default search action
Uddalak Bhattacharya
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2022
- [c10]Stafford Hutchins, Jiabo Li, Atresh Sanne, Zhanping Chen, Mohammad M. Hasan, Uddalak Bhattacharya, Eric Karl, Jaydeep P. Kulkarni:
A High Output Power 1V Charge Pump and Power Switch for Configurable, In-Field-Programmable Metal eFuse on Intel 4 Logic Technology. VLSI Technology and Circuits 2022: 136-137 - 2020
- [j17]Arindrajit Ghosh, Uddalak Bhattacharya, Manish Kumar, Swapna Banerjee:
Compiler compatible 5.66 Mb/mm2 8T 1R1W register file in 14 nm FinFET technology. Integr. 70: 126-137 (2020)
2010 – 2019
- 2018
- [j16]Arindrajit Ghosh, Uddalak Bhattacharya, Swapna Banerjee:
Contention free delayed keeper for high density large signal sensing memory compiler. Integr. 62: 24-33 (2018) - 2017
- [j15]Zhanping Chen, Sarvesh H. Kulkarni, Vincent E. Dorgan, Salil Manohar Rajarshi, Lei Jiang, Uddalak Bhattacharya:
A 0.9-μm2 1T1R Bit Cell in 14-nm High-Density Metal Fuse Technology for High-Volume Manufacturing and In-Field Programming. IEEE J. Solid State Circuits 52(4): 933-939 (2017) - 2016
- [j14]Eric Karl, Zheng Guo, James W. Conary, Jeffrey L. Miller, Yong-Gee Ng, Satyanand Nalam, Daeyeon Kim, John Keane, Xiaofei Wang, Uddalak Bhattacharya, Kevin Zhang:
A 0.6 V, 1.5 GHz 84 Mb SRAM in 14 nm FinFET CMOS Technology With Capacitive Charge-Sharing Write Assist Circuitry. IEEE J. Solid State Circuits 51(1): 222-229 (2016) - [j13]Sarvesh H. Kulkarni, Zhanping Chen, Balaji Srinivasan, Brian Pedersen, Uddalak Bhattacharya, Kevin Zhang:
A High-Density Metal-Fuse Technology Featuring a 1.6 V Programmable Low-Voltage Bit Cell With Integrated 1 V Charge Pumps in 22 nm Tri-Gate CMOS. IEEE J. Solid State Circuits 51(4): 1003-1008 (2016) - [c9]Zhanping Chen, Sarvesh H. Kulkarni, Vincent E. Dorgan, Uddalak Bhattacharya, Kevin Zhang:
A 0.9um2 1T1R bit cell in 14nm SoC process for metal-fuse OTP array with hierarchical bitline, bit level redundancy, and power gating. VLSI Circuits 2016: 1-2 - 2015
- [c8]Eric Karl, Zheng Guo, James W. Conary, Jeffrey L. Miller, Yong-Gee Ng, Satyanand Nalam, Daeyeon Kim, John Keane, Uddalak Bhattacharya, Kevin Zhang:
17.1 A 0.6V 1.5GHz 84Mb SRAM design in 14nm FinFET CMOS technology. ISSCC 2015: 1-3 - [c7]Sarvesh H. Kulkarni, Zhanping Chen, Balaji Srinivasan, Brian Pedersen, Uddalak Bhattacharya, Kevin Zhang:
Low-voltage metal-fuse technology featuring a 1.6V-programmable 1T1R bit cell with an integrated 1V charge pump in 22nm tri-gate process. VLSIC 2015: 174- - [c6]Kyung-Hoae Koo, Liqiong Wei, John Keane, Uddalak Bhattacharya, Eric A. Karl, Kevin Zhang:
A 0.094um2 high density and aging resilient 8T SRAM with 14nm FinFET technology featuring 560mV VMIN with read and write assist. VLSIC 2015: 266- - 2013
- [j12]Eric Karl, Yih Wang, Yong-Gee Ng, Zheng Guo, Fatih Hamzaoglu, Mesut Meterelliyoz, John Keane, Uddalak Bhattacharya, Kevin Zhang, Kaizad Mistry, Mark Bohr:
A 4.6 GHz 162 Mb SRAM Design in 22 nm Tri-Gate CMOS Technology With Integrated Read and Write Assist Circuitry. IEEE J. Solid State Circuits 48(1): 150-158 (2013) - 2012
- [c5]Eric Karl, Yih Wang, Yong-Gee Ng, Zheng Guo, Fatih Hamzaoglu, Uddalak Bhattacharya, Kevin Zhang, Kaizad Mistry, Mark Bohr:
A 4.6GHz 162Mb SRAM design in 22nm tri-gate CMOS technology with integrated active VMIN-enhancing assist circuitry. ISSCC 2012: 230-232 - 2011
- [j11]Fatih Hamzaoglu, Yih Wang, Pramod Kolar, Liqiong Wei, Yong-Gee Ng, Uddalak Bhattacharya, Kevin Zhang:
Bit Cell Optimizations and Circuit Techniques for Nanoscale SRAM Design. IEEE Des. Test Comput. 28(1): 22-31 (2011) - [j10]Pramod Kolar, Eric Karl, Uddalak Bhattacharya, Fatih Hamzaoglu, Henry Nho, Yong-Gee Ng, Yih Wang, Kevin Zhang:
A 32 nm High-k Metal Gate SRAM With Adaptive Dynamic Stability Enhancement for Low-Voltage Operation. IEEE J. Solid State Circuits 46(1): 76-84 (2011) - 2010
- [j9]Yih Wang, Uddalak Bhattacharya, Fatih Hamzaoglu, Pramod Kolar, Yong-Gee Ng, Liqiong Wei, Ying Zhang, Kevin Zhang, Mark Bohr:
A 4.0 GHz 291 Mb Voltage-Scalable SRAM Design in a 32 nm High-k + Metal-Gate CMOS Technology With Integrated Power Management. IEEE J. Solid State Circuits 45(1): 103-110 (2010) - [c4]Hyunwoo Nho, Pramod Kolar, Fatih Hamzaoglu, Yih Wang, Eric Karl, Yong-Gee Ng, Uddalak Bhattacharya, Kevin Zhang:
A 32nm High-k metal gate SRAM with adaptive dynamic stability enhancement for low-voltage operation. ISSCC 2010: 346-347
2000 – 2009
- 2009
- [j8]Fatih Hamzaoglu, Kevin Zhang, Yih Wang, Hong Jo Ahn, Uddalak Bhattacharya, Zhanping Chen, Yong-Gee Ng, Andrei Pavlov, Ken Smits, Mark Bohr:
A 3.8 GHz 153 Mb SRAM Design With Dynamic Stability Enhancement and Leakage Reduction in 45 nm High-k Metal Gate CMOS Technology. IEEE J. Solid State Circuits 44(1): 148-154 (2009) - [c3]Yih Wang, Uddalak Bhattacharya, Fatih Hamzaoglu, Pramod Kolar, Yong-Gee Ng, Liqiong Wei, Ying Zhang, Kevin Zhang, Mark Bohr:
A 4.0 GHz 291Mb voltage-scalable SRAM design in 32nm high-κ metal-gate CMOS with integrated power management. ISSCC 2009: 456-457 - 2008
- [j7]Yih Wang, Hong Jo Ahn, Uddalak Bhattacharya, Zhanping Chen, Tom Coan, Fatih Hamzaoglu, Walid M. Hafez, Chia-Hong Jan, Pramod Kolar, Sarvesh H. Kulkarni, Jie-Feng Lin, Yong-Gee Ng, Ian Post, Liqiong Wei, Ying Zhang, Kevin Zhang, Mark Bohr:
A 1.1 GHz 12 µA/Mb-Leakage SRAM Design in 65 nm Ultra-Low-Power CMOS Technology With Integrated Leakage Reduction for Mobile Applications. IEEE J. Solid State Circuits 43(1): 172-179 (2008) - [c2]Fatih Hamzaoglu, Kevin Zhang, Yih Wang, Hong Jo Ahn, Uddalak Bhattacharya, Zhanping Chen, Yong-Gee Ng, Andrei Pavlov, Ken Smits, Mark Bohr:
A 153Mb-SRAM Design with Dynamic Stability Enhancement and Leakage Reduction in 45nm High-Κ Metal-Gate CMOS Technology. ISSCC 2008: 376-377 - 2007
- [c1]Yih Wang, Hong Jo Ahn, Uddalak Bhattacharya, Tom Coan, Fatih Hamzaoglu, Walid M. Hafez, Chia-Hong Jan, Pramod Kolar, Sarvesh H. Kulkarni, Jie-Feng Lin, Yong-Gee Ng, Ian Post, Liqiong Wei, Yih Zhang, Kevin Zhang, Mark Bohr:
A 1.1GHz 12μA/Mb-Leakage SRAM Design in 65nm Ultra-Low-Power CMOS with Integrated Leakage Reduction for Mobile Applications. ISSCC 2007: 324-606 - 2006
- [j6]Kevin Zhang, Uddalak Bhattacharya, Zhanping Chen, Fatih Hamzaoglu, Daniel Murray, Narendra Vallepalli, Yih Wang, Bo Zheng, Mark Bohr:
A 3-GHz 70-mb SRAM in 65-nm CMOS technology with integrated column-based dynamic power supply. IEEE J. Solid State Circuits 41(1): 146-151 (2006) - 2005
- [j5]Kevin Zhang, Uddalak Bhattacharya, Zhanping Chen, Fatih Hamzaoglu, Daniel Murray, Narendra Vallepalli, Yih Wang, Bo Zheng, Mark Bohr:
SRAM design on 65-nm CMOS technology with dynamic sleep transistor for leakage reduction. IEEE J. Solid State Circuits 40(4): 895-901 (2005)
1990 – 1999
- 1999
- [j4]Cangsang Zhao, Uddalak Bhattacharya, Martin Denham, Jim Kolousek, Yi Lu, Yong-Gee Ng, Novat Nintunze, Kamal Sarkez, Hemmige D. Varadarajan:
An 18-Mb, 12.3-GB/s CMOS pipeline-burst cache SRAM with 1.54 Gb/s/pin. IEEE J. Solid State Circuits 34(11): 1564-1570 (1999) - 1996
- [j3]Rajasekhar Pullela, Uddalak Bhattacharya, Scott T. Allen, Mark J. W. Rodwell:
Multiplexer/demultiplexer IC technology for 100 Gb/s fiber-optic transmission. IEEE J. Solid State Circuits 31(5): 740-743 (1996) - 1995
- [j2]Fleming Hoeg, Stephen I. Long, Uddalak Bhattacharya:
Design and performance of multistage GaAs dynamic logic. IEEE J. Solid State Circuits 30(5): 580-585 (1995) - 1994
- [j1]Mark J. W. Rodwell, Scott T. Allen, Ruai Y. Yu, Michael G. Case, Uddalak Bhattacharya, Madhukar Reddy, Eric Carman, Masayuki Kamegawa, Yoshiyuki Konishi, Joe Pusl, Rajasekhar Pullela:
Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics. Proc. IEEE 82(7): 1037-1059 (1994)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-04-29 20:27 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint