mathieu, Yann LeCun:

Learning Convolutional Feature Hierarchies for Visual Recognition. 1090-1098 - Ryan C. Kelly, Matthew A. Smith, Robert E. Kass, Tai Sing Lee:

Accounting for network effects in neuronal responses using L1 regularized point process models. 1099-1107 - Mohammad Emtiyaz Khan, Benjamin M. Marlin, Guillaume Bouchard, Kevin P. Murphy:

Variational bounds for mixed-data factor analysis. 1108-1116 - Taehwan Kim, Gregory Shakhnarovich, Raquel Urtasun:

Sparse Coding for Learning Interpretable Spatio-Temporal Primitives. 1117-1125 - Diederik P. Kingma, Yann LeCun:

Regularized estimation of image statistics by Score Matching. 1126-1134 - Ariel Kleiner, Ali Rahimi, Michael I. Jordan:

Random Conic Pursuit for Semidefinite Programming. 1135-1143 - Vladimir Kolmogorov:

Generalized roof duality and bisubmodular functions. 1144-1152 - J. Zico Kolter, Siddharth Batra, Andrew Y. Ng:

Energy Disaggregation via Discriminative Sparse Coding. 1153-1161 - George Dimitri Konidaris, Scott Kuindersma, Andrew G. Barto, Roderic A. Grupen:

Constructing Skill Trees for Reinforcement Learning Agents from Demonstration Trajectories. 1162-1170 - Alex Kulesza, Ben Taskar:

Structured Determinantal Point Processes. 1171-1179 - Akshat Kumar, Shlomo Zilberstein:

MAP Estimation for Graphical Models by Likelihood Maximization. 1180-1188 - M. Pawan Kumar, Benjamin Packer, Daphne Koller:

Self-Paced Learning for Latent Variable Models. 1189-1197 - Achintya Kundu, Vikram Tankasali, Chiranjib Bhattacharyya, Aharon Ben-Tal:

Efficient algorithms for learning kernels from multiple similarity matrices with general convex loss functions. 1198-1206 - Tian Lan, Yang Wang, Weilong Yang, Greg Mori:

Beyond Actions: Discriminative Models for Contextual Group Activities. 1216-1224 - Georg Langs, Yanmei Tie, Laura Rigolo, Alexandra J. Golby, Polina Golland:

Functional Geometry Alignment and Localization of Brain Areas. 1225-1233 - Ni Lao, Jun Zhu, Xinwang Liu, Yandong Liu, William W. Cohen:

Efficient Relational Learning with Hidden Variable Detection. 1234-1242 - Hugo Larochelle, Geoffrey E. Hinton:

Learning to combine foveal glimpses with a third-order Boltzmann machine. 1243-1251 - Danial Lashkari, Ramesh Sridharan, Polina Golland:

Categories and Functional Units: An Infinite Hierarchical Model for Brain Activations. 1252-1260 - Aurel A. Lazar, Yevgeniy B. Slutskiy:

Identifying Dendritic Processing. 1261-1269 - Quoc V. Le, Jiquan Ngiam, Zhenghao Chen, Daniel Jin hao Chia, Pang Wei Koh, Andrew Y. Ng:

Tiled convolutional neural networks. 1279-1287 - Hai-Son Le, Ziv Bar-Joseph:

Cross Species Expression Analysis using a Dirichlet Process Mixture Model with Latent Matchings. 1270-1278 - Chang Su, Sargur N. Srihari:

Evaluation of Rarity of Fingerprints in Forensics. 1207-1215 - David C. Lee, Abhinav Gupta, Martial Hebert, Takeo Kanade:

Estimating Spatial Layout of Rooms using Volumetric Reasoning about Objects and Surfaces. 1288-1296 - Seunghak Lee, Jun Zhu, Eric P. Xing:

Adaptive Multi-Task Lasso: with Application to eQTL Detection. 1306-1314 - Jason D. Lee, Ben Recht, Ruslan Salakhutdinov, Nathan Srebro, Joel A. Tropp:

Practical Large-Scale Optimization for Max-norm Regularization. 1297-1305 - Leonidas Lefakis, François Fleuret:

Joint Cascade Optimization Using A Product Of Boosted Classifiers. 1315-1323 - Victor S. Lempitsky, Andrew Zisserman:

Learning To Count Objects in Images. 1324-1332 - Gilbert Leung, Novi Quadrianto, Alexander J. Smola, Kostas Tsioutsiouliklis:

Optimal Web-Scale Tiering as a Flow Problem. 1333-1341 - Sergey Levine, Zoran Popovic, Vladlen Koltun:

Feature Construction for Inverse Reinforcement Learning. 1342-1350 - Fuxin Li, Cristian Sminchisescu:

Convex Multiple-Instance Learning by Estimating Likelihood Ratio. 1360-1368 - Li-Jia Li, Hao Su, Eric P. Xing, Li Fei-Fei:

Object Bank: A High-Level Image Representation for Scene Classification & Semantic Feature Sparsification. 1378-1386 - Kaiming Li, Lei Guo, Carlos Faraco, Dajiang Zhu, Fan Deng, Tuo Zhang, Xi Jiang, Degang Zhang, Hanbo Chen, Xintao Hu, L. Stephen Miller, Tianming Liu:

Individualized ROI Optimization via Maximization of Group-wise Consistency of Structural and Functional Profiles. 1369-1377 - Congcong Li, Adarsh Kowdle, Ashutosh Saxena, Tsuhan Chen:

Towards Holistic Scene Understanding: Feedback Enabled Cascaded Classification Models. 1351-1359 - Ping Li, Arnd Christian König, Wenhao Gui:

b-Bit Minwise Hashing for Estimating Three-Way Similarities. 1387-1395 - Dahua Lin, Eric Grimson, John W. Fisher III:

Construction of Dependent Dirichlet Processes based on Poisson Processes. 1396-1404 - Yuanqing Lin, Tong Zhang, Shenghuo Zhu, Kai Yu:

Deep Coding Network. 1405-1413 - Jun Liu, Jieping Ye:

Moreau-Yosida Regularization for Grouped Tree Structure Learning. 1459-1467 - Han Liu, Kathryn Roeder, Larry A. Wasserman:

Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models. 1432-1440 - Han Liu, Xi Chen:

Multivariate Dyadic Regression Trees for Sparse Learning Problems. 1441-1449 - Hairong Liu, Longin Jan Latecki, Shuicheng Yan:

Robust Clustering as Ensembles of Affinity Relations. 1414-1422 - Han Liu, Xi Chen, John D. Lafferty, Larry A. Wasserman:

Graph-Valued Regression. 1423-1431 - Ji Liu, Peter Wonka, Jieping Ye:

Multi-Stage Dantzig Selector. 1450-1458 - Yuzong Liu, Mohit Sharma, Charles M. Gaona, Jonathan Breshears, Jarod Roland, Zachary Freudenburg, Kilian Q. Weinberger, Eric Leuthardt:

Decoding Ipsilateral Finger Movements from ECoG Signals in Humans. 1468-1476 - Daniel Lowd, Pedro M. Domingos:

Approximate Inference by Compilation to Arithmetic Circuits. 1477-1485 - Aurélie C. Lozano, Vikas Sindhwani:

Block Variable Selection in Multivariate Regression and High-dimensional Causal Inference. 1486-1494 - Hongjing Lu, Tungyou Lin, Alan L. F. Lee, Luminita A. Vese, Alan L. Yuille:

Functional form of motion priors in human motion perception. 1495-1503 - Jie Luo, Francesco Orabona:

Learning from Candidate Labeling Sets. 1504-1512 - Ronny Luss, Saharon Rosset, Moni Shahar:

Decomposing Isotonic Regression for Efficiently Solving Large Problems. 1513-1521 - Ulrike von Luxburg, Agnes Radl, Matthias Hein:

Getting lost in space: Large sample analysis of the resistance distance. 2622-2630 - Siwei Lyu:

Divisive Normalization: Justification and Effectiveness as Efficient Coding Transform. 1522-1530 - Malik Magdon-Ismail:

Permutation Complexity Bound on Out-Sample Error. 1531-1539 - Sridhar Mahadevan, Bo Liu:

Basis Construction from Power Series Expansions of Value Functions. 1540-1548 - Odalric-Ambrym Maillard, Rémi Munos:

Scrambled Objects for Least-Squares Regression. 1549-1557 - Julien Mairal, Rodolphe Jenatton, Guillaume Obozinski, Francis R. Bach:

Network Flow Algorithms for Structured Sparsity. 1558-1566 - Yariv Maron, Michael Lamar, Elie Bienenstock:

Sphere Embedding: An Application to Part-of-Speech Induction. 1567-1575 - Hamed Masnadi-Shirazi, Nuno Vasconcelos:

Variable margin losses for classifier design. 1576-1584 - Luke Maurits, Daniel J. Navarro, Amy Perfors:

Why are some word orders more common than others? A uniform information density account. 1585-1593 - David A. McAllester, Tamir Hazan, Joseph Keshet:

Direct Loss Minimization for Structured Prediction. 1594-1602 - Roland Memisevic, Christopher Zach, Geoffrey E. Hinton, Marc Pollefeys:

Gated Softmax Classification. 1603-1611 - Charles A. Micchelli, Jean Morales, Massimiliano Pontil:

A Family of Penalty Functions for Structured Sparsity. 1612-1623 - Benjamin A. Miller, Nadya T. Bliss, Patrick J. Wolfe:

Subgraph Detection Using Eigenvector L1 Norms. 1633-1641 - Sebastian Millner, Andreas Grübl, Karlheinz Meier, Johannes Schemmel, Marc-Olivier Schwartz:

A VLSI Implementation of the Adaptive Exponential Integrate-and-Fire Neuron Model. 1642-1650 - Kaushik Mitra, Sameer Sheorey, Rama Chellappa:

Large-Scale Matrix Factorization with Missing Data under Additional Constraints. 1651-1659 - Atsushi Miyamae, Yuichi Nagata, Isao Ono, Shigenobu Kobayashi:

Natural Policy Gradient Methods with Parameter-based Exploration for Control Tasks. 1660-1668 - Eiji Mizutani, Stuart Dreyfus:

An analysis on negative curvature induced by singularity in multi-layer neural-network learning. 1669-1677 - Grégoire Montavon, Mikio L. Braun, Klaus-Robert Müller:

Layer-wise analysis of deep networks with Gaussian kernels. 1678-1686 - Joris M. Mooij, Oliver Stegle, Dominik Janzing, Kun Zhang, Bernhard Schölkopf:

Probabilistic latent variable models for distinguishing between cause and effect. 1687-1695 - Sofia Mosci, Silvia Villa, Alessandro Verri, Lorenzo Rosasco:

A Primal-Dual Algorithm for Group Sparse Regularization with Overlapping Groups. 2604-2612 - Kamiya Motwani, Nagesh Adluru, Chris Hinrichs, Andrew L. Alexander, Vikas Singh:

Epitome driven 3-D Diffusion Tensor image segmentation: on extracting specific structures. 1696-1704 - Michael Mozer, Harold Pashler, Matthew H. Wilder, Robert V. Lindsey, Matt Jones, Michael Jones:

Improving Human Judgments by Decontaminating Sequential Dependencies. 1705-1713 - Indraneel Mukherjee, Robert E. Schapire:

A Theory of Multiclass Boosting. 1714-1722 - Kritika Muralidharan, Nuno Vasconcelos:

A biologically plausible network for the computation of orientation dominance. 1723-1731 - Iain Murray, Ryan Prescott Adams:

Slice sampling covariance hyperparameters of latent Gaussian models. 1732-1740 - Seth A. Myers, Jure Leskovec:

On the Convexity of Latent Social Network Inference. 1741-1749 - Morten Mørup, Kristoffer Hougaard Madsen, Anne-Marie Dogonowski, Hartwig R. Siebner, Lars Kai Hansen

:
Infinite Relational Modeling of Functional Connectivity in Resting State fMRI. 1750-1758 - Kiyohito Nagano, Yoshinobu Kawahara, Satoru Iwata:

Minimum Average Cost Clustering. 1759-1767 - Shinichi Nakajima, Masashi Sugiyama, Ryota Tomioka:

Global Analytic Solution for Variational Bayesian Matrix Factorization. 1768-1776 - Hariharan Narayanan, Alexander Rakhlin:

Random Walk Approach to Regret Minimization. 1777-1785 - Hariharan Narayanan, Sanjoy K. Mitter:

Sample Complexity of Testing the Manifold Hypothesis. 1786-1794 - Gergely Neu, András György, Csaba Szepesvári, András Antos:

Online Markov Decision Processes under Bandit Feedback. 1804-1812 - Feiping Nie, Heng Huang, Xiao Cai, Chris H. Q. Ding:

Efficient and Robust Feature Selection via Joint ℓ2, 1-Norms Minimization. 1813-1821 - Yung-Kyun Noh, Byoung-Tak Zhang, Daniel D. Lee:

Generative Local Metric Learning for Nearest Neighbor Classification. 1822-1830 - Manfred Opper, Andreas Ruttor, Guido Sanguinetti:

Approximate inference in continuous time Gaussian-Jump processes. 1831-1839 - Francesco Orabona, Koby Crammer:

New Adaptive Algorithms for Online Classification. 1840-1848 - Dávid Pál, Barnabás Póczos, Csaba Szepesvári:

Estimation of Renyi Entropy and Mutual Information Based on Generalized Nearest-Neighbor Graphs. 1849-1857 - George Papandreou, Alan L. Yuille:

Gaussian sampling by local perturbations. 1858-1866 - Shibin Parameswaran, Kilian Q. Weinberger:

Large Margin Multi-Task Metric Learning. 1867-1875 - Manas A. Pathak, Shantanu Rane, Bhiksha Raj:

Multiparty Differential Privacy via Aggregation of Locally Trained Classifiers. 1876-1884 - Nadia Payet, Sinisa Todorovic:

(RF)^2 - Random Forest Random Field. 1885-1893 - Dmitry Pechyony, Vladimir Vapnik:

On the Theory of Learnining with Privileged Information. 1894-1902 - Thomas Peel, Sandrine Anthoine, Liva Ralaivola:

Empirical Bernstein Inequalities for U-Statistics. 1903-1911 - José Bento, Morteza Ibrahimi, Andrea Montanari:

Learning Networks of Stochastic Differential Equations. 172-180 - James Petterson, Alexander J. Smola, Tibério S. Caetano, Wray L. Buntine, Shravan M. Narayanamurthy:

Word Features for Latent Dirichlet Allocation. 1921-1929 - James Petterson, Tibério S. Caetano:

Reverse Multi-Label Learning. 1912-1920 - David Pfau, Nicholas Bartlett, Frank D. Wood:

Probabilistic Deterministic Infinite Automata. 1930-1938 - Gervasio Puertas, Jörg Bornschein, Jörg Lücke:

The Maximal Causes of Natural Scenes are Edge Filters. 1939-1947 - Tao Qin, Xiubo Geng, Tie-Yan Liu:

A New Probabilistic Model for Rank Aggregation. 1948-1956 - Novi Quadrianto, Alexander J. Smola, Tibério S. Caetano, S. V. N. Vishwanathan, James Petterson:

Multitask Learning without Label Correspondences. 1957-1965 - Kanaka Rajan, L. F. Abbott, Haim Sompolinsky:

Inferring Stimulus Selectivity from the Spatial Structure of Neural Network Dynamics. 1975-1983 - Alexander Rakhlin, Karthik Sridharan, Ambuj Tewari:

Online Learning: Random Averages, Combinatorial Parameters, and Learnability. 1984-1992 - Ralf M. Haefner, Matthias Bethge:

Evaluating neuronal codes for inference using Fisher information. 1993-2001 - Marc'Aurelio Ranzato, Volodymyr Mnih, Geoffrey E. Hinton:

Generating more realistic images using gated MRF's. 2002-2010 - Konrad Rawlik, Marc Toussaint, Sethu Vijayakumar:

An Approximate Inference Approach to Temporal Optimization in Optimal Control. 2011-2019 - Sashank Jakkam Reddi, Sunita Sarawagi, Sundar Vishwanathan:

MAP estimation in Binary MRFs via Bipartite Multi-cuts. 955-963 - David P. Reichert, Peggy Seriès, Amos J. Storkey:

Hallucinations in Charles Bonnet Syndrome Induced by Homeostasis: a Deep Boltzmann Machine Model. 2020-2028 - Emile Richard, Nicolas Baskiotis, Theodoros Evgeniou, Nicolas Vayatis:

Link Discovery using Graph Feature Tracking. 1966-1974 - Paul Ruvolo, Javier R. Movellan:

An Alternative to Low-level-Sychrony-Based Methods for Speech Detection. 2029-2037 - Sivan Sabato, Nathan Srebro, Naftali Tishby:

Tight Sample Complexity of Large-Margin Learning. 2038-2046 - Mohammad J. Saberian, Nuno Vasconcelos:

Boosting Classifier Cascades. 2047-2055 - Ruslan Salakhutdinov, Nathan Srebro:

Collaborative Filtering in a Non-Uniform World: Learning with the Weighted Trace Norm. 2056-2064 - Mathieu Salzmann, Raquel Urtasun:

Implicitly Constrained Gaussian Process Regression for Monocular Non-Rigid Pose Estimation. 2065-2073 - Issei Sato, Kenichi Kurihara, Hiroshi Nakagawa:

Deterministic Single-Pass Algorithm for LDA. 2074-2082 - Christoph Sawade, Niels Landwehr, Tobias Scheffer:

Active Estimation of F-Measures. 2083-2091 - Amin Sayedi, Morteza Zadimoghaddam, Avrim Blum:

Trading off Mistakes and Don't-Know Predictions. 2092-2100 - Katya Scheinberg

, Shiqian Ma, Donald Goldfarb:
Sparse Inverse Covariance Selection via Alternating Linearization Methods. 2101-2109 - Joscha Schmiedt, Christian Albers, Klaus Pawelzik:

Spike timing-dependent plasticity as dynamic filter. 2110-2118 - Sohan Seth, Il Memming Park, Austin J. Brockmeier, Mulugeta Semework, John S. Choi, Joseph T. Francis, José Carlos Príncipe:

A novel family of non-parametric cumulative based divergences for point processes. 2119-2127 - Uri Shalit, Daphna Weinshall, Gal Chechik:

Online Learning in The Manifold of Low-Rank Matrices. 2128-2136 - James Sharpnack, Aarti Singh:

Identifying graph-structured activation patterns in networks. 2137-2145 - Pradeep Shenoy, Rajesh P. N. Rao, Angela J. Yu:

A rational decision making framework for inhibitory control. 2146-2154 - Ali Shojaie, George Michailidis:

Penalized Principal Component Regression on Graphs for Analysis of Subnetworks. 2155-2163 - David Silver, Joel Veness:

Monte-Carlo Planning in Large POMDPs. 2164-2172 - Anand Singh, Renaud Jolivet, Pierre J. Magistretti, Bruno Weber:

Sodium entry efficiency during action potentials: A novel single-parameter family of Hodgkin-Huxley models. 2173-2180 - David A. Sontag, Ofer Meshi, Tommi S. Jaakkola, Amir Globerson:

More data means less inference: A pseudo-max approach to structured learning. 2181-2189 - Jonathan Sorg, Satinder Singh, Richard L. Lewis:

Reward Design via Online Gradient Ascent. 2190-2198 - Nathan Srebro, Karthik Sridharan, Ambuj Tewari:

Smoothness, Low Noise and Fast Rates. 2199-2207 - Peter Stobbe, Andreas Krause:

Efficient Minimization of Decomposable Submodular Functions. 2208-2216 - Alexander L. Strehl, John Langford, Lihong Li, Sham M. Kakade:

Learning from Logged Implicit Exploration Data. 2217-2225 - Deqing Sun, Erik B. Sudderth, Michael J. Black:

Layered image motion with explicit occlusions, temporal consistency, and depth ordering. 2226-2234 - Yi Sun, Faustino J. Gomez, Jürgen Schmidhuber:

Improving the Asymptotic Performance of Markov Chain Monte-Carlo by Inserting Vortices. 2235-2243 - Umar Syed, Robert E. Schapire:

A Reduction from Apprenticeship Learning to Classification. 2253-2261 - Umar Syed, Ben Taskar:

Semi-Supervised Learning with Adversarially Missing Label Information. 2244-2252 - Zeeshan Syed, John V. Guttag:

Identifying Patients at Risk of Major Adverse Cardiovascular Events Using Symbolic Mismatch. 2262-2270 - Ken Takiyama, Masato Okada:

Switching state space model for simultaneously estimating state transitions and nonstationary firing rates. 2271-2279 - Graham W. Taylor, Rob Fergus, George Williams, Ian Spiro, Christoph Bregler:

Pose-Sensitive Embedding by Nonlinear NCA Regression. 2280-2288 - Bo Thiesson, Chong Wang:

Fast Large-scale Mixture Modeling with Component-specific Data Partitions. 2289-2297 - Emanuel Todorov:

Policy gradients in linearly-solvable MDPs. 2298-2306 - Fabian Triefenbach, Azarakhsh Jalalvand, Benjamin Schrauwen, Jean-Pierre Martens:

Phoneme Recognition with Large Hierarchical Reservoirs. 2307-2315 - Matthew Urry, Peter Sollich:

Exact learning curves for Gaussian process regression on large random graphs. 2316-2324 - Gaël Varoquaux, Alexandre Gramfort, Jean-Baptiste Poline, Bertrand Thirion:

Brain covariance selection: better individual functional connectivity models using population prior. 2334-2342 - Jean-Philippe Vert, Kevin Bleakley:

Fast detection of multiple change-points shared by many signals using group LARS. 2343-2351 - Paolo Viappiani, Craig Boutilier:

Optimal Bayesian Recommendation Sets and Myopically Optimal Choice Query Sets. 2352-2360 - Meritxell Vinyals, Jesús Cerquides, Alessandro Farinelli, Juan A. Rodríguez-Aguilar:

Worst-case bounds on the quality of max-product fixed-points. 2325-2333 - S. V. N. Vishwanathan, Zhaonan Sun, Nawanol Ampornpunt, Manik Varma:

Multiple Kernel Learning and the SMO Algorithm. 2361-2369 - Ernesto De Vito, Lorenzo Rosasco, Alessandro Toigo:

Spectral Regularization for Support Estimation. 487-495 - Meihong Wang, Fei Sha, Michael I. Jordan:

Unsupervised Kernel Dimension Reduction. 2379-2387 - Wei Wang, Zhi-Hua Zhou:

Multi-View Active Learning in the Non-Realizable Case. 2388-2396 - Yang Wang, Greg Mori:

A Discriminative Latent Model of Image Region and Object Tag Correspondence. 2397-2405 - Eric Wang, Dehong Liu, Jorge G. Silva, David B. Dunson, Lawrence Carin:

Joint Analysis of Time-Evolving Binary Matrices and Associated Documents. 2370-2378 - Fabian L. Wauthier, Michael I. Jordan:

Heavy-Tailed Process Priors for Selective Shrinkage. 2406-2414 - David J. Weiss, Benjamin Sapp, Ben Taskar:

Sidestepping Intractable Inference with Structured Ensemble Cascades. 2415-2423 - Peter Welinder, Steve Branson, Serge J. Belongie, Pietro Perona:

The Multidimensional Wisdom of Crowds. 2424-2432 - Martha White, Adam White:

Interval Estimation for Reinforcement-Learning Algorithms in Continuous-State Domains. 2433-2441 - Jenna Wiens, John V. Guttag:

Active Learning Applied to Patient-Adaptive Heartbeat Classification. 2442-2450 - Oliver Williams, Frank McSherry:

Probabilistic Inference and Differential Privacy. 2451-2459 - Andrew Gordon Wilson, Zoubin Ghahramani:

Copula Processes. 2460-2468 - Adrien Wohrer, Ranulfo Romo, Christian K. Machens:

Linear readout from a neural population with partial correlation data. 2469-2477 - Yi-Da Wu, Shi-Jie Lin, Hsin Chen:

A Log-Domain Implementation of the Diffusion Network in Very Large Scale Integration. 2487-2495 - Shuang Wu, Xuming He, Hongjing Lu, Alan L. Yuille:

A unified model of short-range and long-range motion perception. 2478-2486 - Huan Xu, Shie Mannor:

Distributionally Robust Markov Decision Processes. 2505-2513 - Yang Xu, Charles Kemp:

Inference and communication in the game of Password. 2514-2522 - Huan Xu, Constantine Caramanis, Sujay Sanghavi:

Robust PCA via Outlier Pursuit. 2496-2504 - Yaoliang Yu, Min Yang, Linli Xu, Martha White, Dale Schuurmans:

Relaxed Clipping: A Global Training Method for Robust Regression and Classification. 2532-2540 - Stella X. Yu:

Feature Transitions with Saccadic Search: Size, Color, and Orientation Are Not Alike. 2523-2531 - Yi Zhang, Jeff G. Schneider:

Learning Multiple Tasks with a Sparse Matrix-Normal Penalty. 2550-2558 - Xinhua Zhang, Ankan Saha, S. V. N. Vishwanathan:

Lower Bounds on Rate of Convergence of Cutting Plane Methods. 2541-2549 - Yu Zhang, Dit-Yan Yeung, Qian Xu:

Probabilistic Multi-Task Feature Selection. 2559-2567 - Yu Zhang, Dit-Yan Yeung:

Worst-Case Linear Discriminant Analysis. 2568-2576 - Hongbo Zhou, Qiang Cheng:

Sufficient Conditions for Generating Group Level Sparsity in a Robust Minimax Framework. 2577-2585 - Jun Zhu, Li-Jia Li, Li Fei-Fei, Eric P. Xing:

Large Margin Learning of Upstream Scene Understanding Models. 2586-2594 - Martin Zinkevich, Markus Weimer, Alexander J. Smola, Lihong Li:

Parallelized Stochastic Gradient Descent. 2595-2603

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














