default search action
Georgios Kaissis
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2025
- [j22]Philip Müller, Felix Meissen, Georgios Kaissis, Daniel Rueckert:
Weakly Supervised Object Detection in Chest X-Rays With Differentiable ROI Proposal Networks and Soft ROI Pooling. IEEE Trans. Medical Imaging 44(1): 221-231 (2025) - 2024
- [j21]Tamara T. Mueller, Dmitrii Usynin, Johannes C. Paetzold, Rickmer Braren, Daniel Rueckert, Georgios Kaissis:
Differentially Private Guarantees for Analytics and Machine Learning on Graphs: A Survey of Results. J. Priv. Confidentiality 14(1) (2024) - [j20]Daniel Truhn, Soroosh Tayebi Arasteh, Oliver Lester Saldanha, Gustav Müller-Franzes, Firas Khader, Philip Quirke, Nicholas P. West, Richard Gray, Gordon G. A. Hutchins, Jacqueline A. James, Maurice B. Loughrey, Manuel Salto-Tellez, Hermann Brenner, Alexander Brobeil, Tanwei Yuan, Jenny Chang-Claude, Michael Hoffmeister, Sebastian Foersch, Tianyu Han, Sebastian Keil, Maximilian Schulze-Hagen, Peter Isfort, Philipp Bruners, Georgios Kaissis, Christiane Kuhl, Sven Nebelung, Jakob Nikolas Kather:
Encrypted federated learning for secure decentralized collaboration in cancer image analysis. Medical Image Anal. 92: 103059 (2024) - [j19]Marieke A. R. Bak, Vince I. Madai, Leo Anthony Celi, Georgios Kaissis, Ronald Cornet, Menno Maris, Daniel Rueckert, Alena Buyx, Stuart McLennan:
Federated learning is not a cure-all for data ethics. Nat. Mac. Intell. 6(4): 370-372 (2024) - [j18]Alexander Ziller, Tamara T. Mueller, Simon Stieger, Leonhard F. Feiner, Johannes Brandt, Rickmer Braren, Daniel Rueckert, Georgios Kaissis:
Reconciling privacy and accuracy in AI for medical imaging. Nat. Mac. Intell. 6(7): 764-774 (2024) - [j17]Ioannis Lagogiannis, Felix Meissen, Georgios Kaissis, Daniel Rueckert:
Unsupervised Pathology Detection: A Deep Dive Into the State of the Art. IEEE Trans. Medical Imaging 43(1): 241-252 (2024) - [j16]Tamara T. Mueller, Sophie Starck, Alina Dima, Stephan Wunderlich, Kyriaki-Margarita Bintsi, Kamilia Zaripova, Rickmer Braren, Daniel Rueckert, Anees Kazi, Georgios Kaissis:
A Survey on Graph Construction for Geometric Deep Learning in Medicine: Methods and Recommendations. Trans. Mach. Learn. Res. 2024 (2024) - [j15]Tamara T. Müller, Sophie Starck, Kyriaki-Margarita Bintsi, Alexander Ziller, Rickmer Braren, Georgios Kaissis, Daniel Rueckert:
Are Population Graphs Really as Powerful as Believed? Trans. Mach. Learn. Res. 2024 (2024) - [j14]Reza Nasirigerdeh, Reihaneh Torkzadehmahani, Daniel Rueckert, Georgios Kaissis:
Kernel Normalized Convolutional Networks. Trans. Mach. Learn. Res. 2024 (2024) - [c34]Philip Müller, Georgios Kaissis, Daniel Rueckert:
ChEX: Interactive Localization and Region Description in Chest X-Rays. ECCV (21) 2024: 92-111 - [c33]Dmitrii Usynin, Daniel Rueckert, Georgios Kaissis:
Incentivising the federation: gradient-based metrics for data selection and valuation in private decentralised training. EICC 2024: 179-185 - [c32]Georgios Kaissis, Stefan Kolek, Borja Balle, Jamie Hayes, Daniel Rueckert:
Beyond the Calibration Point: Mechanism Comparison in Differential Privacy. ICML 2024 - [c31]Tamara T. Mueller, Maulik Chevli, Ameya Daigavane, Daniel Rueckert, Georgios Kaissis:
Differentially Private Graph Neural Networks for Medical Population Graphs and The Impact of The Graph Structure. ISBI 2024: 1-5 - [c30]Philipp Kaess, Alexander Ziller, Lea Mantz, Daniel Rueckert, Florian J. Fintelmann, Georgios Kaissis:
Fair and Private CT Contrast Agent Detection. FAIMI/EPIMI@MICCAI 2024: 34-45 - [c29]Deniz Daum, Richard Osuala, Anneliese Riess, Georgios Kaissis, Julia A. Schnabel, Maxime Di Folco:
On Differentially Private 3D Medical Image Synthesis with Controllable Latent Diffusion Models. DGM4MICCAI@MICCAI 2024: 139-149 - [i72]Philip Müller, Felix Meissen, Georgios Kaissis, Daniel Rueckert:
Weakly Supervised Object Detection in Chest X-Rays with Differentiable ROI Proposal Networks and Soft ROI Pooling. CoRR abs/2402.11985 (2024) - [i71]Alexander Ziller, Anneliese Riess, Kristian Schwethelm, Tamara T. Mueller, Daniel Rueckert, Georgios Kaissis:
Bounding Reconstruction Attack Success of Adversaries Without Data Priors. CoRR abs/2402.12861 (2024) - [i70]Alexander H. Berger, Laurin Lux, Suprosanna Shit, Ivan Ezhov, Georgios Kaissis, Martin J. Menten, Daniel Rueckert, Johannes C. Paetzold:
Cross-domain and Cross-dimension Learning for Image-to-Graph Transformers. CoRR abs/2403.06601 (2024) - [i69]Kristian Schwethelm, Johannes Kaiser, Moritz Knolle, Daniel Rueckert, Georgios Kaissis, Alexander Ziller:
Visual Privacy Auditing with Diffusion Models. CoRR abs/2403.07588 (2024) - [i68]Philip Müller, Georgios Kaissis, Daniel Rueckert:
ChEX: Interactive Localization and Region Description in Chest X-rays. CoRR abs/2404.15770 (2024) - [i67]Georgios Kaissis, Stefan Kolek, Borja Balle, Jamie Hayes, Daniel Rueckert:
Beyond the Calibration Point: Mechanism Comparison in Differential Privacy. CoRR abs/2406.08918 (2024) - [i66]Bogdan Kulynych, Juan Felipe Gómez, Georgios Kaissis, Flávio du Pin Calmon, Carmela Troncoso:
Attack-Aware Noise Calibration for Differential Privacy. CoRR abs/2407.02191 (2024) - [i65]Reza Nasirigerdeh, Nader Razmi, Julia A. Schnabel, Daniel Rueckert, Georgios Kaissis:
Machine Unlearning for Medical Imaging. CoRR abs/2407.07539 (2024) - [i64]Richard Osuala, Daniel M. Lang, Anneliese Riess, Georgios Kaissis, Zuzanna Szafranowska, Grzegorz Skorupko, Oliver Díaz, Julia A. Schnabel, Karim Lekadir:
Enhancing the Utility of Privacy-Preserving Cancer Classification using Synthetic Data. CoRR abs/2407.12669 (2024) - [i63]Deniz Daum, Richard Osuala, Anneliese Riess, Georgios Kaissis, Julia A. Schnabel, Maxime Di Folco:
On Differentially Private 3D Medical Image Synthesis with Controllable Latent Diffusion Models. CoRR abs/2407.16405 (2024) - [i62]Kristian Schwethelm, Johannes Kaiser, Jonas Kuntzer, Mehmet Yigitsoy, Daniel Rueckert, Georgios Kaissis:
Differentially Private Active Learning: Balancing Effective Data Selection and Privacy. CoRR abs/2410.00542 (2024) - [i61]Reihaneh Torkzadehmahani, Reza Nasirigerdeh, Georgios Kaissis, Daniel Rueckert, Gintare Karolina Dziugaite, Eleni Triantafillou:
Improved Localized Machine Unlearning Through the Lens of Memorization. CoRR abs/2412.02432 (2024) - 2023
- [j13]Patrick Bilic, Patrick Ferdinand Christ, Hongwei Li, Eugene Vorontsov, Avi Ben-Cohen, Georgios Kaissis, Adi Szeskin, Colin Jacobs, Gabriel Efrain Humpire Mamani, Gabriel Chartrand, Fabian Lohöfer, Julian Walter Holch, Wieland H. Sommer, Felix Hofmann, Alexandre Hostettler, Naama Lev-Cohain, Michal Drozdzal, Michal Marianne Amitai, Refael Vivanti, Jacob Sosna, Ivan Ezhov, Anjany Sekuboyina, Fernando Navarro, Florian Kofler, Johannes C. Paetzold, Suprosanna Shit, Xiaobin Hu, Jana Lipková, Markus Rempfler, Marie Piraud, Jan Kirschke, Benedikt Wiestler, Zhiheng Zhang, Christian Hülsemeyer, Marcel Beetz, Florian Ettlinger, Michela Antonelli, Woong Bae, Miriam Bellver, Lei Bi, Hao Chen, Grzegorz Chlebus, Erik B. Dam, Qi Dou, Chi-Wing Fu, Bogdan Georgescu, Xavier Giró-i-Nieto, Felix Grün, Xu Han, Pheng-Ann Heng, Jürgen Hesser, Jan Hendrik Moltz, Christian Igel, Fabian Isensee, Paul Jäger, Fucang Jia, Krishna Chaitanya Kaluva, Mahendra Khened, Ildoo Kim, Jae-Hun Kim, Sungwoong Kim, Simon Kohl, Tomasz K. Konopczynski, Avinash Kori, Ganapathy Krishnamurthi, Fan Li, Hongchao Li, Junbo Li, Xiaomeng Li, John S. Lowengrub, Jun Ma, Klaus H. Maier-Hein, Kevis-Kokitsi Maninis, Hans Meine, Dorit Merhof, Akshay Pai, Mathias Perslev, Jens Petersen, Jordi Pont-Tuset, Jin Qi, Xiaojuan Qi, Oliver Rippel, Karsten Roth, Ignacio Sarasua, Andrea Schenk, Zengming Shen, Jordi Torres, Christian Wachinger, Chunliang Wang, Leon Weninger, Jianrong Wu, Daguang Xu, Xiaoping Yang, Simon Chun-Ho Yu, Yading Yuan, Miao Yue, Liping Zhang, Manuel Jorge Cardoso, Spyridon Bakas, Rickmer Braren, Volker Heinemann, Christopher Pal, An Tang, Samuel Kadoury, Luc Soler, Bram van Ginneken, Hayit Greenspan, Leo Joskowicz, Bjoern H. Menze:
The Liver Tumor Segmentation Benchmark (LiTS). Medical Image Anal. 84: 102680 (2023) - [j12]Tamara T. Mueller, Johannes C. Paetzold, Chinmay Prabhakar, Dmitrii Usynin, Daniel Rueckert, Georgios Kaissis:
Differentially Private Graph Neural Networks for Whole-Graph Classification. IEEE Trans. Pattern Anal. Mach. Intell. 45(6): 7308-7318 (2023) - [j11]Dmitrii Usynin, Daniel Rueckert, Georgios Kaissis:
Beyond Gradients: Exploiting Adversarial Priors in Model Inversion Attacks. ACM Trans. Priv. Secur. 26(3): 38:1-38:30 (2023) - [j10]Reihaneh Torkzadehmahani, Reza Nasirigerdeh, Daniel Rueckert, Georgios Kaissis:
Label Noise-Robust Learning using a Confidence-Based Sieving Strategy. Trans. Mach. Learn. Res. 2023 (2023) - [c28]Florian A. Hölzl, Daniel Rueckert, Georgios Kaissis:
Equivariant Differentially Private Deep Learning: Why DP-SGD Needs Sparser Models. AISec@CCS 2023: 11-22 - [c27]Tomás Chobola, Dmitrii Usynin, Georgios Kaissis:
Membership Inference Attacks Against Semantic Segmentation Models. AISec@CCS 2023: 43-53 - [c26]Reza Nasirigerdeh, Daniel Rueckert, Georgios Kaissis:
Utility-preserving Federated Learning. AISec@CCS 2023: 55-65 - [c25]Tim Tanida, Philip Müller, Georgios Kaissis, Daniel Rueckert:
Interactive and Explainable Region-guided Radiology Report Generation. CVPR 2023: 7433-7442 - [c24]Alexander Ziller, Ayhan Can Erdur, Friederike Jungmann, Daniel Rueckert, Rickmer Braren, Georgios Kaissis:
Exploiting Segmentation Labels and Representation Learning to Forecast Therapy Response of PDAC Patients. ISBI 2023: 1-5 - [c23]Leonhard F. Feiner, Martin J. Menten, Kerstin Hammernik, Paul Hager, Wenqi Huang, Daniel Rueckert, Rickmer F. Braren, Georgios Kaissis:
Propagation and Attribution of Uncertainty in Medical Imaging Pipelines. UNSURE@MICCAI 2023: 1-11 - [c22]Tamara T. Mueller, Sophie Starck, Leonhard F. Feiner, Kyriaki-Margarita Bintsi, Daniel Rueckert, Georgios Kaissis:
Extended Graph Assessment Metrics for Regression and Weighted Graphs. GRAIL/OCELOT@MICCAI 2023: 14-26 - [c21]Philip Müller, Felix Meissen, Johannes Brandt, Georgios Kaissis, Daniel Rueckert:
Anatomy-Driven Pathology Detection on Chest X-rays. MICCAI (1) 2023: 57-66 - [c20]David Bani-Harouni, Tamara T. Mueller, Daniel Rueckert, Georgios Kaissis:
Gradient Self-alignment in Private Deep Learning. ISIC/Care-AI/MedAGI/DeCaF@MICCAI 2023: 89-97 - [c19]Tamara T. Mueller, Siyu Zhou, Sophie Starck, Friederike Jungmann, Alexander Ziller, Orhun Aksoy, Danylo Movchan, Rickmer Braren, Georgios Kaissis, Daniel Rueckert:
Body Fat Estimation from Surface Meshes Using Graph Neural Networks. ShapeMI@MICCAI 2023: 105-117 - [c18]Vasiliki Sideri-Lampretsa, Veronika A. Zimmer, Huaqi Qiu, Georgios Kaissis, Daniel Rueckert:
MAD: Modality Agnostic Distance Measure for Image Registration. MTSAIL/LEAF/AI4Treat/MMMI/REMIA@MICCAI 2023: 147-156 - [c17]Felix Meissen, Philip Müller, Georgios Kaissis, Daniel Rueckert:
Robust Detection Outcome: A Metric for Pathology Detection in Medical Images. MIDL 2023: 568-585 - [c16]Georgios Kaissis, Alexander Ziller, Stefan Kolek, Anneliese Riess, Daniel Rueckert:
Optimal privacy guarantees for a relaxed threat model: Addressing sub-optimal adversaries in differentially private machine learning. NeurIPS 2023 - [c15]Reza Nasirigerdeh, Javad Torkzadehmahani, Daniel Rueckert, Georgios Kaissis:
Kernel Normalized Convolutional Networks for Privacy-Preserving Machine Learning. SaTML 2023: 107-118 - [p1]Daniel Rueckert, Moritz Knolle, Nicolas Duchateau, Reza Razavi, Georgios Kaissis:
Diagnosis. AI and Big Data in Cardiology 2023: 85-103 - [i60]Florian A. Hölzl, Daniel Rueckert, Georgios Kaissis:
Equivariant Differentially Private Deep Learning. CoRR abs/2301.13104 (2023) - [i59]Soroosh Tayebi Arasteh, Alexander Ziller, Christiane Kuhl, Marcus R. Makowski, Sven Nebelung, Rickmer Braren, Daniel Rueckert, Daniel Truhn, Georgios Kaissis:
Private, fair and accurate: Training large-scale, privacy-preserving AI models in radiology. CoRR abs/2302.01622 (2023) - [i58]Ioannis Lagogiannis, Felix Meissen, Georgios Kaissis, Daniel Rueckert:
Unsupervised Pathology Detection: A Deep Dive Into the State of the Art. CoRR abs/2303.00609 (2023) - [i57]Felix Meissen, Philip Müller, Georgios Kaissis, Daniel Rueckert:
Robust Detection Outcome: A Metric for Pathology Detection in Medical Images. CoRR abs/2303.01920 (2023) - [i56]Tim Tanida, Philip Müller, Georgios Kaissis, Daniel Rueckert:
Interactive and Explainable Region-guided Radiology Report Generation. CoRR abs/2304.08295 (2023) - [i55]Dmitrii Usynin, Daniel Rueckert, Georgios Kaissis:
Leveraging gradient-derived metrics for data selection and valuation in differentially private training. CoRR abs/2305.02942 (2023) - [i54]Soroosh Tayebi Arasteh, Mahshad Lotfinia, Teresa Nolte, Marwin Saehn, Peter Isfort, Christiane Kuhl, Sven Nebelung, Georgios Kaissis, Daniel Truhn:
Preserving privacy in domain transfer of medical AI models comes at no performance costs: The integral role of differential privacy. CoRR abs/2306.06503 (2023) - [i53]Georgios Kaissis, Jamie Hayes, Alexander Ziller, Daniel Rueckert:
Bounding data reconstruction attacks with the hypothesis testing interpretation of differential privacy. CoRR abs/2307.03928 (2023) - [i52]Alexander Ziller, Alp Güvenir, Ayhan Can Erdur, Tamara T. Mueller, Philip Müller, Friederike Jungmann, Johannes Brandt, Jan Peeken, Rickmer Braren, Daniel Rueckert, Georgios Kaissis:
Explainable 2D Vision Models for 3D Medical Data. CoRR abs/2307.06614 (2023) - [i51]Tamara T. Mueller, Maulik Chevli, Ameya Daigavane, Daniel Rueckert, Georgios Kaissis:
Privacy-Utility Trade-offs in Neural Networks for Medical Population Graphs: Insights from Differential Privacy and Graph Structure. CoRR abs/2307.06760 (2023) - [i50]Tamara T. Mueller, Sophie Starck, Leonhard F. Feiner, Kyriaki-Margarita Bintsi, Daniel Rueckert, Georgios Kaissis:
Extended Graph Assessment Metrics for Graph Neural Networks. CoRR abs/2307.10112 (2023) - [i49]Tamara T. Mueller, Siyu Zhou, Sophie Starck, Friederike Jungmann, Alexander Ziller, Orhun Aksoy, Danylo Movchan, Rickmer Braren, Georgios Kaissis, Daniel Rueckert:
Body Fat Estimation from Surface Meshes using Graph Neural Networks. CoRR abs/2308.02493 (2023) - [i48]Moritz Knolle, Robert Dorfman, Alexander Ziller, Daniel Rueckert, Georgios Kaissis:
Bias-Aware Minimisation: Understanding and Mitigating Estimator Bias in Private SGD. CoRR abs/2308.12018 (2023) - [i47]Philip Müller, Felix Meissen, Johannes Brandt, Georgios Kaissis, Daniel Rueckert:
Anatomy-Driven Pathology Detection on Chest X-rays. CoRR abs/2309.02578 (2023) - [i46]Vasiliki Sideri-Lampretsa, Veronika A. Zimmer, Huaqi Qiu, Georgios Kaissis, Daniel Rueckert:
MAD: Modality Agnostic Distance Measure for Image Registration. CoRR abs/2309.02875 (2023) - [i45]Karim Lekadir, Aasa Feragen, Abdul Joseph Fofanah, Alejandro F. Frangi, Alena Buyx, Anais Emelie, Andrea Lara, Antonio R. Porras, An-Wen Chan, Arcadi Navarro, Ben Glocker, Benard Ohene Botwe, Bishesh Khanal, Brigit Beger, Carol C. Wu, Celia Cintas, Curtis P. Langlotz, Daniel Rueckert, Deogratias Mzurikwao, Dimitrios I. Fotiadis, Doszhan Zhussupov, Enzo Ferrante, Erik Meijering, Eva Weicken, Fabio A. González, Folkert W. Asselbergs, Fred W. Prior, Gabriel P. Krestin, Gary S. Collins, Geletaw Sahle Tegenaw, Georgios Kaissis, Gianluca Misuraca, Gianna Tsakou, Girish Dwivedi, Haridimos Kondylakis, Harsha Jayakody, Henry C. Woodruff, Hugo J. W. L. Aerts, Ian Walsh, Ioanna Chouvarda, Irène Buvat, Islem Rekik, James S. Duncan, Jayashree Kalpathy-Cramer, Jihad Zahir, Jinah Park, John Mongan, Judy W. Gichoya, Julia A. Schnabel, et al.:
FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare. CoRR abs/2309.12325 (2023) - [i44]Felix Meissen, Svenja Breuer, Moritz Knolle, Alena Buyx, Ruth Müller, Georgios Kaissis, Benedikt Wiestler, Daniel Rueckert:
(Predictable) Performance Bias in Unsupervised Anomaly Detection. CoRR abs/2309.14198 (2023) - [i43]Leonhard F. Feiner, Martin J. Menten, Kerstin Hammernik, Paul Hager, Wenqi Huang, Daniel Rueckert, Rickmer F. Braren, Georgios Kaissis:
Propagation and Attribution of Uncertainty in Medical Imaging Pipelines. CoRR abs/2309.16831 (2023) - [i42]Dmitrii Usynin, Moritz Knolle, Georgios Kaissis:
SoK: Memorisation in machine learning. CoRR abs/2311.03075 (2023) - [i41]Felix Meissen, Johannes Getzner, Alexander Ziller, Georgios Kaissis, Daniel Rueckert:
How Low Can You Go? Surfacing Prototypical In-Distribution Samples for Unsupervised Anomaly Detection. CoRR abs/2312.03804 (2023) - [i40]Alexander Ziller, Tamara T. Mueller, Simon Stieger, Leonhard F. Feiner, Johannes Brandt, Rickmer Braren, Daniel Rueckert, Georgios Kaissis:
Reconciling AI Performance and Data Reconstruction Resilience for Medical Imaging. CoRR abs/2312.04590 (2023) - 2022
- [j9]Alexander Ziller, Tamara T. Mueller, Rickmer Braren, Daniel Rueckert, Georgios Kaissis:
Privacy: An Axiomatic Approach. Entropy 24(5): 714 (2022) - [j8]Georgios Kaissis, Moritz Knolle, Friederike Jungmann, Alexander Ziller, Dmitrii Usynin, Daniel Rueckert:
Unified Interpretation of the Gaussian Mechanism for Differential Privacy Through the Sensitivity Index. J. Priv. Confidentiality 12(1) (2022) - [j7]Qi Dou, Tiffany Y. So, Meirui Jiang, Quande Liu, Varut Vardhanabhuti, Georgios Kaissis, Zeju Li, Weixin Si, Heather H. C. Lee, Kevin Yu, Zuxin Feng, Li Dong, Egon Burian, Friederike Jungmann, Rickmer Braren, Marcus R. Makowski, Bernhard Kainz, Daniel Rueckert, Ben Glocker, Simon C. H. Yu, Pheng-Ann Heng:
Author Correction: Federated deep learning for detecting COVID-19 lung abnormalities in CT: a privacy-preserving multinational validation study. npj Digit. Medicine 5 (2022) - [j6]Dmitrii Usynin, Daniel Rueckert, Jonathan Passerat-Palmbach, Georgios Kaissis:
Zen and the art of model adaptation: Low-utility-cost attack mitigations in collaborative machine learning. Proc. Priv. Enhancing Technol. 2022(1): 274-290 (2022) - [c14]Felix Meissen, Johannes C. Paetzold, Georgios Kaissis, Daniel Rueckert:
Unsupervised Anomaly Localization with Structural Feature-Autoencoders. BrainLes@MICCAI 2022: 14-24 - [c13]Suprosanna Shit, Rajat Koner, Bastian Wittmann, Johannes C. Paetzold, Ivan Ezhov, Hongwei Li, Jiazhen Pan, Sahand Sharifzadeh, Georgios Kaissis, Volker Tresp, Bjoern H. Menze:
Relationformer: A Unified Framework for Image-to-Graph Generation. ECCV (37) 2022: 422-439 - [c12]Philip Müller, Georgios Kaissis, Congyu Zou, Daniel Rueckert:
Joint Learning of Localized Representations from Medical Images and Reports. ECCV (26) 2022: 685-701 - [c11]Vasiliki Sideri-Lampretsa, Georgios Kaissis, Daniel Rueckert:
Multi-Modal Unsupervised Brain Image Registration Using Edge Maps. ISBI 2022: 1-5 - [c10]Dmitrii Usynin, Helena Klause, Johannes C. Paetzold, Daniel Rueckert, Georgios Kaissis:
Can Collaborative Learning Be Private, Robust and Scalable? DeCaF/FAIR@MICCAI 2022: 37-46 - [c9]Philip Müller, Georgios Kaissis, Congyu Zou, Daniel Rueckert:
Radiological Reports Improve Pre-training for Localized Imaging Tasks on Chest X-Rays. MICCAI (5) 2022: 647-657 - [c8]Felix Meissen, Benedikt Wiestler, Georgios Kaissis, Daniel Rueckert:
On the Pitfalls of Using the Residual Error as Anomaly Score. MIDL 2022: 914-928 - [i39]Felix Meissen, Georgios Kaissis, Daniel Rueckert:
AutoSeg - Steering the Inductive Biases for Automatic Pathology Segmentation. CoRR abs/2201.09579 (2022) - [i38]Tamara T. Mueller, Johannes C. Paetzold, Chinmay Prabhakar, Dmitrii Usynin, Daniel Rueckert, Georgios Kaissis:
Differentially Private Graph Classification with GNNs. CoRR abs/2202.02575 (2022) - [i37]Felix Meissen, Benedikt Wiestler, Georgios Kaissis, Daniel Rueckert:
On the Pitfalls of Using the Residual Error as Anomaly Score. CoRR abs/2202.03826 (2022) - [i36]Vasiliki Sideri-Lampretsa, Georgios Kaissis, Daniel Rueckert:
Multi-modal unsupervised brain image registration using edge maps. CoRR abs/2202.04647 (2022) - [i35]Helena Klause, Alexander Ziller, Daniel Rueckert, Kerstin Hammernik, Georgios Kaissis:
Differentially private training of residual networks with scale normalisation. CoRR abs/2203.00324 (2022) - [i34]Dmitrii Usynin, Daniel Rueckert, Georgios Kaissis:
Beyond Gradients: Exploiting Adversarial Priors in Model Inversion Attacks. CoRR abs/2203.00481 (2022) - [i33]Tamara T. Mueller, Dmitrii Usynin, Johannes C. Paetzold, Daniel Rueckert, Georgios Kaissis:
SoK: Differential Privacy on Graph-Structured Data. CoRR abs/2203.09205 (2022) - [i32]Suprosanna Shit, Rajat Koner, Bastian Wittmann, Johannes C. Paetzold, Ivan Ezhov, Hongwei Li, Jiazhen Pan, Sahand Sharifzadeh, Georgios Kaissis, Volker Tresp, Bjoern H. Menze:
Relationformer: A Unified Framework for Image-to-Graph Generation. CoRR abs/2203.10202 (2022) - [i31]Alexander Ziller, Tamara T. Mueller, Rickmer Braren, Daniel Rueckert, Georgios Kaissis:
Privacy: An axiomatic approach. CoRR abs/2203.11586 (2022) - [i30]Dmitrii Usynin, Helena Klause, Daniel Rueckert, Georgios Kaissis:
Can collaborative learning be private, robust and scalable? CoRR abs/2205.02652 (2022) - [i29]Nicolas W. Remerscheid, Alexander Ziller, Daniel Rueckert, Georgios Kaissis:
SmoothNets: Optimizing CNN architecture design for differentially private deep learning. CoRR abs/2205.04095 (2022) - [i28]Reza Nasirigerdeh, Reihaneh Torkzadehmahani, Daniel Rueckert, Georgios Kaissis:
Kernel Normalized Convolutional Networks. CoRR abs/2205.10089 (2022) - [i27]Felix Meissen, Johannes C. Paetzold, Georgios Kaissis, Daniel Rueckert:
Unsupervised Anomaly Localization with Structural Feature-Autoencoders. CoRR abs/2208.10992 (2022) - [i26]Florian A. Hölzl, Daniel Rueckert, Georgios Kaissis:
Bridging the Gap: Differentially Private Equivariant Deep Learning for Medical Image Analysis. CoRR abs/2209.04338 (2022) - [i25]Reza Nasirigerdeh, Javad Torkzadehmahani, Daniel Rueckert, Georgios Kaissis:
Kernel Normalized Convolutional Networks for Privacy-Preserving Machine Learning. CoRR abs/2210.00053 (2022) - [i24]Reihaneh Torkzadehmahani, Reza Nasirigerdeh, Daniel Rueckert, Georgios Kaissis:
Label Noise-Robust Learning using a Confidence-Based Sieving Strategy. CoRR abs/2210.05330 (2022) - [i23]Georgios Kaissis, Alexander Ziller, Stefan Kolek Martinez de Azagra, Daniel Rueckert:
Generalised Likelihood Ratio Testing Adversaries through the Differential Privacy Lens. CoRR abs/2210.13028 (2022) - [i22]Alexander Ziller, Ayhan Can Erdur, Friederike Jungmann, Daniel Rueckert, Rickmer Braren, Georgios Kaissis:
Exploiting segmentation labels and representation learning to forecast therapy response of PDAC patients. CoRR abs/2211.04180 (2022) - [i21]Philip Müller, Georgios Kaissis, Daniel Rueckert:
The Role of Local Alignment and Uniformity in Image-Text Contrastive Learning on Medical Images. CoRR abs/2211.07254 (2022) - [i20]Tamara T. Mueller, Stefan Kolek, Friederike Jungmann, Alexander Ziller, Dmitrii Usynin, Moritz Knolle, Daniel Rueckert, Georgios Kaissis:
How Do Input Attributes Impact the Privacy Loss in Differential Privacy? CoRR abs/2211.10173 (2022) - [i19]Tomás Chobola, Dmitrii Usynin, Georgios Kaissis:
Membership Inference Attacks Against Semantic Segmentation Models. CoRR abs/2212.01082 (2022) - 2021
- [j5]Anna Jobin, Kingson Man, Antonio Damasio, Georgios Kaissis, Rickmer Braren, Julia Stoyanovich, Jay J. Van Bavel, Tessa V. West, Brent D. Mittelstadt, Jason Eshraghian, Marta R. Costa-jussà, Asaf Tzachor, Aimun A. B. Jamjoom, Mariarosaria Taddeo, Edoardo Sinibaldi, Yipeng Hu, Miguel A. Luengo-Oroz:
AI reflections in 2020. Nat. Mach. Intell. 3(1): 2-8 (2021) - [j4]Georgios Kaissis, Alexander Ziller, Jonathan Passerat-Palmbach, Théo Ryffel, Dmitrii Usynin, Andrew Trask, Ionésio Lima, Jason Mancuso, Friederike Jungmann, Marc-Matthias Steinborn, Andreas Saleh, Marcus R. Makowski, Daniel Rueckert, Rickmer Braren:
End-to-end privacy preserving deep learning on multi-institutional medical imaging. Nat. Mach. Intell. 3(6): 473-484 (2021) - [j3]Dmitrii Usynin, Alexander Ziller, Marcus R. Makowski, Rickmer Braren, Daniel Rueckert, Ben Glocker, Georgios Kaissis, Jonathan Passerat-Palmbach:
Adversarial interference and its mitigations in privacy-preserving collaborative machine learning. Nat. Mach. Intell. 3(9): 749-758 (2021) - [j2]Qi Dou, Tiffany Y. So, Meirui Jiang, Quande Liu, Varut Vardhanabhuti, Georgios Kaissis, Zeju Li, Weixin Si, Heather H. C. Lee, Kevin Yu, Zuxin Feng, Li Dong, Egon Burian, Friederike Jungmann, Rickmer Braren, Marcus R. Makowski, Bernhard Kainz, Daniel Rueckert, Ben Glocker, Simon C. H. Yu, Pheng-Ann Heng:
Federated deep learning for detecting COVID-19 lung abnormalities in CT: a privacy-preserving multinational validation study. npj Digit. Medicine 4 (2021) - [c7]Felix Meissen, Georgios Kaissis, Daniel Rueckert:
Challenging Current Semi-supervised Anomaly Segmentation Methods for Brain MRI. BrainLes@MICCAI (1) 2021: 63-74 - [c6]Teddy Koker, Fatemehsadat Mireshghallah, Tom Titcombe, Georgios Kaissis:
U-Noise: Learnable Noise Masks for Interpretable Image Segmentation. ICIP 2021: 394-398 - [c5]