


default search action
NIPS 2004: Vancouver, British Columbia, Canada
- Advances in Neural Information Processing Systems 17 [Neural Information Processing Systems, NIPS 2004, December 13-18, 2004, Vancouver, British Columbia, Canada]. 2004

- Michael H. Bowling:

Convergence and No-Regret in Multiagent Learning. 209-216 - Pierre Baldi, Jianlin Cheng, Alessandro Vullo:

Large-Scale Prediction of Disulphide Bond Connectivity. 97-104 - Jacob Goldberger, Sam T. Roweis:

Hierarchical Clustering of a Mixture Model. 505-512 - Daniela Pucci de Farias, Nimrod Megiddo:

Exploration-Exploitation Tradeoffs for Experts Algorithms in Reactive Environments. 409-416 - Tong Zhang:

Class-size Independent Generalization Analsysis of Some Discriminative Multi-Category Classification. 1625-1632 - Elizaveta Levina, Peter J. Bickel:

Maximum Likelihood Estimation of Intrinsic Dimension. 777-784 - Alexander T. Ihler, John W. Fisher III, Alan S. Willsky:

Message Errors in Belief Propagation. 609-616 - Alexei A. Efros, Volkan Isler, Jianbo Shi, Mirkó Visontai:

Seeing through water. 393-400 - Daniel B. Neill, Andrew W. Moore, Francisco Pereira, Tom M. Mitchell:

Detecting Significant Multidimensional Spatial Clusters. 969-976 - Amnon Shashua, Tamir Hazan:

Algebraic Set Kernels with Application to Inference Over Local Image Representations. 1257-1264 - Jacob Goldberger, Sam T. Roweis, Geoffrey E. Hinton, Ruslan Salakhutdinov:

Neighbourhood Components Analysis. 513-520 - Nicolò Cesa-Bianchi, Claudio Gentile, Andrea Tironi, Luca Zaniboni:

Incremental Algorithms for Hierarchical Classification. 233-240 - Guy Shani, Ronen I. Brafman:

Resolving Perceptual Aliasing In The Presence Of Noisy Sensors. 1249-1256 - Mario Marchand, Mohak Shah:

PAC-Bayes Learning of Conjunctions and Classification of Gene-Expression Data. 881-888 - Lavi Shpigelman, Koby Crammer, Rony Paz, Eilon Vaadia, Yoram Singer:

A Temporal Kernel-Based Model for Tracking Hand Movements from Neural Activities. 1273-1280 - John M. Winn, Andrew Blake:

Generative Affine Localisation and Tracking. 1505-1512 - Sajama, Alon Orlitsky:

Semi-parametric Exponential Family PCA. 1177-1184 - Ingo Steinwart, Don R. Hush, Clint Scovel:

Density Level Detection is Classification. 1337-1344 - Ingo Steinwart, Clint Scovel:

Fast Rates to Bayes for Kernel Machines. 1345-1352 - Tobias Blaschke, Laurenz Wiskott:

Nonlinear Blind Source Separation by Integrating Independent Component Analysis and Slow Feature Analysis. 177-184 - Ting Liu, Andrew W. Moore, Alexander G. Gray, Ke Yang:

An Investigation of Practical Approximate Nearest Neighbor Algorithms. 825-832 - Hans Peter Graf, Eric Cosatto, Léon Bottou, Igor Durdanovic, Vladimir Vapnik:

Parallel Support Vector Machines: The Cascade SVM. 521-528 - Isabelle Guyon, Steve R. Gunn, Asa Ben-Hur, Gideon Dror:

Result Analysis of the NIPS 2003 Feature Selection Challenge. 545-552 - Jinbo Bi, Tong Zhang:

Support Vector Classification with Input Data Uncertainty. 161-168 - Dashan Gao, Nuno Vasconcelos:

Discriminant Saliency for Visual Recognition from Cluttered Scenes. 481-488 - Corinna Cortes, Mehryar Mohri:

Confidence Intervals for the Area Under the ROC Curve. 305-312 - Balaji Krishnapuram, David Williams, Ya Xue, Alexander J. Hartemink, Lawrence Carin, Mário A. T. Figueiredo:

On Semi-Supervised Classification. 721-728 - Jieping Ye, Ravi Janardan, Qi Li:

Two-Dimensional Linear Discriminant Analysis. 1569-1576 - Tao Xiong, Jieping Ye, Qi Li, Ravi Janardan, Vladimir Cherkassky:

Efficient Kernel Discriminant Analysis via QR Decomposition. 1529-1536 - Phillip Boyle, Marcus R. Frean:

Dependent Gaussian Processes. 217-224 - Einat Klein, Rachel Mislovaty, Ido Kanter, Andreas Ruttor, Wolfgang Kinzel:

Synchronization of neural networks by mutual learning and its application to cryptography. 689-696 - Andras Ferencz, Erik G. Learned-Miller, Jitendra Malik:

Learning Hyper-Features for Visual Identification. 425-432 - Jian Zhang, Zoubin Ghahramani, Yiming Yang:

A Probabilistic Model for Online Document Clustering with Application to Novelty Detection. 1617-1624 - Sander M. Bohté, Michael C. Mozer:

Reducing Spike Train Variability: A Computational Theory Of Spike-Timing Dependent Plasticity. 201-208 - Hideto Kazawa, Tomonori Izumitani, Hirotoshi Taira, Eisaku Maeda:

Maximal Margin Labeling for Multi-Topic Text Categorization. 649-656 - Aharon Bar-Hillel, Adam Spiro, Eran Stark:

Spike Sorting: Bayesian Clustering of Non-Stationary Data. 105-112 - Jongmin Kim, John J. Hopfield, Erik Winfree:

Neural Network Computation by In Vitro Transcriptional Circuits. 681-688 - Johannes Mohr, Klaus Obermayer:

A Topographic Support Vector Machine: Classification Using Local Label Configurations. 929-936 - Neil D. Lawrence, Michael I. Jordan:

Semi-supervised Learning via Gaussian Processes. 753-760 - Alan L. Yuille:

The Rescorla-Wagner Algorithm and Maximum Likelihood Estimation of Causal Parameters. 1585-1592 - Alan L. Yuille:

The Convergence of Contrastive Divergences. 1593-1600 - Chiranjib Bhattacharyya, Pannagadatta K. Shivaswamy, Alexander J. Smola:

A Second Order Cone programming Formulation for Classifying Missing Data. 153-160 - Moray Allan, Christopher K. I. Williams:

Harmonising Chorales by Probabilistic Inference. 25-32 - Yoshitatsu Matsuda, Kazunori Yamaguchi:

Linear Multilayer Independent Component Analysis for Large Natural Scenes. 897-904 - Ofer Dekel, Shai Shalev-Shwartz, Yoram Singer:

The Power of Selective Memory: Self-Bounded Learning of Prediction Suffix Trees. 345-352 - Ulrike von Luxburg, Olivier Bousquet, Mikhail Belkin:

Limits of Spectral Clustering. 857-864 - Felix Schürmann, Karlheinz Meier, Johannes Schemmel:

Edge of Chaos Computation in Mixed-Mode VLSI - A Hard Liquid. 1201-1208 - Peter M. Todd, Anja Dieckmann:

Heuristics for Ordering Cue Search in Decision Making. 1393-1400 - Jan Erik Solem, Fredrik Kahl:

Surface Reconstruction using Learned Shape Models. 1305-1312 - Juan José del Coz, Gustavo F. Bayón, Jorge Díez, Oscar Luaces, Antonio Bahamonde, Carlos Sañudo:

Trait Selection for Assessing Beef Meat Quality Using Non-linear SVM. 321-328 - Volker Roth:

Outlier Detection with One-class Kernel Fisher Discriminants. 1169-1176 - Philip M. Long, Xinyu Wu:

Mistake Bounds for Maximum Entropy Discrimination. 833-840 - Nicolò Cesa-Bianchi, Claudio Gentile, Luca Zaniboni:

Worst-Case Analysis of Selective Sampling for Linear-Threshold Algorithms. 241-248 - Michael Fink:

Object Classification from a Single Example Utilizing Class Relevance Metrics. 449-456 - Wolfgang Maass, Robert Legenstein, Nils Bertschinger:

Methods for Estimating the Computational Power and Generalization Capability of Neural Microcircuits. 865-872 - Antti Honkela, Harri Valpola:

Unsupervised Variational Bayesian Learning of Nonlinear Models. 593-600 - Fei Sha, Lawrence K. Saul:

Real-Time Pitch Determination of One or More Voices by Nonnegative Matrix Factorization. 1233-1240 - Liam Paninski:

Log-concavity Results on Gaussian Process Methods for Supervised and Unsupervised Learning. 1025-1032 - Xiaojin Zhu, Jaz S. Kandola, Zoubin Ghahramani, John D. Lafferty:

Nonparametric Transforms of Graph Kernels for Semi-Supervised Learning. 1641-1648 - Oliver Williams, Andrew Blake, Roberto Cipolla:

The Variational Ising Classifier (VIC) Algorithm for Coherently Contaminated Data. 1497-1504 - Tzu-Kuo Huang, Chih-Jen Lin, Ruby C. Weng:

A Generalized Bradley-Terry Model: From Group Competition to Individual Skill. 601-608 - Constanze Hofstoetter, Manuel Gil, Kynan Eng, Giacomo Indiveri, Matti Mintz, Jörg Kramer, Paul F. M. J. Verschure:

The Cerebellum Chip: an Analog VLSI Implementation of a Cerebellar Model of Classical Conditioning. 577-584 - Saharon Rosset:

Following Curved Regularized Optimization Solution Paths. 1153-1160 - Robert Fergus, Andrew Zisserman, Pietro Perona:

Sampling Methods for Unsupervised Learning. 433-440 - Matthias O. Franz, Bernhard Schölkopf:

Implicit Wiener Series for Higher-Order Image Analysis. 465-472 - Robert Jenssen, Deniz Erdogmus, José Carlos Príncipe, Torbjørn Eltoft:

The Laplacian PDF Distance: A Cost Function for Clustering in a Kernel Feature Space. 625-632 - Peter Sollich, Christopher K. I. Williams:

Using the Equivalent Kernel to Understand Gaussian Process Regression. 1313-1320 - Fabio Aiolli, Alessandro Sperduti:

Learning Preferences for Multiclass Problems. 17-24 - Taku Kudo, Eisaku Maeda, Yuji Matsumoto:

An Application of Boosting to Graph Classification. 729-736 - Massimiliano Pavan, Marcello Pelillo:

Efficient Out-of-Sample Extension of Dominant-Set Clusters. 1057-1064 - Bernd Fischer, Volker Roth, Joachim M. Buhmann, Jonas Grossmann, Sacha Baginsky, Wilhelm Gruissem, Franz F. Roos, Peter Widmayer:

A Hidden Markov Model for de Novo Peptide Sequencing. 457-464 - Nils Bertschinger, Thomas Natschläger, Robert Legenstein:

At the Edge of Chaos: Real-time Computations and Self-Organized Criticality in Recurrent Neural Networks. 145-152 - Gökhan H. Bakir, Léon Bottou, Jason Weston:

Breaking SVM Complexity with Cross-Training. 81-88 - Nathan Srebro, Noga Alon, Tommi S. Jaakkola:

Generalization Error Bounds for Collaborative Prediction with Low-Rank Matrices. 1321-1328 - Maria-Florina Balcan, Avrim Blum, Ke Yang:

Co-Training and Expansion: Towards Bridging Theory and Practice. 89-96 - Sophie Denève:

Bayesian inference in spiking neurons. 353-360 - Andrew Y. Ng, H. Jin Kim:

Stable adaptive control with online learning. 977-984 - Rob Powers, Yoav Shoham:

New Criteria and a New Algorithm for Learning in Multi-Agent Systems. 1089-1096 - Jennifer Listgarten, Radford M. Neal, Sam T. Roweis, Andrew Emili:

Multiple Alignment of Continuous Time Series. 817-824 - Sunita Sarawagi, William W. Cohen:

Semi-Markov Conditional Random Fields for Information Extraction. 1185-1192 - Shai Avidan, Moshe Butman:

The power of feature clustering: An application to object detection. 57-64 - Wolf Kienzle, Gökhan H. Bakir, Matthias O. Franz, Bernhard Schölkopf:

Face Detection - Efficient and Rank Deficient. 673-680 - Dan Pelleg, Andrew W. Moore:

Active Learning for Anomaly and Rare-Category Detection. 1073-1080 - Changjiang Yang, Ramani Duraiswami, Larry S. Davis:

Efficient Kernel Machines Using the Improved Fast Gauss Transform. 1561-1568 - Dori Peleg, Ron Meir:

A Feature Selection Algorithm Based on the Global Minimization of a Generalization Error Bound. 1065-1072 - Thomas Navin Lal, Thilo Hinterberger, Guido Widman, Michael Schröder, N. Jeremy Hill, Wolfgang Rosenstiel, Christian Erich Elger, Bernhard Schölkopf, Niels Birbaumer:

Methods Towards Invasive Human Brain Computer Interfaces. 737-744 - Bernhard Schölkopf, Joachim Giesen, Simon Spalinger:

Kernel Methods for Implicit Surface Modeling. 1193-1200 - Liam Paninski:

Variational Minimax Estimation of Discrete Distributions under KL Loss. 1033-1040 - Balázs Kégl, Ligen Wang:

Boosting on Manifolds: Adaptive Regularization of Base Classifiers. 665-672 - Wojtek Kowalczyk, Nikos Vlassis:

Newscast EM. 713-720 - Sean O'Rourke, Gal Chechik, Robin Friedman, Eleazar Eskin:

Discrete profile alignment via constrained information bottleneck. 1009-1016 - Jean-Philippe Vert, Yoshihiro Yamanishi:

Supervised Graph Inference. 1433-1440 - Peng Xu, Frederick Jelinek:

Using Random Forests in the Structured Language Model. 1545-1552 - Shyam Visweswaran, Gregory F. Cooper:

Instance-Specific Bayesian Model Averaging for Classification. 1449-1456 - Le Lu, Gregory D. Hager, Laurent Younes:

A Three Tiered Approach for Articulated Object Action Modeling and Recognition. 841-848 - Giorgio Giacinto, Fabio Roli:

Instance-Based Relevance Feedback for Image Retrieval. 489-496 - N. Jeremy Hill, Thomas Navin Lal, Karin Bierig, Niels Birbaumer, Bernhard Schölkopf:

An Auditory Paradigm for Brain-Computer Interfaces. 569-576 - John Blitzer, Kilian Q. Weinberger, Lawrence K. Saul, Fernando Pereira:

Hierarchical Distributed Representations for Statistical Language Modeling. 185-192 - Rasmus Kongsgaard Olsson, Lars Kai Hansen

:
A Harmonic Excitation State-Space Approach to Blind Separation of Speech. 993-1000 - Finn Årup Nielsen:

Mass Meta-analysis in Talairach Space. 985-992 - Tomoharu Iwata, Kazumi Saito, Naonori Ueda, Sean Stromsten, Thomas L. Griffiths, Joshua B. Tenenbaum:

Parametric Embedding for Class Visualization. 617-624 - Sanjoy Dasgupta:

Analysis of a greedy active learning strategy. 337-344 - Marcelo A. Montemurro, Stefano Panzeri:

Optimal Information Decoding from Neuronal Populations with Specific Stimulus Selectivity. 937-944 - Yves Grandvalet, Yoshua Bengio:

Semi-supervised Learning by Entropy Minimization. 529-536 - Ofer Shai, Brendan J. Frey, Quaid Morris, Qun Pan, Christine Misquitta, Benjamin J. Blencowe:

Probabilistic Inference of Alternative Splicing Events in Microarray Data. 1241-1248 - Miguel E. Figueroa, Seth Bridges, Chris Diorio:

On-Chip Compensation of Device-Mismatch Effects in Analog VLSI Neural Networks. 441-448 - Andrew McCallum, Ben Wellner:

Conditional Models of Identity Uncertainty with Application to Noun Coreference. 905-912 - Sham M. Kakade, Michael J. Kearns, Luis E. Ortiz, Robin Pemantle, Siddharth Suri:

Economic Properties of Social Networks. 633-640 - Clayton D. Scott, Robert D. Nowak:

On the Adaptive Properties of Decision Trees. 1225-1232 - Anthony J. Bell, Lucas C. Parra:

Maximising Sensitivity in a Spiking Network. 121-128 - Frank DiMaio, Jude W. Shavlik, George N. Phillips:

Pictorial Structures for Molecular Modeling: Interpreting Density Maps. 369-376 - Dengyong Zhou, Bernhard Schölkopf, Thomas Hofmann:

Semi-supervised Learning on Directed Graphs. 1633-1640 - Pierre Moreels, Pietro Perona:

Common-Frame Model for Object Recognition. 953-960 - Koji Tsuda, Gunnar Rätsch, Manfred K. Warmuth:

Matrix Exponential Gradient Updates for On-line Learning and Bregman Projection. 1425-1432 - Jaety Edwards, Yee Whye Teh, David A. Forsyth, Roger Bock, Michael Maire, Grace Vesom:

Making Latin Manuscripts Searchable using gHMMs. 385-392 - Chakra Chennubhotla, Allan D. Jepson:

Hierarchical Eigensolver for Transition Matrices in Spectral Methods. 273-280 - Jongwoo Lim, David A. Ross, Ruei-Sung Lin, Ming-Hsuan Yang:

Incremental Learning for Visual Tracking. 793-800 - Lihi Zelnik-Manor, Pietro Perona:

Self-Tuning Spectral Clustering. 1601-1608 - Ruei-Sung Lin, David A. Ross, Jongwoo Lim, Ming-Hsuan Yang:

Adaptive Discriminative Generative Model and Its Applications. 801-808 - Dragomir Anguelov, Praveen Srinivasan, Hoi-Cheung Pang, Daphne Koller, Sebastian Thrun, James Davis:

The Correlated Correspondence Algorithm for Unsupervised Registration of Nonrigid Surfaces. 33-40 - Joris M. Mooij, Hilbert J. Kappen:

Validity Estimates for Loopy Belief Propagation on Binary Real-world Networks. 945-952 - Trevor Hastie, Saharon Rosset, Robert Tibshirani, Ji Zhu:

The Entire Regularization Path for the Support Vector Machine. 561-568 - Marco Cuturi, Jean-Philippe Vert:

Semigroup Kernels on Finite Sets. 329-336 - Nathan Srebro, Jason D. M. Rennie, Tommi S. Jaakkola:

Maximum-Margin Matrix Factorization. 1329-1336 - Jochen Triesch:

Synergies between Intrinsic and Synaptic Plasticity in Individual Model Neurons. 1417-1424 - Fredrik Bissmarck, Hiroyuki Nakahara, Kenji Doya, Okihide Hikosaka:

Responding to Modalities with Different Latencies. 169-176 - Tanzeem Choudhury, Sumit Basu:

Modeling Conversational Dynamics as a Mixed-Memory Markov Process. 281-288 - Saharon Rosset, Ji Zhu, Hui Zou, Trevor Hastie:

A Method for Inferring Label Sampling Mechanisms in Semi-Supervised Learning. 1161-1168 - Tamara L. Berg, Alexander C. Berg, Jaety Edwards, David A. Forsyth:

Whos In the Picture. 137-144 - Odelia Schwartz, Terrence J. Sejnowski, Peter Dayan:

Assignment of Multiplicative Mixtures in Natural Images. 1217-1224 - Margarita Osadchy, Matthew L. Miller, Yann LeCun:

Synergistic Face Detection and Pose Estimation with Energy-Based Models. 1017-1024 - Jing Wang, Zhenyue Zhang, Hongyuan Zha:

Adaptive Manifold Learning. 1473-1480 - Aaron C. Courville, Nathaniel D. Daw, David S. Touretzky:

Similarity and Discrimination in Classical Conditioning: A Latent Variable Account. 313-320 - Rajesh P. N. Rao:

Hierarchical Bayesian Inference in Networks of Spiking Neurons. 1113-1120 - Angela J. Yu, Peter Dayan:

Inference, Attention, and Decision in a Bayesian Neural Architecture. 1577-1584 - Peter L. Bartlett, Michael Collins, Benjamin Taskar, David A. McAllester:

Exponentiated Gradient Algorithms for Large-margin Structured Classification. 113-120 - Khashayar Rohanimanesh, Robert Platt Jr., Sridhar Mahadevan, Roderic A. Grupen:

Coarticulation in Markov Decision Processes. 1137-1144 - Francis R. Bach, Michael I. Jordan:

Blind One-microphone Speech Separation: A Spectral Learning Approach. 65-72 - Amir Globerson, Gal Chechik, Fernando C. N. Pereira, Naftali Tishby:

Euclidean Embedding of Co-Occurrence Data. 497-504 - Michael P. Holmes, Charles Lee Isbell Jr.:

Schema Learning: Experience-Based Construction of Predictive Action Models. 585-592 - Taro Toyoizumi, Jean-Pascal Pfister, Kazuyuki Aihara, Wulfram Gerstner:

Spike-timing Dependent Plasticity and Mutual Information Maximization for a Spiking Neuron Model. 1409-1416 - Lorenzo Rosasco, Andrea Caponnetto, Ernesto De Vito, Francesca Odone, Umberto De Giovannini:

Learning, Regularization and Ill-Posed Inverse Problems. 1145-1152 - Thomas L. Griffiths, Mark Steyvers, David M. Blei, Joshua B. Tenenbaum:

Integrating Topics and Syntax. 537-544 - Alexandre d'Aspremont, Laurent El Ghaoui, Michael I. Jordan, Gert R. G. Lanckriet:

A Direct Formulation for Sparse PCA Using Semidefinite Programming. 41-48 - R. Jacob Vogelstein, Udayan Mallik, Eugenio Culurciello, Gert Cauwenberghs, Ralph Etienne-Cummings:

Saliency-Driven Image Acuity Modulation on a Reconfigurable Array of Spiking Silicon Neurons. 1457-1464 - Hyun-Jin Park, Te-Won Lee:

Modeling Nonlinear Dependencies in Natural Images using Mixture of Laplacian Distribution. 1041-1048 - François Rivest, Yoshua Bengio, John Kalaska:

Brain Inspired Reinforcement Learning. 1129-1136 - Mukund Narasimhan, Jeff A. Bilmes:

Optimal sub-graphical models. 961-968 - Yuanqing Lin, Daniel D. Lee:

Bayesian Regularization and Nonnegative Deconvolution for Time Delay Estimation. 809-816 - Xiang Yan, Persi Diaconis, Paat Rusmevichientong, Benjamin Van Roy:

Solitaire: Man Versus Machine. 1553-1560 - Pradeep Shenoy, Rajesh P. N. Rao:

Dynamic Bayesian Networks for Brain-Computer Interfaces. 1265-1272 - Laurent Zwald, Régis Vert, Gilles Blanchard, Pascal Massart:

Kernel Projection Machine: a New Tool for Pattern Recognition. 1649-1656 - Máté Lengyel, Peter Dayan:

Rate- and Phase-coded Autoassociative Memory. 769-776 - Pascal Poupart, Craig Boutilier:

VDCBPI: an Approximate Scalable Algorithm for Large POMDPs. 1081-1088 - Daniela Pucci de Farias, Benjamin Van Roy:

A Cost-Shaping LP for Bellman Error Minimization with Performance Guarantees. 417-424 - David C. Parkes, Satinder Singh, Dimah Yanovsky:

Approximately Efficient Online Mechanism Design. 1049-1056 - Shivani Agarwal, Thore Graepel, Ralf Herbrich, Dan Roth:

A Large Deviation Bound for the Area Under the ROC Curve. 9-16 - Yoshua Bengio, Martin Monperrus:

Non-Local Manifold Tangent Learning. 129-136 - Shantanu Chakrabartty, Gert Cauwenberghs:

Sub-Microwatt Analog VLSI Support Vector Machine for Pattern Classification and Sequence Estimation. 249-256 - Antonio Torralba, Kevin P. Murphy, William T. Freeman:

Contextual Models for Object Detection Using Boosted Random Fields. 1401-1408 - Manfred Opper, Ole Winther:

Expectation Consistent Free Energies for Approximate Inference. 1001-1008 - Baranidharan Raman, Ricardo Gutierrez-Osuna:

Chemosensory Processing in a Spiking Model of the Olfactory Bulb: Chemotopic Convergence and Center Surround Inhibition. 1105-1112 - Scott Gaffney, Padhraic Smyth:

Joint Probabilistic Curve Clustering and Alignment. 473-480 - Richard S. Zemel, Quentin J. M. Huys, Rama Natarajan, Peter Dayan:

Probabilistic Computation in Spiking Populations. 1609-1616 - Dustin Lang, Nando de Freitas:

Beat Tracking the Graphical Model Way. 745-752 - Vladimir Koltchinskii, Manel Martínez-Ramón, Stefan Posse:

Optimal Aggregation of Classifiers and Boosting Maps in Functional Magnetic Resonance Imaging. 705-712 - Satinder Singh, Andrew G. Barto, Nuttapong Chentanez:

Intrinsically Motivated Reinforcement Learning. 1281-1288 - Max Welling, Michal Rosen-Zvi, Geoffrey E. Hinton:

Exponential Family Harmoniums with an Application to Information Retrieval. 1481-1488 - Joseph Bockhorst, Mark Craven:

Markov Networks for Detecting Overalpping Elements in Sequence Data. 193-200 - David H. Stern, Thore Graepel, David J. C. MacKay:

Modelling Uncertainty in the Game of Go. 1353-1360 - Eizaburo Doi, Michael S. Lewicki:

Sparse Coding of Natural Images Using an Overcomplete Set of Limited Capacity Units. 377-384 - Erik G. Learned-Miller, Parvez Ahammad:

Joint MRI Bias Removal Using Entropy Minimization Across Images. 761-768 - Yee Whye Teh, Michael I. Jordan, Matthew J. Beal, David M. Blei:

Sharing Clusters among Related Groups: Hierarchical Dirichlet Processes. 1385-1392 - Anton Schwaighofer, Volker Tresp, Kai Yu:

Learning Gaussian Process Kernels via Hierarchical Bayes. 1209-1216 - Inderjit S. Dhillon, Suvrit Sra, Joel A. Tropp:

Triangle Fixing Algorithms for the Metric Nearness Problem. 361-368 - Omid Madani, David M. Pennock, Gary William Flake:

Co-Validation: Using Model Disagreement on Unlabeled Data to Validate Classification Algorithms. 873-880 - Michael D. Colagrosso, Michael C. Mozer:

Theories of Access Consciousness. 289-296 - Francis R. Bach, Romain Thibaux, Michael I. Jordan:

Computing regularization paths for learning multiple kernels. 73-80 - Eyal Even-Dar, Sham M. Kakade, Yishay Mansour:

Experts in a Markov Decision Process. 401-408 - Miguel Á. Carreira-Perpiñán, Richard S. Zemel:

Proximity Graphs for Clustering and Manifold Learning. 225-232 - Felix A. Wichmann, Arnulf B. A. Graf, Eero P. Simoncelli, Heinrich H. Bülthoff, Bernhard Schölkopf:

Machine Learning Applied to Perception: Decision Images for Gender Classification. 1489-1496 - Kosuke Hamaguchi, Masato Okada, Kazuyuki Aihara:

Theory of localized synfire chain: characteristic propagation speed of stable spike pattern. 553-560 - Erik Aurell, Uri Gordon, Scott Kirkpatrick:

Comparing Beliefs, Surveys, and Random Walks. 49-56 - Charles A. Micchelli, Massimiliano Pontil:

Kernels for Multi--task Learning. 921-928 - Ariadna Quattoni, Michael Collins, Trevor Darrell:

Conditional Random Fields for Object Recognition. 1097-1104 - K. Y. Michael Wong, S. W. Lim, Zhuo Gao:

Multi-agent Cooperation in Diverse Population Games. 1521-1528 - David P. Wipf, Bhaskar D. Rao:

L_0-norm Minimization for Basis Selection. 1513-1520 - Sham M. Kakade, Andrew Y. Ng:

Online Bounds for Bayesian Algorithms. 641-648 - Robert D. Kleinberg:

Nearly Tight Bounds for the Continuum-Armed Bandit Problem. 697-704 - Evan C. Smith, Michael S. Lewicki:

Learning Efficient Auditory Codes Using Spikes Predicts Cochlear Filters. 1289-1296 - Linli Xu, James Neufeld, Bryce Larson, Dale Schuurmans:

Maximum Margin Clustering. 1537-1544 - Roland Memisevic, Geoffrey E. Hinton:

Multiple Relational Embedding. 913-920 - S. V. N. Vishwanathan, Alexander J. Smola:

Binet-Cauchy Kernels. 1441-1448 - Richard S. Sutton, Brian Tanner:

Temporal-Difference Networks. 1377-1384 - Kumar Chellapilla, Patrice Y. Simard:

Using Machine Learning to Break Visual Human Interaction Proofs (HIPs). 265-272 - Alan Stocker, Eero P. Simoncelli:

Constraining a Bayesian Model of Human Visual Speed Perception. 1361-1368 - Olivier Chapelle, Zaïd Harchaoui:

A Machine Learning Approach to Conjoint Analysis. 257-264 - Adrian Corduneanu, Tommi S. Jaakkola:

Distributed Information Regularization on Graphs. 297-304 - Haidong Wang, Eran Segal, Asa Ben-Hur, Daphne Koller, Douglas L. Brutlag:

Identifying Protein-Protein Interaction Sites on a Genome-Wide Scale. 1465-1472 - Tim K. Marks, John R. Hershey, J. Cooper Roddey, Javier R. Movellan:

Joint Tracking of Pose, Expression, and Texture using Conditionally Gaussian Filters. 889-896 - Zhengdong Lu, Todd K. Leen:

Semi-supervised Learning with Penalized Probabilistic Clustering. 849-856 - Laura Walker Renninger, James M. Coughlan, Preeti Verghese, Jitendra Malik:

An Information Maximization Model of Eye Movements. 1121-1128 - Maxim Likhachev, Geoffrey J. Gordon, Sebastian Thrun:

Planning for Markov Decision Processes with Sparse Stochasticity. 785-792 - Balázs Kégl:

Generalization Error and Algorithmic Convergence of Median Boosting. 657-664 - Erik B. Sudderth, Michael I. Mandel, William T. Freeman, Alan S. Willsky:

Distributed Occlusion Reasoning for Tracking with Nonparametric Belief Propagation. 1369-1376 - Rion Snow, Daniel Jurafsky, Andrew Y. Ng:

Learning Syntactic Patterns for Automatic Hypernym Discovery. 1297-1304 - Pieter Abbeel, Andrew Y. Ng:

Learning first-order Markov models for control. 1-8

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














