


default search action
15. AISTATS 2012: La Palma, Canary Islands
- Neil D. Lawrence, Mark A. Girolami:

Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2012, La Palma, Canary Islands, Spain, April 21-23, 2012. JMLR Proceedings 22, JMLR.org 2012 - Neil D. Lawrence, Mark A. Girolami:

Preface. - Yasin Abbasi-Yadkori, Dávid Pál, Csaba Szepesvári:

Online-to-Confidence-Set Conversions and Application to Sparse Stochastic Bandits. 1-9 - Felix V. Agakov, Peter Orchard

, Amos J. Storkey:
Discriminative Mixtures of Sparse Latent Fields for Risk Management. 10-18 - Alekh Agarwal, Miroslav Dudík, Satyen Kale, John Langford, Robert E. Schapire:

Contextual Bandit Learning with Predictable Rewards. 19-26 - Genevera I. Allen:

Sparse Higher-Order Principal Components Analysis. 27-36 - Saeed Amizadeh, Hamed Valizadegan, Milos Hauskrecht:

Factorized Diffusion Map Approximation. 37-46 - Galen Andrew, Jeff A. Bilmes:

Memory-efficient inference in dynamic graphical models using multiple cores. 47-53 - Hossein Azari Soufiani, Edoardo M. Airoldi:

Graphlet decomposition of a weighted network. 54-63 - Sivaraman Balakrishnan, Alessandro Rinaldo, Don Sheehy, Aarti Singh, Larry A. Wasserman:

Minimax rates for homology inference. 64-72 - Guha Balakrishnan, Zeeshan Syed:

Scalable Personalization of Long-Term Physiological Monitoring: Active Learning Methodologies for Epileptic Seizure Onset Detection. 73-81 - Luca Baldassarre, Jean Morales, Andreas Argyriou, Massimiliano Pontil:

A General Framework for Structured Sparsity via Proximal Optimization. 82-90 - Rémi Bardenet, Olivier Cappé, Gersende Fort, Balázs Kégl:

Adaptive Metropolis with Online Relabeling. 91-99 - Elias Bareinboim, Judea Pearl:

Controlling Selection Bias in Causal Inference. 100-108 - Wei Bian, Bo Xie, Dacheng Tao:

CorrLog: Correlated Logistic Models for Joint Prediction of Multiple Labels. 109-117 - Jasmina Bogojeska, Daniel Stöckel, Maurizio Zazzi, Rolf Kaiser, Francesca Incardona, Michal Rosen-Zvi, Thomas Lengauer:

History-alignment models for bias-aware prediction of virological response to HIV combination therapy. 118-126 - Antoine Bordes, Xavier Glorot, Jason Weston, Yoshua Bengio:

Joint Learning of Words and Meaning Representations for Open-Text Semantic Parsing. 127-135 - Joseph K. Bradley, Carlos Guestrin:

Sample Complexity of Composite Likelihood. 136-160 - Marcus A. Brubaker, Mathieu Salzmann, Raquel Urtasun:

A Family of MCMC Methods on Implicitly Defined Manifolds. 161-172 - David Buchman, Mark Schmidt, Shakir Mohamed, David Poole, Nando de Freitas:

On Sparse, Spectral and Other Parameterizations of Binary Probabilistic Models. 173-181 - Lucian Busoniu, Rémi Munos:

Optimistic planning for Markov decision processes. 182-189 - Alexandra Carpentier, Rémi Munos:

Bandit Theory meets Compressed Sensing for high dimensional Stochastic Linear Bandit. 190-198 - Xi Chen, Han Liu, Jaime G. Carbonell:

Structured Sparse Canonical Correlation Analysis. 199-207 - Xiaohui Chen, Xinghua Shi, Xing Xu, Zhiyong Wang, Ryan Mills, Charles Lee, Jinbo Xu:

A Two-Graph Guided Multi-task Lasso Approach for eQTL Mapping. 208-217 - Minmin Chen, Zhixiang Eddie Xu, Kilian Q. Weinberger, Olivier Chapelle, Dor Kedem:

Classifier Cascade for Minimizing Feature Evaluation Cost. 218-226 - Anna Choromanska, Claire Monteleoni:

Online Clustering with Experts. 227-235 - Olivier Collier:

Minimax hypothesis testing for curve registration. 236-245 - Bryan R. Conroy, Paul Sajda:

Fast, Exact Model Selection and Permutation Testing for l2-Regularized Logistic Regression. 246-254 - John P. Cunningham, Zoubin Ghahramani, Carl Edward Rasmussen:

Gaussian Processes for time-marked time-series data. 255-263 - Arnak S. Dalalyan, Olivier Collier:

Wilks' phenomenon and penalized likelihood-ratio test for nonparametric curve registration. 264-272 - Christian Daniel, Gerhard Neumann, Jan Peters:

Hierarchical Relative Entropy Policy Search. 273-281 - Hal Daumé III, Jeff M. Phillips, Avishek Saha, Suresh Venkatasubramanian:

Protocols for Learning Classifiers on Distributed Data. 282-290 - Ofer Dekel, Ohad Shamir:

There's a Hole in My Data Space: Piecewise Predictors for Heterogeneous Learning Problems. 291-298 - Paramveer S. Dhillon, S. Sathiya Keerthi, Kedar Bellare, Olivier Chapelle, Sundararajan Sellamanickam:

Deterministic Annealing for Semi-Supervised Structured Output Learning. 299-307 - Huyen Do, Alexandros Kalousis, Jun Wang, Adam Woznica:

A metric learning perspective of SVM: on the relation of LMNN and SVM. 308-317 - Justin Domke:

Generic Methods for Optimization-Based Modeling. 318-326 - Miroslav Dudík, Zaïd Harchaoui, Jérôme Malick:

Lifted coordinate descent for learning with trace-norm regularization. 327-336 - Robert J. Durrant, Ata Kabán:

Error bounds for Kernel Fisher Linear Discriminant in Gaussian Hilbert space. 337-345 - Gal Elidan:

Copula Network Classifiers (CNCs). 346-354 - Gal Elidan:

Lightning-speed Structure Learning of Nonlinear Continuous Networks. 355-363 - Doris Entner, Patrik O. Hoyer, Peter Spirtes:

Statistical test for consistent estimation of causal effects in linear non-Gaussian models. 364-372 - Brian Eriksson, Laura Balzano, Robert D. Nowak:

High-Rank Matrix Completion. 373-381 - Dean P. Foster, Alexander Rakhlin:

No Internal Regret via Neighborhood Watch. 382-390 - Antonino Freno:

Semiparametric Pseudo-Likelihood Estimation in Markov Random Fields. 391-399 - Ryohei Fujimaki, Satoshi Morinaga:

Factorized Asymptotic Bayesian Inference for Mixture Modeling. 400-408 - Alona Fyshe, Emily B. Fox, David B. Dunson, Tom M. Mitchell:

Hierarchical Latent Dictionaries for Models of Brain Activation. 409-421 - Ravi Ganti, Alexander G. Gray:

UPAL: Unbiased Pool Based Active Learning. 422-431 - Joachim Giesen, Martin Jaggi, Sören Laue:

Regularization Paths with Guarantees for Convex Semidefinite Optimization. 432-439 - Dilan Görür, Levi Boyles, Max Welling:

Scalable Inference on Kingman's Coalescent using Pair Similarity . 440-448 - Yuri Grinberg, Doina Precup:

On Average Reward Policy Evaluation in Infinite-State Partially Observable Systems. 449-457 - Alexander Grubb, Drew Bagnell:

SpeedBoost: Anytime Prediction with Uniform Near-Optimality. 458-466 - Marco Grzegorczyk, Dirk Husmeier:

Bayesian regularization of non-homogeneous dynamic Bayesian networks by globally coupling interaction parameters. 467-476 - Quanquan Gu, Marina Danilevsky, Zhenhui Li, Jiawei Han:

Locality Preserving Feature Learning. 477-485 - Michael Habeck:

Evaluation of marginal likelihoods via the density of states. 486-494 - Morteza Haghir Chehreghani, Alberto Giovanni Busetto, Joachim M. Buhmann:

Information Theoretic Model Validation for Spectral Clustering. 495-503 - Fares Hedayati, Peter L. Bartlett:

Exchangeability Characterizes Optimality of Sequential Normalized Maximum Likelihood and Bayesian Prediction with Jeffreys Prior. 504-510 - Philipp Hennig, David H. Stern, Ralf Herbrich, Thore Graepel:

Kernel Topic Models. 511-519 - Minh Hoai Nguyen, Fernando De la Torre:

Maximum Margin Temporal Clustering. 520-528 - Junya Honda, Akimichi Takemura:

Stochastic Bandit Based on Empirical Moments. 529-537 - Jean Honorio

, Dimitris Samaras, Irina Rish, Guillermo A. Cecchi:
Variable Selection for Gaussian Graphical Models. 538-546 - Katsuhiko Ishiguro, Naonori Ueda, Hiroshi Sawada:

Subset Infinite Relational Models. 547-555 - Ming Ji, Jiawei Han:

A Variance Minimization Criterion to Active Learning on Graphs. 556-564 - Xiaoye Jiang, Yuan Yao, Han Liu, Leonidas J. Guibas:

Detecting Network Cliques with Radon Basis Pursuit. 565-573 - Christopher C. Johnson, Ali Jalali, Pradeep Ravikumar:

High-dimensional Sparse Inverse Covariance Estimation using Greedy Methods. 574-582 - Purushottam Kar, Harish Karnick:

Random Feature Maps for Dot Product Kernels. 583-591 - Emilie Kaufmann, Olivier Cappé, Aurélien Garivier:

On Bayesian Upper Confidence Bounds for Bandit Problems. 592-600 - Azadeh Khaleghi, Daniil Ryabko, Jérémie Mary, Philippe Preux:

Online Clustering of Processes. 601-609 - Mohammad Emtiyaz Khan, Shakir Mohamed, Benjamin M. Marlin, Kevin P. Murphy:

A Stick-Breaking Likelihood for Categorical Data Analysis with Latent Gaussian Models. 610-618 - Hyun-Chul Kim, Zoubin Ghahramani:

Bayesian Classifier Combination. 619-627 - Franz J. Király, Paul von Bünau, Jan Saputra Müller, Duncan A. J. Blythe, Frank C. Meinecke, Klaus-Robert Müller:

Regression for sets of polynomial equations. 628-637 - Jyri J. Kivinen, Christopher K. I. Williams:

Multiple Texture Boltzmann Machines. 638-646 - Mladen Kolar, Han Liu:

Marginal Regression For Multitask Learning. 647-655 - Akshat Kumar, Shlomo Zilberstein, Marc Toussaint:

Message-Passing Algorithms for MAP Estimation Using DC Programming. 656-664 - Alexandre Lacoste, François Laviolette, Mario Marchand:

Bayesian Comparison of Machine Learning Algorithms on Single and Multiple Datasets. 665-675 - Marius Leordeanu, Cristian Sminchisescu:

Efficient Hypergraph Clustering. 676-684 - Guy Lever, Tom Diethe, John Shawe-Taylor:

Data dependent kernels in nearly-linear time. 685-693 - Dahua Lin, John W. Fisher III:

Efficient Sampling from Combinatorial Space via Bridging. 694-702 - Guangcan Liu, Huan Xu, Shuicheng Yan:

Exact Subspace Segmentation and Outlier Detection by Low-Rank Representation. 703-711 - Jie Liu, Chunming Zhang, Catherine A. McCarty, Peggy L. Peissig, Elizabeth S. Burnside, David Page:

High-Dimensional Structured Feature Screening Using Binary Markov Random Fields. 712-721 - Roi Livni, Koby Crammer, Amir Globerson:

A Simple Geometric Interpretation of SVM using Stochastic Adversaries. 722-730 - Jörg Lücke, Marc Henniges:

Closed-Form Entropy Limits - A Tool to Monitor Likelihood Optimization of Probabilistic Generative Models. 731-740 - Jaakko Luttinen, Alexander Ilin:

Efficient Gaussian Process Inference for Short-Scale Spatio-Temporal Modeling. 741-750 - Nimalan Mahendran, Ziyu Wang, Firas Hamze, Nando de Freitas:

Adaptive MCMC with Bayesian Optimization. 751-760 - Franziska Meier, Evangelos A. Theodorou, Stefan Schaal:

Movement Segmentation and Recognition for Imitation Learning. 761-769 - Elad Mezuman, Yair Weiss:

Globally Optimizing Graph Partitioning Problems Using Message Passing. 770-778 - Kevin Miller, M. Pawan Kumar, Benjamin Packer, Danny Goodman, Daphne Koller:

Max-Margin Min-Entropy Models. 779-787 - Martin Mladenov, Babak Ahmadi, Kristian Kersting:

Lifted Linear Programming. 788-797 - Grégoire Montavon, Mikio L. Braun, Klaus-Robert Müller:

Deep Boltzmann Machines as Feed-Forward Hierarchies. 798-804 - Gergely Neu, András György, Csaba Szepesvári:

The adversarial stochastic shortest path problem with unknown transition probabilities. 805-813 - Donglin Niu, Jennifer G. Dy, Zoubin Ghahramani:

A Nonparametric Bayesian Model for Multiple Clustering with Overlapping Feature Views. 814-822 - Francesco Orabona, Nicolò Cesa-Bianchi, Claudio Gentile:

Beyond Logarithmic Bounds in Online Learning. 823-831 - Michael A. Osborne, Roman Garnett, Stephen J. Roberts, Christopher Hart, Suzanne Aigrain, Neale Gibson:

Bayesian Quadrature for Ratios. 832-840 - Zhijian Ou, Yang Zhang:

Probabilistic acoustic tube: a probabilistic generative model of speech for speech analysis/synthesis. 841-849 - John W. Paisley, David M. Blei, Michael I. Jordan:

Stick-Breaking Beta Processes and the Poisson Process. 850-858 - Alexander Paprotny, Jochen Garcke:

On a Connection between Maximum Variance Unfolding, Shortest Path Problems and IsoMap. 859-867 - Jian Peng, Tamir Hazan, Nathan Srebro, Jinbo Xu:

Approximate Inference by Intersecting Semidefinite Bound and Local Polytope. 868-876 - Patrick Pletscher, Cheng Soon Ong:

Part & Clamp: Efficient Structured Output Learning. 877-885 - Patrick Pletscher, Pushmeet Kohli:

Learning Low-order Models for Enforcing High-order Statistics. 886-894 - Eftychios A. Pnevmatikakis, Liam Paninski:

Fast interior-point inference in high-dimensional sparse, penalized state-space models. 895-904 - Adam Craig Pocock, Mikel Luján, Gavin Brown:

Informative Priors for Markov Blanket Discovery. 905-913 - Barnabás Póczos, Jeff G. Schneider:

Nonparametric Estimation of Conditional Information and Divergences. 914-923 - Tapani Raiko, Harri Valpola, Yann LeCun:

Deep Learning Made Easier by Linear Transformations in Perceptrons. 924-932 - Arun Rajkumar, Shivani Agarwal:

A Differentially Private Stochastic Gradient Descent Algorithm for Multiparty Classification. 933-941 - Nikhil Rao, Ben Recht, Robert D. Nowak:

Universal Measurement Bounds for Structured Sparse Signal Recovery. 942-950 - Bernardino Romera-Paredes, Andreas Argyriou, Nadia Berthouze, Massimiliano Pontil:

Exploiting Unrelated Tasks in Multi-Task Learning. 951-959 - Ruslan Salakhutdinov, Sham M. Kakade, Dean P. Foster:

Domain Adaptation: A Small Sample Statistical Approach. 960-968 - Venkatesh Saligrama, Manqi Zhao:

Local Anomaly Detection. 969-983 - Avneesh Singh Saluja, Priya Krishnan Sundararajan, Ole J. Mengshoel:

Age-Layered Expectation Maximization for Parameter Learning in Bayesian Networks. 984-992 - Simo Särkkä, Jouni Hartikainen:

Infinite-Dimensional Kalman Filtering Approach to Spatio-Temporal Gaussian Process Regression. 993-1001 - Martin Schiegg, Marion Neumann, Kristian Kersting:

Markov Logic Mixtures of Gaussian Processes: Towards Machines Reading Regression Data. 1002-1011 - Matthias W. Seeger, Guillaume Bouchard:

Fast Variational Bayesian Inference for Non-Conjugate Matrix Factorization Models. 1012-1018 - Shai Shalev-Shwartz, Ohad Shamir, Eran Tromer:

Using More Data to Speed-up Training Time. 1019-1027 - James Sharpnack, Aarti Singh, Alessandro Rinaldo:

Sparsistency of the Edge Lasso over Graphs. 1028-1036 - Jinwoo Shin:

Complexity of Bethe Approximation. 1037-1045 - Pannagadatta K. Shivaswamy, Thorsten Joachims:

Multi-armed Bandit Problems with History. 1046-1054 - Ajit P. Singh, Andrew Guillory, Jeff A. Bilmes:

On Bisubmodular Maximization. 1055-1063 - Carl Smith, Frank D. Wood, Liam Paninski:

Low rank continuous-space graphical models. 1064-1072 - Jasper Snoek, Ryan Prescott Adams, Hugo Larochelle:

On Nonparametric Guidance for Learning Autoencoder Representations. 1073-1080 - Kyung-Ah Sohn, Seyoung Kim:

Joint Estimation of Structured Sparsity and Output Structure in Multiple-Output Regression via Inverse-Covariance Regularization. 1081-1089 - Bharath K. Sriperumbudur, Ingo Steinwart:

Consistency and Rates for Clustering with DBSCAN. 1090-1098 - Radhendushka Srivastava, Ping Li, Debasis Sengupta:

Testing for Membership to the IFRA and the NBU Classes of Distributions. 1099-1107 - Jacob Steinhardt, Zoubin Ghahramani:

Flexible Martingale Priors for Deep Hierarchies. 1108-1116 - Florian Stimberg, Andreas Ruttor, Manfred Opper:

Bayesian Inference for Change Points in Dynamical Systems with Reusable States - a Chinese Restaurant Process Approach. 1117-1124 - Peter Stobbe, Andreas Krause:

Learning Fourier Sparse Set Functions. 1125-1133 - Min Sun, Murali Telaprolu, Honglak Lee, Silvio Savarese:

Efficient and Exact MAP-MRF Inference using Branch and Bound. 1134-1142 - Syama Sundar Rangapuram, Matthias Hein:

Constrained 1-Spectral Clustering. 1143-1151 - Taiji Suzuki, Masashi Sugiyama:

Fast Learning Rate of Multiple Kernel Learning: Trade-Off between Sparsity and Smoothness. 1152-1183 - Matt Taddy:

On Estimation and Selection for Topic Models. 1184-1193 - Nima Taghipour, Daan Fierens, Jesse Davis, Hendrik Blockeel:

Lifted Variable Elimination with Arbitrary Constraints. 1194-1202 - Yichuan Tang, Abdel-rahman Mohamed:

Multiresolution Deep Belief Networks. 1203-1211 - Daniel Tarlow, Richard S. Zemel:

Structured Output Learning with High Order Loss Functions. 1212-1220 - Daniel Tarlow, Ryan Prescott Adams, Richard S. Zemel:

Randomized Optimum Models for Structured Prediction. 1221-1229 - Bo Thiesson, Jingu Kim:

Fast Variational Mode-Seeking. 1230-1242 - Ryota Tomioka, Morten Mørup:

A Bayesian Analysis of the Radioactive Releases of Fukushima. 1243-1251 - Ruth Urner, Shai Ben-David, Ohad Shamir:

Learning from Weak Teachers. 1252-1260 - Oriol Vinyals, Daniel Povey:

Krylov Subspace Descent for Deep Learning. 1261-1268 - Seppo Virtanen, Arto Klami, Suleiman A. Khan, Samuel Kaski:

Bayesian Group Factor Analysis. 1269-1277 - Vincent Q. Vu, Jing Lei:

Minimax Rates of Estimation for Sparse PCA in High Dimensions. 1278-1286 - Li Wan, Leo Zhu, Rob Fergus:

A Hybrid Neural Network-Latent Topic Model. 1287-1294 - Weiran Wang, Miguel Á. Carreira-Perpiñán:

Nonlinear low-dimensional regression using auxiliary coordinates. 1295-1304 - Martha White, Dale Schuurmans:

Generalized Optimal Reverse Prediction. 1305-1313 - John M. Winn:

Causality with Gates. 1314-1322 - Yu Xin, Tommi S. Jaakkola:

Primal-Dual methods for sparse constrained matrix completion. 1323-1331 - Huan Xu, Constantine Caramanis, Shie Mannor:

Statistical Optimization in High Dimensions. 1332-1340 - Huan Xu, Chenlei Leng:

Robust Multi-task Regression with Grossly Corrupted Observations. 1341-1349 - Yan Yan, Rómer Rosales, Glenn Fung, Faisal Farooq, Bharat Rao, Jennifer G. Dy:

Active Learning from Multiple Knowledge Sources. 1350-1357 - Eunho Yang, Ambuj Tewari, Pradeep Ravikumar:

Perturbation based Large Margin Approach for Ranking. 1358-1366 - Chun-Nam Yu:

Transductive Learning of Structural SVMs via Prior Knowledge Constraints. 1367-1376 - Xiaotong Yuan, Shuicheng Yan:

Forward Basis Selection for Sparse Approximation over Dictionary. 1377-1388 - Hyokun Yun, S. V. N. Vishwanathan:

Quilting Stochastic Kronecker Product Graphs to Generate Multiplicative Attribute Graphs. 1389-1397 - Caoxie Zhang, Honglak Lee, Kang G. Shin:

Efficient Distributed Linear Classification Algorithms via the Alternating Direction Method of Multipliers. 1398-1406 - Yi Zhang, Jeff G. Schneider:

A Composite Likelihood View for Multi-Label Classification. 1407-1415 - Zhihua Zhang, Dakan Wang, Edward Y. Chang:

An Autoregressive Approach to Nonparametric Hierarchical Dependent Modeling. 1416-1424 - Kai Zhang, Liang Lan, Zhuang Wang, Fabian Moerchen:

Scaling up Kernel SVM on Limited Resources: A Low-rank Linearization Approach. 1425-1434 - Tuo Zhao, Han Liu:

Sparse Additive Machine. 1435-1443 - Tianyi Zhou, Dacheng Tao:

Multi-label Subspace Ensemble. 1444-1452 - Guanyu Zhou, Kihyuk Sohn, Honglak Lee:

Online Incremental Feature Learning with Denoising Autoencoders. 1453-1461 - Mingyuan Zhou

, Lauren Hannah, David B. Dunson, Lawrence Carin:
Beta-Negative Binomial Process and Poisson Factor Analysis. 1462-1471 - J. Zico Kolter, Tommi S. Jaakkola:

Approximate Inference in Additive Factorial HMMs with Application to Energy Disaggregation. 1472-1482

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














