default search action
Zhenman Fang
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j18]Haisheng Fu, Feng Liang, Jie Liang, Yongqiang Wang, Zhenman Fang, Guohe Zhang, Jingning Han:
Fast and High-Performance Learned Image Compression With Improved Checkerboard Context Model, Deformable Residual Module, and Knowledge Distillation. IEEE Trans. Image Process. 33: 4702-4715 (2024) - [j17]Geng Yang, Jie Lei, Zhenman Fang, Yunsong Li, Jiaqing Zhang, Weiying Xie:
HyBNN: Quantifying and Optimizing Hardware Efficiency of Binary Neural Networks. ACM Trans. Reconfigurable Technol. Syst. 17(2): 25:1-25:24 (2024) - [c57]Haisheng Fu, Feng Liang, Jie Liang, Zhenman Fang, Guohe Zhang, Jingning Han:
Learned Image Compression with Dual-Branch Encoder and Conditional Information Coding. DCC 2024: 173-182 - [c56]Manoj B. Rajashekar, Xingyu Tian, Zhenman Fang:
HiSpMV: Hybrid Row Distribution and Vector Buffering for Imbalanced SpMV Acceleration on FPGAs. FPGA 2024: 154-164 - [c55]Geng Yang, Jie Lei, Zhenman Fang, Jiaqing Zhang, Junrong Zhang, Weiying Xie, Yunsong Li:
E4SA: An Ultra-Efficient Systolic Array Architecture for 4-Bit Convolutional Neural Networks. FPGA 2024: 183 - [c54]Haisheng Fu, Feng Liang, Jie Liang, Zhenman Fang, Guohe Zhang, Jingning Han:
Efficient Learned Image Compression with Selective Kernel Residual Module and Channel-Wise Causal Context Model. ICASSP 2024: 4040-4044 - [c53]Zhengang Li, Alec Lu, Yanyue Xie, Zhenglun Kong, Mengshu Sun, Hao Tang, Zhong Jia Xue, Peiyan Dong, Caiwen Ding, Yanzhi Wang, Xue Lin, Zhenman Fang:
Quasar-ViT: Hardware-Oriented Quantization-Aware Architecture Search for Vision Transformers. ICS 2024: 324-337 - [c52]Jürgen Becker, Zhenman Fang, Viktor K. Prasanna, Marco D. Santambrogio, Ramachandran Vaidyanathan:
31st Reconfigurable Architectures Workshop (RAW 2024). IPDPS (Workshops) 2024: 79 - [i15]Zhengang Li, Alec Lu, Yanyue Xie, Zhenglun Kong, Mengshu Sun, Hao Tang, Zhong Jia Xue, Peiyan Dong, Caiwen Ding, Yanzhi Wang, Xue Lin, Zhenman Fang:
Quasar-ViT: Hardware-Oriented Quantization-Aware Architecture Search for Vision Transformers. CoRR abs/2407.18175 (2024) - 2023
- [j16]Weikang Qiao, Licheng Guo, Zhenman Fang, Mau-Chung Frank Chang, Jason Cong:
TopSort: A High-Performance Two-Phase Sorting Accelerator Optimized on HBM-Based FPGAs. IEEE Trans. Emerg. Top. Comput. 11(2): 404-419 (2023) - [j15]Jiaqing Zhang, Jie Lei, Weiying Xie, Zhenman Fang, Yunsong Li, Qian Du:
SuperYOLO: Super Resolution Assisted Object Detection in Multimodal Remote Sensing Imagery. IEEE Trans. Geosci. Remote. Sens. 61: 1-15 (2023) - [j14]Xingyu Tian, Zhifan Ye, Alec Lu, Licheng Guo, Yuze Chi, Zhenman Fang:
SASA: A Scalable and Automatic Stencil Acceleration Framework for Optimized Hybrid Spatial and Temporal Parallelism on HBM-based FPGAs. ACM Trans. Reconfigurable Technol. Syst. 16(2): 28:1-28:33 (2023) - [j13]Kenneth Liu, Alec Lu, Kartik Samtani, Zhenman Fang, Licheng Guo:
CHIP-KNNv2: A Configurable and High-Performance K-Nearest Neighbors Accelerator on HBM-based FPGAs. ACM Trans. Reconfigurable Technol. Syst. 16(4): 62:1-62:26 (2023) - [j12]Licheng Guo, Yuze Chi, Jason Lau, Linghao Song, Xingyu Tian, Moazin Khatti, Weikang Qiao, Jie Wang, Ecenur Ustun, Zhenman Fang, Zhiru Zhang, Jason Cong:
TAPA: A Scalable Task-parallel Dataflow Programming Framework for Modern FPGAs with Co-optimization of HLS and Physical Design. ACM Trans. Reconfigurable Technol. Syst. 16(4): 63:1-63:31 (2023) - [c51]Chen Zhang, Guangyu Sun, Zhenman Fang, Peipei Zhou, Jason Cong:
Caffeine: Towards Uniformed Representation and Acceleration for Deep Convolutional Neural Networks. ACM TUR-C 2023: 47-48 - [c50]Sung-En Chang, Geng Yuan, Alec Lu, Mengshu Sun, Yanyu Li, Xiaolong Ma, Zhengang Li, Yanyue Xie, Minghai Qin, Xue Lin, Zhenman Fang, Yanzhi Wang:
ESRU: Extremely Low-Bit and Hardware-Efficient Stochastic Rounding Unit Design for Low-Bit DNN Training. DATE 2023: 1-6 - [c49]Moazin Khatti, Xingyu Tian, Yuze Chi, Licheng Guo, Jason Cong, Zhenman Fang:
PASTA: Programming and Automation Support for Scalable Task-Parallel HLS Programs on Modern Multi-Die FPGAs. FCCM 2023: 12-22 - [c48]Alec Lu, Zhenman Fang:
SQL2FPGA: Automatic Acceleration of SQL Query Processing on Modern CPU-FPGA Platforms. FCCM 2023: 184-194 - [c47]Geng Yang, Jie Lei, Zhenman Fang, Yunsong Li, Jiaqing Zhang, Weiying Xie:
HyBNN: Quantifying and Optimizing Hardware Efficiency of Binary Neural Networks. FCCM 2023: 203 - [c46]Geng Yang, Jie Lei, Zhenman Fang, Yunsong Li, Jiaqing Zhang, Weiying Xie:
Journal Track Paper ICFPT 2023 : HyBNN: Quantifying and Optimizing Hardware Efficiency of Binary Neural Networks. ICFPT 2023: 3-4 - [c45]Peiyan Dong, Mengshu Sun, Alec Lu, Yanyue Xie, Kenneth Liu, Zhenglun Kong, Xin Meng, Zhengang Li, Xue Lin, Zhenman Fang, Yanzhi Wang:
HeatViT: Hardware-Efficient Adaptive Token Pruning for Vision Transformers. HPCA 2023: 442-455 - [i14]Eduardo Rhod, Behnam Ghavami, Zhenman Fang, Lesley Shannon:
A Cycle-Accurate Soft Error Vulnerability Analysis Framework for FPGA-based Designs. CoRR abs/2303.12269 (2023) - 2022
- [j11]Geng Yang, Jie Lei, Weiying Xie, Zhenman Fang, Yunsong Li, Jiaxuan Wang, Xin Zhang:
Algorithm/Hardware Codesign for Real-Time On-Satellite CNN-Based Ship Detection in SAR Imagery. IEEE Trans. Geosci. Remote. Sens. 60: 1-18 (2022) - [j10]Christian Pilato, Zhenman Fang, Yuko Hara-Azumi, Jim Hwang:
Introduction to the Special Section on High-level Synthesis for FPGA: Next-generation Technologies and Applications. ACM Trans. Design Autom. Electr. Syst. 27(4): 29:1-29:2 (2022) - [j9]Eric Matthews, Alec Lu, Zhenman Fang, Lesley Shannon:
Quick-Div: Rethinking Integer Divider Design for FPGA-based Soft-processors. ACM Trans. Reconfigurable Technol. Syst. 15(3): 32:1-32:27 (2022) - [j8]Alec Lu, Zhenman Fang, Lesley Shannon:
Demystifying the Soft and Hardened Memory Systems of Modern FPGAs for Software Programmers through Microbenchmarking. ACM Trans. Reconfigurable Technol. Syst. 15(4): 43:1-43:33 (2022) - [j7]Sathish Panchapakesan, Zhenman Fang, Jian Li:
SyncNN: Evaluating and Accelerating Spiking Neural Networks on FPGAs. ACM Trans. Reconfigurable Technol. Syst. 15(4): 48:1-48:27 (2022) - [c44]Mengshu Sun, Zhengang Li, Alec Lu, Haoyu Ma, Geng Yuan, Yanyue Xie, Hao Tang, Yanyu Li, Miriam Leeser, Zhangyang Wang, Xue Lin, Zhenman Fang:
FPGA-aware automatic acceleration framework for vision transformer with mixed-scheme quantization: late breaking results. DAC 2022: 1394-1395 - [c43]Sung-En Chang, Geng Yuan, Alec Lu, Mengshu Sun, Yanyu Li, Xiaolong Ma, Zhengang Li, Yanyue Xie, Minghai Qin, Xue Lin, Zhenman Fang, Yanzhi Wang:
Hardware-efficient stochastic rounding unit design for DNN training: late breaking results. DAC 2022: 1396-1397 - [c42]Behnam Ghavami, Mani Sadati, Zhenman Fang, Lesley Shannon:
FitAct: Error Resilient Deep Neural Networks via Fine-Grained Post-Trainable Activation Functions. DATE 2022: 1239-1244 - [c41]Behnam Ghavami, Mahdi Sajedi, Mohsen Raji, Zhenman Fang, Lesley Shannon:
A Majority-based Approximate Adder for FPGAs. DSD 2022: 53-59 - [c40]Behnam Ghavami, Mani Sadati, Mohammad Shahidzadeh, Zhenman Fang, Lesley Shannon:
Blind Data Adversarial Bit-flip Attack against Deep Neural Networks. DSD 2022: 899-904 - [c39]Geng Yuan, Sung-En Chang, Qing Jin, Alec Lu, Yanyu Li, Yushu Wu, Zhenglun Kong, Yanyue Xie, Peiyan Dong, Minghai Qin, Xiaolong Ma, Xulong Tang, Zhenman Fang, Yanzhi Wang:
You Already Have It: A Generator-Free Low-Precision DNN Training Framework Using Stochastic Rounding. ECCV (12) 2022: 34-51 - [c38]Weikang Qiao, Licheng Guo, Zhenman Fang, Mau-Chung Frank Chang, Jason Cong:
TopSort: A High-Performance Two-Phase Sorting Accelerator Optimized on HBM-based FPGAs. FCCM 2022: 1 - [c37]Mengshu Sun, Zhengang Li, Alec Lu, Yanyu Li, Sung-En Chang, Xiaolong Ma, Xue Lin, Zhenman Fang:
FILM-QNN: Efficient FPGA Acceleration of Deep Neural Networks with Intra-Layer, Mixed-Precision Quantization. FPGA 2022: 134-145 - [c36]Zhengang Li, Mengshu Sun, Alec Lu, Haoyu Ma, Geng Yuan, Yanyue Xie, Hao Tang, Yanyu Li, Miriam Leeser, Zhangyang Wang, Xue Lin, Zhenman Fang:
Auto-ViT-Acc: An FPGA-Aware Automatic Acceleration Framework for Vision Transformer with Mixed-Scheme Quantization. FPL 2022: 109-116 - [c35]Behnam Ghavami, Seyd Movi, Zhenman Fang, Lesley Shannon:
Stealthy Attack on Algorithmic-Protected DNNs via Smart Bit Flipping. ISQED 2022: 1-7 - [i13]Weikang Qiao, Licheng Guo, Zhenman Fang, Mau-Chung Frank Chang, Jason Cong:
TopSort: A High-Performance Two-Phase Sorting Accelerator Optimized on HBM-based FPGAs. CoRR abs/2205.07991 (2022) - [i12]Zhengang Li, Mengshu Sun, Alec Lu, Haoyu Ma, Geng Yuan, Yanyue Xie, Hao Tang, Yanyu Li, Miriam Leeser, Zhangyang Wang, Xue Lin, Zhenman Fang:
Auto-ViT-Acc: An FPGA-Aware Automatic Acceleration Framework for Vision Transformer with Mixed-Scheme Quantization. CoRR abs/2208.05163 (2022) - [i11]Xingyu Tian, Zhifan Ye, Alec Lu, Licheng Guo, Yuze Chi, Zhenman Fang:
SASA: A Scalable and Automatic Stencil Acceleration Framework for Optimized Hybrid Spatial and Temporal Parallelism on HBM-based FPGAs. CoRR abs/2208.10770 (2022) - [i10]Licheng Guo, Yuze Chi, Jason Lau, Linghao Song, Xingyu Tian, Moazin Khatti, Weikang Qiao, Jie Wang, Ecenur Ustun, Zhenman Fang, Zhiru Zhang, Jason Cong:
TAPA: A Scalable Task-Parallel Dataflow Programming Framework for Modern FPGAs with Co-Optimization of HLS and Physical Design. CoRR abs/2209.02663 (2022) - [i9]Jiaqing Zhang, Jie Lei, Weiying Xie, Zhenman Fang, Yunsong Li, Qian Du:
SuperYOLO: Super Resolution Assisted Object Detection in Multimodal Remote Sensing Imagery. CoRR abs/2209.13351 (2022) - [i8]Peiyan Dong, Mengshu Sun, Alec Lu, Yanyue Xie, Kenneth Liu, Zhenglun Kong, Xin Meng, Zhengang Li, Xue Lin, Zhenman Fang, Yanzhi Wang:
HeatViT: Hardware-Efficient Adaptive Token Pruning for Vision Transformers. CoRR abs/2211.08110 (2022) - 2021
- [j6]Yi-Hsiang Lai, Ecenur Ustun, Shaojie Xiang, Zhenman Fang, Hongbo Rong, Zhiru Zhang:
Programming and Synthesis for Software-defined FPGA Acceleration: Status and Future Prospects. ACM Trans. Reconfigurable Technol. Syst. 14(4): 17:1-17:39 (2021) - [c34]Alec Lu, Zhenman Fang, Weihua Liu, Lesley Shannon:
Demystifying the Memory System of Modern Datacenter FPGAs for Software Programmers through Microbenchmarking. FPGA 2021: 105-115 - [c33]Behnam Ghavami, Seyed Milad Ebrahimi, Zhenman Fang, Lesley Shannon:
LEAP: A Deep Learning based Aging-Aware Architecture Exploration Framework for FPGAs. FPGA 2021: 146 - [c32]Sathish Panchapakesan, Zhenman Fang, Jian Li:
SyncNN: Evaluating and Accelerating Spiking Neural Networks on FPGAs. FPL 2021: 286-293 - [c31]Behnam Ghavami, Milad Ibrahimipour, Zhenman Fang, Lesley Shannon:
MAPLE: A Machine Learning based Aging-Aware FPGA Architecture Exploration Framework. FPL 2021: 369-373 - [i7]Behnam Ghavami, Mani Sadati, Mohammad Shahidzadeh, Zhenman Fang, Lesley Shannon:
BDFA: A Blind Data Adversarial Bit-flip Attack on Deep Neural Networks. CoRR abs/2112.03477 (2021) - [i6]Kiarash Saremi, Hossein Pedram, Behnam Ghavami, Mohsen Raji, Zhenman Fang, Lesley Shannon:
SeaPlace: Process Variation Aware Placement for Reliable Combinational Circuits against SETs and METs. CoRR abs/2112.04136 (2021) - [i5]Behnam Ghavami, Seyd Movi, Zhenman Fang, Lesley Shannon:
Stealthy Attack on Algorithmic-Protected DNNs via Smart Bit Flipping. CoRR abs/2112.13162 (2021) - [i4]Behnam Ghavami, Mani Sadati, Zhenman Fang, Lesley Shannon:
FitAct: Error Resilient Deep Neural Networks via Fine-Grained Post-Trainable Activation Functions. CoRR abs/2112.13544 (2021) - 2020
- [c30]Michael Lo, Zhenman Fang, Jie Wang, Peipei Zhou, Mau-Chung Frank Chang, Jason Cong:
Algorithm-Hardware Co-design for BQSR Acceleration in Genome Analysis ToolKit. FCCM 2020: 157-166 - [c29]Sathish Panchapakesan, Zhenman Fang, Nitin Chandrachoodan:
EASpiNN: Effective Automated Spiking Neural Network Evaluation on FPGA. FCCM 2020: 242 - [c28]Seyed Milad Ebrahimipour, Behnam Ghavami, Hamid Mousavi, Mohsen Raji, Zhenman Fang, Lesley Shannon:
Aadam: A Fast, Accurate, and Versatile Aging-Aware Cell Library Delay Model using Feed-Forward Neural Network. ICCAD 2020: 31:1-31:9 - [c27]Alec Lu, Zhenman Fang, Nazanin Farahpour, Lesley Shannon:
CHIP-KNN: A Configurable and High-Performance K-Nearest Neighbors Accelerator on Cloud FPGAs. FPT 2020: 139-147 - [c26]Nazanin Farahpour, Yuchen Hao, Zhenman Fang, Glenn Reinman:
Reconfigurable Accelerator Compute Hierarchy: A Case Study using Content-Based Image Retrieval. IISWC 2020: 276-287 - [c25]Nazanin Farahpour, Zhenman Fang, Glenn Reinman:
FPGA-based Near Data Processing Platform Selection Using Fast Performance Modeling (WiP Paper). LCTES 2020: 151-155
2010 – 2019
- 2019
- [j5]Jason Cong, Zhenman Fang, Muhuan Huang, Peng Wei, Di Wu, Cody Hao Yu:
Customizable Computing - From Single Chip to Datacenters. Proc. IEEE 107(1): 185-203 (2019) - [j4]Chen Zhang, Guangyu Sun, Zhenman Fang, Peipei Zhou, Peichen Pan, Jason Cong:
Caffeine: Toward Uniformed Representation and Acceleration for Deep Convolutional Neural Networks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 38(11): 2072-2085 (2019) - [j3]Young-kyu Choi, Jason Cong, Zhenman Fang, Yuchen Hao, Glenn Reinman, Peng Wei:
In-Depth Analysis on Microarchitectures of Modern Heterogeneous CPU-FPGA Platforms. ACM Trans. Reconfigurable Technol. Syst. 12(1): 4:1-4:20 (2019) - [c24]Zhenman Fang, Farnoosh Javadi, Jason Cong, Glenn Reinman:
Understanding Performance Gains of Accelerator-Rich Architectures. ASAP 2019: 239-246 - [c23]Weikang Qiao, Zhenman Fang, Mau-Chung Frank Chang, Jason Cong:
An FPGA-Based BWT Accelerator for Bzip2 Data Compression. FCCM 2019: 96-99 - [c22]Eric Matthews, Alec Lu, Zhenman Fang, Lesley Shannon:
Rethinking Integer Divider Design for FPGA-Based Soft-Processors. FCCM 2019: 289-297 - 2018
- [j2]Jason Cong, Zhenman Fang, Muhuan Huang, Libo Wang, Di Wu:
CPU-FPGA Coscheduling for Big Data Applications. IEEE Des. Test 35(1): 16-22 (2018) - [c21]Weikang Qiao, Jieqiong Du, Zhenman Fang, Michael Lo, Mau-Chung Frank Chang, Jason Cong:
High-Throughput Lossless Compression on Tightly Coupled CPU-FPGA Platforms. FCCM 2018: 37-44 - [c20]Jason Cong, Zhenman Fang, Michael Lo, Hanrui Wang, Jingxian Xu, Shaochong Zhang:
Understanding Performance Differences of FPGAs and GPUs. FCCM 2018: 93-96 - [c19]Jason Cong, Zhenman Fang, Yao Hu, Di Wu:
K-Flow: A Programming and Scheduling Framework to Optimize Dataflow Execution on CPU-FPGA Platforms: (Abstract Only). FPGA 2018: 287 - [c18]Jason Cong, Zhenman Fang, Michael Lo, Hanrui Wang, Jingxian Xu, Shaochong Zhang:
Understanding Performance Differences of FPGAs and GPUs: (Abtract Only). FPGA 2018: 288 - [c17]Weikang Qiao, Jieqiong Du, Zhenman Fang, Libo Wang, Michael Lo, Mau-Chung Frank Chang, Jason Cong:
High-Throughput Lossless Compression on Tightly Coupled CPU-FPGA Platforms: (Abstract Only). FPGA 2018: 291 - [c16]Peipei Zhou, Zhenyuan Ruan, Zhenman Fang, Megan Shand, David Roazen, Jason Cong:
Doppio: I/O-Aware Performance Analysis, Modeling and Optimization for In-memory Computing Framework. ISPASS 2018: 22-32 - [i3]Jason Cong, Zhenman Fang, Yuchen Hao, Peng Wei, Cody Hao Yu, Chen Zhang, Peipei Zhou:
Best-Effort FPGA Programming: A Few Steps Can Go a Long Way. CoRR abs/1807.01340 (2018) - 2017
- [c15]Jason Cong, Zhenman Fang, Muhuan Huang, Libo Wang, Di Wu:
CPU-FPGA Co-Optimization for Big Data Applications: A Case Study of In-Memory Samtool Sorting (Abstract Only). FPGA 2017: 291 - [c14]Yuchen Hao, Zhenman Fang, Glenn Reinman, Jason Cong:
Supporting Address Translation for Accelerator-Centric Architectures. HPCA 2017: 37-48 - [c13]Jason Cong, Zhenman Fang, Michael Gill, Farnoosh Javadi, Glenn Reinman:
AIM: accelerating computational genomics through scalable and noninvasive accelerator-interposed memory. MEMSYS 2017: 3-14 - 2016
- [c12]Muhuan Huang, Di Wu, Cody Hao Yu, Zhenman Fang, Matteo Interlandi, Tyson Condie, Jason Cong:
Programming and Runtime Support to Blaze FPGA Accelerator Deployment at Datacenter Scale. SoCC 2016: 456-469 - [c11]Young-kyu Choi, Jason Cong, Zhenman Fang, Yuchen Hao, Glenn Reinman, Peng Wei:
A quantitative analysis on microarchitectures of modern CPU-FPGA platforms. DAC 2016: 109:1-109:6 - [c10]Yu-Ting Chen, Jason Cong, Zhenman Fang, Jie Lei, Peng Wei:
When Spark Meets FPGAs: A Case Study for Next-Generation DNA Sequencing Acceleration. FCCM 2016: 29 - [c9]Peipei Zhou, Hyunseok Park, Zhenman Fang, Jason Cong, André DeHon:
Energy Efficiency of Full Pipelining: A Case Study for Matrix Multiplication. FCCM 2016: 172-175 - [c8]Yu-Ting Chen, Jason Cong, Zhenman Fang, Peipei Zhou:
ARAPrototyper: Enabling Rapid Prototyping and Evaluation for Accelerator-Rich Architecture (Abstact Only). FPGA 2016: 281 - [c7]Yu-Ting Chen, Jason Cong, Zhenman Fang, Jie Lei, Peng Wei:
When Spark Meets FPGAs: A Case Study for Next-Generation DNA Sequencing Acceleration. HotCloud 2016 - [c6]Chen Zhang, Zhenman Fang, Peipei Zhou, Peichen Pan, Jason Cong:
Caffeine: towards uniformed representation and acceleration for deep convolutional neural networks. ICCAD 2016: 12:1-12:8 - [i2]Yu-Ting Chen, Jason Cong, Zhenman Fang, Bingjun Xiao, Peipei Zhou:
ARAPrototyper: Enabling Rapid Prototyping and Evaluation for Accelerator-Rich Architectures. CoRR abs/1610.09761 (2016) - [i1]Jason Cong, Zhenman Fang, Hassan Kianinejad, Peng Wei:
Revisiting FPGA Acceleration of Molecular Dynamics Simulation with Dynamic Data Flow Behavior in High-Level Synthesis. CoRR abs/1611.04474 (2016) - 2015
- [c5]Jason Cong, Zhenman Fang, Michael Gill, Glenn Reinman:
PARADE: A Cycle-Accurate Full-System Simulation Platform for Accelerator-Rich Architectural Design and Exploration. ICCAD 2015: 380-387 - 2014
- [j1]Zhenman Fang, Sanyam Mehta, Pen-Chung Yew, Antonia Zhai, James B. S. G. Greensky, Gautham Beeraka, Binyu Zang:
Measuring Microarchitectural Details of Multi- and Many-Core Memory Systems through Microbenchmarking. ACM Trans. Archit. Code Optim. 11(4): 55:1-55:26 (2014) - [c4]Sanyam Mehta, Zhenman Fang, Antonia Zhai, Pen-Chung Yew:
Multi-stage coordinated prefetching for present-day processors. ICS 2014: 73-82 - 2012
- [c3]Zhenman Fang, Qinghao Min, Keyong Zhou, Yi Lu, Yibin Hu, Weihua Zhang, Haibo Chen, Jian Li, Binyu Zang:
Transformer: a functional-driven cycle-accurate multicore simulator. DAC 2012: 106-114 - [c2]Zhenman Fang, Jiaxin Li, Weihua Zhang, Yi Li, Haibo Chen, Binyu Zang:
Improving dynamic prediction accuracy through multi-level phase analysis. LCTES 2012: 89-98 - 2011
- [c1]Zhenman Fang, Donglei Yang, Weihua Zhang, Haibo Chen, Binyu Zang:
A comprehensive analysis and parallelization of an image retrieval algorithm. ISPASS 2011: 154-164
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-21 23:42 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint