


Остановите войну!
for scientists:


default search action
Nature Machine Intelligence, Volume 3
Volume 3, Number 1, January 2021
- Room for improvement. 1
- Anna Jobin, Kingson Man, Antonio Damasio, Georgios Kaissis, Rickmer Braren, Julia Stoyanovich, Jay J. Van Bavel, Tessa V. West, Brent D. Mittelstadt, Jason Eshraghian
, Marta R. Costa-jussà, Asaf Tzachor, Aimun A. B. Jamjoom, Mariarosaria Taddeo, Edoardo Sinibaldi, Yipeng Hu, Miguel A. Luengo-Oroz
:
AI reflections in 2020. 2-8 - Risto Miikkulainen
, Stephanie Forrest:
A biological perspective on evolutionary computation. 9-15 - Daniele Roberto Giacobbe
:
Clinical interpretation of an interpretable prognostic model for patients with COVID-19. 16 - Ye Yuan
, Jorge M. Gonçalves
, Yan Xiao, Hai-Tao Zhang, Hui Xu
, Zhiguo Cao
:
Reply to: Clinical interpretation of an interpretable prognostic model for patients with COVID-19. 17 - Janice L. V. Reeve
, Patrick J. Twomey
:
Consider laboratory aspects in developing patient prediction models. 18 - Li Yan
, Jorge M. Gonçalves
, Hai-Tao Zhang, Shusheng Li
, Ye Yuan
:
Reply to: Consider the laboratory aspects in developing patient prediction models. 19 - Claire Dupuis
, E. De Montmollin, Mathilde Neuville
, B. Mourvillier, S. Ruckly, Jean-François Timsit
:
Limited applicability of a COVID-19 specific mortality prediction rule to the intensive care setting. 20-22 - Marian J. R. Quanjel
, Thijs C. van Holten, Pieternel C. Gunst-van der Vliet
, Jette Wielaard
, Bekir Karakaya, Maaike Söhne, Hazra S. Moeniralam, Jan C. Grutters:
Replication of a mortality prediction model in Dutch patients with COVID-19. 23-24 - Matthew A. Barish
, Siavash Bolourani, Lawrence F. Lau
, Sareen Shah
, Theodoros P. Zanos
:
External validation demonstrates limited clinical utility of the interpretable mortality prediction model for patients with COVID-19. 25-27 - Jorge M. Gonçalves
, Li Yan
, Hai-Tao Zhang, Yang Xiao, Maolin Wang, Yuqi Guo, Chuan Sun, Xiuchuan Tang, Zhiguo Cao
, Shusheng Li
, Hui Xu
, Cheng Cheng, Junyang Jin, Ye Yuan
:
Li Yan et al. reply. 28-32 - Guido C. H. E. de Croon
, Christophe De Wagter
, Tobias Seidl
:
Enhancing optical-flow-based control by learning visual appearance cues for flying robots. 33-41 - Antoine Toisoul
, Jean Kossaifi
, Adrian Bulat
, Georgios Tzimiropoulos, Maja Pantic:
Estimation of continuous valence and arousal levels from faces in naturalistic conditions. 42-50 - Dylan S. Shah
, Joshua P. Powers
, Liana G. Tilton, Sam Kriegman
, Josh C. Bongard, Rebecca Kramer-Bottiglio
:
A soft robot that adapts to environments through shape change. 51-59 - Siyuan Liu
, Kim-Han Thung
, Liangqiong Qu
, Weili Lin, Dinggang Shen, Pew-Thian Yap
:
Learning MRI artefact removal with unpaired data. 60-67 - Ruoqi Liu
, Lai Wei, Ping Zhang
:
A deep learning framework for drug repurposing via emulating clinical trials on real-world patient data. 68-75 - Zhenpeng Yao
, Benjamín Sánchez-Lengeling, N. Scott Bobbitt, Benjamin J. Bucior
, Sai Govind Hari Kumar, Sean P. Collins, Thomas Burns, Tom K. Woo, Omar K. Farha, Randall Q. Snurr
, Alán Aspuru-Guzik
:
Inverse design of nanoporous crystalline reticular materials with deep generative models. 76-86 - Guido Novati
, Hugues Lascombes de Laroussilhe, Petros Koumoutsakos
:
Automating turbulence modelling by multi-agent reinforcement learning. 87-96 - Yong Wang
, Mengqi Ji
, Shengwei Jiang, Xukang Wang
, Jiamin Wu
, Feng Duan, Jingtao Fan, Laiqiang Huang, Shaohua Ma
, Lu Fang
, Qionghai Dai
:
Author Correction: Augmenting vascular disease diagnosis by vasculature-aware unsupervised learning. 97 - Guido Novati
, Hugues Lascombes de Laroussilhe, Petros Koumoutsakos
:
Publisher Correction: Automating turbulence modelling by multi-agent reinforcement learning. 98 - Guido Novati
, Hugues Lascombes de Laroussilhe, Petros Koumoutsakos
:
Publisher Correction: Automating turbulence modelling by multi-agent reinforcement learning. 99
Volume 3, Number 2, February 2021
- Listen to this. 101
- Jonas Boström
:
Transformers for future medicinal chemists. 102-103 - Carina E. A. Prunkl
, Carolyn Ashurst, Markus Anderljung, Helena Webb
, Jan Leike, Allan Dafoe:
Institutionalizing ethics in AI through broader impact requirements. 104-110 - Josh Cowls, Andreas Tsamados, Mariarosaria Taddeo
, Luciano Floridi
:
A definition, benchmark and database of AI for social good initiatives. 111-115 - Daniel Ahmed
, Alexander Sukhov
, David Hauri, Dubon Rodrigue, Gian Maranta, Jens Harting, Bradley J. Nelson
:
Bioinspired acousto-magnetic microswarm robots with upstream motility. 116-124 - Rens van de Schoot
, Jonathan de Bruin
, Raoul Schram, Parisa Zahedi
, Jan de Boer
, Felix Weijdema
, Bianca Kramer
, Martijn Huijts
, Maarten Hoogerwerf
, Gerbrich Ferdinands
, Albert Harkema
, Joukje Willemsen
, Yongchao Ma
, Qixiang Fang
, Sybren Hindriks, Lars Tummers
, Daniel L. Oberski
:
An open source machine learning framework for efficient and transparent systematic reviews. 125-133 - Deepak Baby
, Arthur Van Den Broucke, Sarah Verhulst
:
A convolutional neural-network model of human cochlear mechanics and filter tuning for real-time applications. 134-143 - Philippe Schwaller
, Daniel Probst
, Alain C. Vaucher
, Vishnu H. Nair, David Kreutter, Teodoro Laino, Jean-Louis Reymond
:
Mapping the space of chemical reactions using attention-based neural networks. 144-152 - Shigeyuki Matsumoto
, Shoichi Ishida
, Mitsugu Araki, Takayuki Kato
, Kei Terayama
, Yasushi Okuno
:
Extraction of protein dynamics information from cryo-EM maps using deep learning. 153-160 - Zhengyang Wang
, Yaochen Xie
, Shuiwang Ji
:
Global voxel transformer networks for augmented microscopy. 161-171 - An Zheng
, Michael Lamkin
, Hanqing Zhao, Cynthia Wu
, Hao Su, Melissa Gymrek
:
Deep neural networks identify sequence context features predictive of transcription factor binding. 172-180 - Siyuan Liu
, Kim-Han Thung
, Liangqiong Qu
, Weili Lin, Dinggang Shen, Pew-Thian Yap
:
Publisher Correction: Learning MRI artefact removal with unpaired data. 181 - Itai Orr
, Moshik Cohen, Zeev Zalevsky:
Author Correction: High-resolution radar road segmentation using weakly supervised learning. 182
Volume 3, Number 3, March 2021
- AI, COVID-19 and the long haul. 183
- Hao Su
, Antonio Di Lallo
, Robin R. Murphy, Russell H. Taylor, Brian T. Garibaldi, Axel Krieger
:
Physical human-robot interaction for clinical care in infectious environments. 184-186 - Vidushi Marda
, Shivangi Narayan:
On the importance of ethnographic methods in AI research. 187-189 - Laurel H. Carney
:
Speeding up machine hearing. 190-191 - Irina Higgins
:
Generalizing universal function approximators. 192-193 - Tara J. Hamilton
:
The best of both worlds. 194-195 - Noorul Amin
, Annette McGrath, Yi-Ping Phoebe Chen
:
Reply to: LncADeep performance on full-length transcripts. 196 - Cheng Yang, Man Zhou, Haoling Xie, Huaiqiu Zhu
:
LncADeep performance on full-length transcripts. 197-198 - Michael Roberts
, Derek Driggs, Matthew Thorpe, Julian D. Gilbey
, Michael Yeung
, Stephan Ursprung
, Angelica I. Avilés-Rivero, Christian Etmann, Cathal McCague
, Lucian Beer, Jonathan R. Weir-McCall
, Zhongzhao Teng, Effrossyni Gkrania-Klotsas
, James H. F. Rudd
, Evis Sala
, Carola-Bibiane Schönlieb:
Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. 199-217 - Lu Lu
, Pengzhan Jin
, Guofei Pang, Zhongqiang Zhang
, George Em Karniadakis
:
Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. 218-229 - Christoph Stöckl
, Wolfgang Maass
:
Optimized spiking neurons can classify images with high accuracy through temporal coding with two spikes. 230-238 - Itai Orr
, Moshik Cohen, Zeev Zalevsky:
High-resolution radar road segmentation using weakly supervised learning. 239-246 - Thai-Hoang Pham
, Yue Qiu, Jucheng Zeng, Lei Xie
, Ping Zhang
:
A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to COVID-19 drug repurposing. 247-257 - Peter K. Koo
, Matt Ploenzke:
Improving representations of genomic sequence motifs in convolutional networks with exponential activations. 258-266 - Yoseob Han
, Jaeduck Jang
, Eunju Cha
, Junho Lee
, Hyungjin Chung
, Myoungho Jeong, Tae-Gon Kim, Byeong Gyu Chae, Hee Goo Kim, Shinae Jun, Sungwoo Hwang
, Eunha Lee
, Jong Chul Ye
:
Deep learning STEM-EDX tomography of nanocrystals. 267-274
Volume 3, Number 4, April 2021
- People have the AI power. 275
- Ross D. King
, Oghenejokpeme I. Orhobor, Charles C. Taylor:
Cross-validation is safe to use. 276 - Alejandro A. Franco
:
Escape from flatland. 277-278 - Rohit Bhargava
, Kianoush Falahkheirkhah
:
Enhancing hyperspectral imaging. 279-280 - Daniel J. Gauthier
, Ingo Fischer
:
Predicting hidden structure in dynamical systems. 281-282 - Boris Babic, Sara Gerke
, Theodoros Evgeniou
, I. Glenn Cohen
:
Direct-to-consumer medical machine learning and artificial intelligence applications. 283-287 - Edward Korot
, Zeyu Guan
, Daniel Ferraz, Siegfried K. Wagner, Gongyu Zhang
, Xiaoxuan Liu
, Livia Faes, Nikolas Pontikos
, Samuel G. Finlayson, Hagar Khalid, Gabriella Moraes, Konstantinos Balaskas
, Alastair K. Denniston
, Pearse A. Keane
:
Code-free deep learning for multi-modality medical image classification. 288-298 - Steve Kench
, Samuel J. Cooper
:
Generating three-dimensional structures from a two-dimensional slice with generative adversarial network-based dimensionality expansion. 299-305 - Bryce Manifold
, Shuaiqian Men, Ruoqian Hu, Dan Fu
:
A versatile deep learning architecture for classification and label-free prediction of hyperspectral images. 306-315 - Jason Z. Kim
, Zhixin Lu
, Erfan Nozari
, George J. Pappas
, Danielle S. Bassett
:
Teaching recurrent neural networks to infer global temporal structure from local examples. 316-323 - Donatas Repecka, Vykintas Jauniskis
, Laurynas Karpus
, Elzbieta Rembeza
, Irmantas Rokaitis, Jan Zrimec
, Simona Poviloniene, Audrius Laurynenas
, Sandra Viknander
, Wissam Abuajwa, Otto Savolainen, Rolandas Meskys, Martin K. M. Engqvist
, Aleksej Zelezniak
:
Expanding functional protein sequence spaces using generative adversarial networks. 324-333 - Wan Xiang Shen
, Xian Zeng
, Feng Zhu
, Ya li Wang, Chu Qin, Ying Tan
, Yu Yang Jiang
, Yu Zong Chen
:
Out-of-the-box deep learning prediction of pharmaceutical properties by broadly learned knowledge-based molecular representations. 334-343 - Lauri Salmela
, Nikolaos Tsipinakis, Alessandro Foi, Cyril Billet, John M. Dudley
, Goëry Genty
:
Predicting ultrafast nonlinear dynamics in fibre optics with a recurrent neural network. 344-354 - Alexander Binder
, Michael Bockmayr
, Miriam Hägele, Stephan Wienert, Daniel Heim, Katharina Hellweg, Masaru Ishii, Albrecht Stenzinger, Andreas Hocke, Carsten Denkert
, Klaus-Robert Müller, Frederick Klauschen
:
Morphological and molecular breast cancer profiling through explainable machine learning. 355-366
Volume 3, Number 5, May 2021
- How to be responsible in AI publication. 367
- Eduard Fosch-Villaronga
, Pranav Khanna, Hadassah Drukarch, Bart H. M. Custers
:
A human in the loop in surgery automation. 368-369 - Liesbeth Venema:
Defining a role for AI ethics in national security. 370-371 - Yi Zhang
, Yang Liu, X. Shirley Liu
:
Neural network architecture search with AMBER. 372-373 - Shangying Wang
, Simone Bianco
:
Linking the length scales. 374-375 - Marta R. Costa-jussà
:
Towards universal translation. 376-377 - Partha P. Mitra
:
Fitting elephants in modern machine learning by statistically consistent interpolation. 378-386 - Ugur Tegin
, Niyazi Ulas Dinç
, Christophe Moser
, Demetri Psaltis:
Reusability report: Predicting spatiotemporal nonlinear dynamics in multimode fibre optics with a recurrent neural network. 387-391 - Zijun Zhang
, Christopher Y. Park, Chandra L. Theesfeld, Olga G. Troyanskaya
:
An automated framework for efficiently designing deep convolutional neural networks in genomics. 392-400 - Harsh Bhatia
, Timothy S. Carpenter
, Helgi I. Ingólfsson
, Gautham Dharuman
, Piyush Karande
, Shusen Liu, Tomas Oppelstrup
, Chris Neale, Felice C. Lightstone
, Brian Van Essen, James N. Glosli
, Peer-Timo Bremer
:
Machine-learning-based dynamic-importance sampling for adaptive multiscale simulations. 401-409 - Tønnes F. Nygaard
, Charles P. Martin
, Jim Tørresen, Kyrre Glette
, David Howard:
Real-world embodied AI through a morphologically adaptive quadruped robot. 410-419 - Rui Qiao
, Ngoc Hieu Tran
, Lei Xin
, Xin Chen, Ming Li
, Baozhen Shan
, Ali Ghodsi
:
Computationally instrument-resolution-independent de novo peptide sequencing for high-resolution devices. 420-425 - Zixuan Song, Jun Li
:
Variable selection with false discovery rate control in deep neural networks. 426-433 - Takuya Isomura
, Taro Toyoizumi
:
Dimensionality reduction to maximize prediction generalization capability. 434-446 - Darius Roman
, Saurabh Saxena, Valentin Robu
, Michael G. Pecht, David Flynn
:
Machine learning pipeline for battery state-of-health estimation. 447-456 - Takuya Isomura
, Taro Toyoizumi
:
Publisher Correction: Dimensionality reduction to maximize prediction generalization capability. 457
Volume 3, Number 6, June 2021
- Collaborative learning without sharing data. 459
- Supriya Kapur
:
Reducing racial bias in AI models for clinical use requires a top-down intervention. 460 - Abubakar Abid
, Maheen Farooqi, James Zou
:
Large language models associate Muslims with violence. 461-463 - Ania Korsunska
, David C. Fajgenbaum:
Back to the future with machine learning. 464-465 - Silvia Milano
, Brent D. Mittelstadt
, Sandra Wachter, Christopher Russell
:
Epistemic fragmentation poses a threat to the governance of online targeting. 466-472 - Georgios Kaissis
, Alexander Ziller
, Jonathan Passerat-Palmbach
, Théo Ryffel
, Dmitrii Usynin
, Andrew Trask, Ionésio Lima, Jason Mancuso, Friederike Jungmann
, Marc-Matthias Steinborn
, Andreas Saleh, Marcus R. Makowski, Daniel Rueckert, Rickmer Braren
:
End-to-end privacy preserving deep learning on multi-institutional medical imaging. 473-484 - Alessandra Toniato
, Philippe Schwaller
, Antonio Cardinale, Joppe Geluykens, Teodoro Laino:
Unassisted noise reduction of chemical reaction datasets. 485-494 - Biagio Brattoli, Uta Büchler
, Michael Dorkenwald, Philipp Reiser
, Linard Filli
, Fritjof Helmchen
, Anna-Sophia Wahl, Björn Ommer
:
Unsupervised behaviour analysis and magnification (uBAM) using deep learning. 495-506 - Xiaoyan Yin
, Rolf Müller
:
Integration of deep learning and soft robotics for a biomimetic approach to nonlinear sensing. 507-512 - Roman Schulte-Sasse
, Stefan Budach, Denes Hnisz
, Annalisa Marsico
:
Integration of multiomics data with graph convolutional networks to identify new cancer genes and their associated molecular mechanisms. 513-526 - Govinda B. Kc
, Giovanni Bocci
, Srijan Verma, Md Mahmudulla Hassan
, Jayme Holmes, Jeremy J. Yang, Suman Sirimulla
, Tudor I. Oprea
:
A machine learning platform to estimate anti-SARS-CoV-2 activities. 527-535 - Qiao Liu
, Shengquan Chen
, Rui Jiang
, Wing Hung Wong
:
Simultaneous deep generative modelling and clustering of single-cell genomic data. 536-544 - Enrica Soria
, Fabrizio Schiano, Dario Floreano
:
Predictive control of aerial swarms in cluttered environments. 545-554
Volume 3, Number 7, July 2021
- AI on the beach. 555
- Zachary S. Ballard, Calvin Brown, Asad M. Madni, Aydogan Ozcan
:
Machine learning and computation-enabled intelligent sensor design. 556-565 - Gregory Falco
, Ben Shneiderman, Julia Badger, Ryan Carrier, Anton Dahbura, David Danks, Martin Eling, Alwyn Goodloe, Jerry Gupta, Christopher Hart, Marina Jirotka
, Henric Johnson, Cara Lapointe, Ashley J. Llorens, Alan K. Mackworth
, Carsten Maple, Sigurður Emil Pálsson, Frank Pasquale, Alan F. T. Winfield
, Zee Kin Yeong:
Governing AI safety through independent audits. 566-571 - Jon Paul Janet
, Anna Tomberg, Jonas Boström
:
Reusability report: Learning the language of synthetic methods used in medicinal chemistry. 572-575 - Yijun Bao
, Somayyeh Soltanian-Zadeh
, Sina Farsiu
, Yiyang Gong
:
Segmentation of neurons from fluorescence calcium recordings beyond real time. 590-600 - Jinbo Xu
, Matthew McPartlon, Jin Li:
Improved protein structure prediction by deep learning irrespective of co-evolution information. 601-609 - Alex J. DeGrave
, Joseph D. Janizek
, Su-In Lee
:
AI for radiographic COVID-19 detection selects shortcuts over signal. 610-619 - Gabriel G. Erion
, Joseph D. Janizek, Pascal Sturmfels, Scott M. Lundberg, Su-In Lee
:
Improving performance of deep learning models with axiomatic attribution priors and expected gradients. 620-631 - Brodie Fischbacher
, Sarita Hedaya
, Brigham J. Hartley, Zhongwei Wang, Gregory Lallos, Dillion Hutson, Matthew Zimmer, Jacob Brammer, Daniel Paull
:
Modular deep learning enables automated identification of monoclonal cell lines. 632-640 - Christian Lagemann
, Kai Lagemann, Sach Mukherjee, Wolfgang Schröder:
Deep recurrent optical flow learning for particle image velocimetry data. 641-651 - Ania Korsunska
, David C. Fajgenbaum:
Publisher Correction: Back to the future with machine learning. 652
Volume 3, Number 8, August 2021
- Striving for health equity with machine learning. 653
- Ashley Nunes, Kay W. Axhausen
:
Road safety, health inequity and the imminence of autonomous vehicles. 654-655 - David Rousseau
:
Resource-efficient inference for particle physics. 656-657 - David C. Parkes
:
Playing with symmetry with neural networks. 658 - Vishwali Mhasawade, Yuan Zhao, Rumi Chunara
:
Machine learning and algorithmic fairness in public and population health. 659-666 - Christopher Irrgang
, Niklas Boers, Maike Sonnewald, Elizabeth A. Barnes, Christopher Kadow, Joanna Staneva, Jan Saynisch-Wagner
:
Towards neural Earth system modelling by integrating artificial intelligence in Earth system science. 667-674 - Claudionor José Nunes Coelho Jr., Aki Kuusela, Shan Li, Hao Zhuang, Jennifer Ngadiuba
, Thea Klaeboe Aarrestad
, Vladimir Loncar, Maurizio Pierini, Adrian Alan Pol
, Sioni Summers:
Automatic heterogeneous quantization of deep neural networks for low-latency inference on the edge for particle detectors. 675-686 - Martin Bichler
, Maximilian Fichtl, Stefan Heidekrüger
, Nils Kohring, Paul Sutterer:
Learning equilibria in symmetric auction games using artificial neural networks. 687-695 - James Lu
, Brendan Bender, Jin Y. Jin, Yuanfang Guan
:
Deep learning prediction of patient response time course from early data via neural-pharmacokinetic/pharmacodynamic modelling. 696-704 - Lukas M. Simon
, Yin-Ying Wang, Zhongming Zhao
:
Integration of millions of transcriptomes using batch-aware triplet neural networks. 705-715