


Остановите войну!
for scientists:


default search action
Hideharu Amano
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j117]Ryota Yasudo
, Koji Nakano
, Michihiro Koibuchi, Hiroki Matsutani, Hideharu Amano:
Designing low-diameter interconnection networks with multi-ported host-switch graphs. Concurr. Comput. Pract. Exp. 35(11) (2023) - [j116]Naoya Niwa, Yoshiya Shikama, Hideharu Amano, Michihiro Koibuchi:
A Compression Router for Low-Latency Network-on-Chip. IEICE Trans. Inf. Syst. 106(2): 170-180 (2023) - [j115]Kaijie Wei, Yuki Kuno, Masatoshi Arai, Hideharu Amano:
RT-libSGM: FPGA-Oriented Real-Time Stereo Matching System with High Scalability. IEICE Trans. Inf. Syst. 106(3): 337-348 (2023) - [j114]Yasuyu Fukushima, Kensuke Iizuka, Hideharu Amano:
Parallel Implementation of CNN on Multi-FPGA Cluster. IEICE Trans. Inf. Syst. 106(7): 1198-1208 (2023) - [j113]Takuya Kojima
, Hayate Okuhara, Masaaki Kondo
, Hideharu Amano:
A Scalable Body Bias Optimization Method Toward Low-Power CGRAs. IEEE Micro 43(1): 49-57 (2023) - [j112]Aika Kamei
, Hideharu Amano, Takuya Kojima
, Daiki Yokoyama, Kimiyoshi Usami
, Keizo Hiraga, Kenta Suzuki, Kazuhiro Bessho:
A Variation-Aware MTJ Store Energy Estimation Model for Edge Devices With Verify-and-Retryable Nonvolatile Flip-Flops. IEEE Trans. Very Large Scale Integr. Syst. 31(4): 532-542 (2023) - [c381]Ziquan Qin, Kaijie Wei, Hideharu Amano, Kazuhiro Nakadai:
Low power implementation of Geometric High-order Decorrelation-based Source Separation on an FPGA board. COOL CHIPS 2023: 1-6 - [c380]Hideharu Amano
:
Efficient FPGA Implementation of Amoeba-inspired SAT Solver with Feedback and Bounceback Control: Harnessing Variable-Level Parallelism for Large-Scale Problem Solving in Edge Computing. HEART 2023: 41-48 - [c379]Haris Gulzar, Muhammad Shakeel, Katsutoshi Itoyama, Kazuhiro Nakadai, Kenji Nishida, Hideharu Amano, Takeharu Eda:
FPGA based Power-Efficient Edge Server to Accelerate Speech Interface for Socially Assistive Robotics. SII 2023: 1-6 - 2022
- [j111]Tomoki Shimizu, Kohei Ito, Kensuke Iizuka, Kazuei Hironaka, Hideharu Amano:
The Implementation of a Hybrid Router and Dynamic Switching Algorithm on a Multi-FPGA System. IEICE Trans. Inf. Syst. 105-D(12): 2008-2018 (2022) - [j110]Naoya Niwa, Hideharu Amano, Michihiro Koibuchi:
Boosting the Performance of Interconnection Networks by Selective Data Compression. IEICE Trans. Inf. Syst. 105-D(12): 2057-2065 (2022) - [j109]Renzhi Mao, Kaijie Wei, Hideharu Amano, Yuki Kuno, Masatoshi Arai:
Weighted Least Square Filter for Improving the Quality of Depth Map on FPGA. Int. J. Netw. Comput. 12(2): 425-445 (2022) - [j108]Yoshiya Shikama
, Ryuta Kawano
, Hiroki Matsutani, Hideharu Amano, Yusuke Nagasaka, Naoto Fukumoto
, Michihiro Koibuchi:
A traffic-aware memory-cube network using bypassing. Microprocess. Microsystems 90: 104471 (2022) - [j107]Takuya Kojima
, Ayaka Ohwada, Hideharu Amano:
Mapping-Aware Kernel Partitioning Method for CGRAs Assisted by Deep Learning. IEEE Trans. Parallel Distributed Syst. 33(5): 1213-1230 (2022) - [c378]Kensuke Iizuka, Haruna Takagi, Aika Kamei
, Kazuei Hironaka, Hideharu Amano:
Power Analysis of Directly-connected FPGA Clusters. COOL CHIPS 2022: 1-6 - [c377]Takuya Kojima
, Hayate Okuhara, Masaaki Kondo, Hideharu Amano:
Body Bias Control on a CGRA based on Convex Optimization. COOL CHIPS 2022: 1-3 - [c376]Kohei Ito, Ryota Yasudo, Hideharu Amano:
Optimizing Application Mapping for Multi-FPGA Systems with Multi-ejection STDM Switches. FPL 2022: 143-147 - [c375]Morihiro Kuga, Masahiro Iida, Hideharu Amano:
FPL Demo: An FPGA-IP Prototype Chip for MEC devices. FPL 2022: 467 - [c374]Kaijie Wei, Yuki Kuno, Masatoshi Arai, Hideharu Amano:
RT-libSGM: An Implementation of a Real-time Stereo Matching System on FPGA. HEART 2022: 1-9 - [c373]Yuchen Chen, Kaijie Wei, Hiroaki Nishi, Hideharu Amano:
An Implementation of a 3D Image Filter for Motion Vector Generation on an FPGA Board. CANDAR 2022: 83-89 - [c372]Ryuta Kawano, Hiroki Matsutani, Michihiro Koibuchi, Hideharu Amano:
Dynamic Routing Reconfiguration for Low-Latency and Deadlock-Free Interconnection Networks. CANDAR 2022: 117-123 - [c371]Aoi Hiruma, Kensuke Iizuka, Hideharu Amano:
Toward a training of CNNs on a multi-FPGA system. CANDARW 2022: 229-235 - [c370]Zhongyang Hou, Kaijie Wei, Hideharu Amano, Kazuhiro Nakadai:
An FPGA off-loading of HARK sound source localization. CANDARW 2022: 236-240 - [c369]Pengyu Huang, Kaijie Wei, Hideharu Amano, Kaori Ohkoda, Masashi Aono:
Multi-board FPGA Implementation to Solve the Satisfiability Problem for Multi-Agent Path Finding in Smart Factory. CANDARW 2022: 406-410 - [c368]Kazuei Hironaka, Kensuke Iizuka, Hideharu Amano:
A Message Passing Interface Library for High-Level Synthesis on Multi-FPGA Systems. MCSoC 2022: 45-52 - [c367]Zhou Yuqing, Naoya Niwa, Hideharu Amano:
Distance Aware Compression for Low Latency High Bandwidth Interconnection Network. MCSoC 2022: 361-367 - [c366]Kimiyoshi Usami, Daiki Yokoyama, Aika Kamei
, Hideharu Amano:
Optimal switching time to minimize store energy in MTJ-based flip-flops under process and temperature variations. NorCAS 2022: 1-7 - [c365]Yoshiya Shikama, Michihiro Koibuchi, Hideharu Amano:
A Hardware Trojan Exploiting Coherence Protocol on NoCs. PDCAT 2022: 301-313 - [c364]Ayaka Ohwada, Takuya Kojima
, Hideharu Amano:
An efficient compilation of coarse-grained reconfigurable architectures utilizing pre-optimized sub-graph mappings. PDP 2022: 1-9 - [c363]Shigeyuki Takano, Hideharu Amano:
Reconfiguration Cost for Reconfigurable Computing Architectures. SNPD-Summer 2022: 62-67 - 2021
- [j106]Takeharu Ikezoe, Takuya Kojima
, Hideharu Amano:
Recovering Faulty Non-Volatile Flip Flops for Coarse-Grained Reconfigurable Architectures. IEICE Trans. Electron. 104-C(6): 215-225 (2021) - [j105]Kazuei Hironaka, Kensuke Iizuka, Miho Yamakura, Akram Ben Ahmed
, Hideharu Amano:
Remote Dynamic Reconfiguration of a Multi-FPGA System FiC (Flow-in-Cloud). IEICE Trans. Inf. Syst. 104-D(8): 1321-1331 (2021) - [j104]Kohei Ito, Kensuke Iizuka, Kazuei Hironaka, Yao Hu, Michihiro Koibuchi, Hideharu Amano:
Improving the Performance of Circuit-Switched Interconnection Network for a Multi-FPGA System. IEICE Trans. Inf. Syst. 104-D(12): 2029-2039 (2021) - [j103]Koki Honda, Kaijie Wei
, Masatoshi Arai, Hideharu Amano:
CLAHE Implementation and Evaluation on a Low-End FPGA Board by High-Level Synthesis. IEICE Trans. Inf. Syst. 104-D(12): 2048-2056 (2021) - [j102]Tomoya Itsubo, Michihiro Koibuchi, Hideharu Amano, Hiroki Matsutani:
An FPGA-Based Optimizer Design for Distributed Deep Learning with Multiple GPUs. IEICE Trans. Inf. Syst. 104-D(12): 2057-2067 (2021) - [j101]Miho Yamakura, Ryousei Takano, Akram Ben Ahmed
, Midori Sugaya, Hideharu Amano:
A Multi-Tenant Resource Management System for Multi-FPGA Systems. IEICE Trans. Inf. Syst. 104-D(12): 2078-2088 (2021) - [j100]Kaijie Wei, Koki Honda, Hideharu Amano:
An implementation methodology for Neural Network on a Low-end FPGA Board. Int. J. Netw. Comput. 11(2): 172-197 (2021) - [j99]Ryota Yasudo, José Gabriel de Figueiredo Coutinho, Ana Lucia Varbanescu, Wayne Luk, Hideharu Amano, Tobias Becker, Ce Guo:
Analytical Performance Estimation for Large-Scale Reconfigurable Dataflow Platforms. ACM Trans. Reconfigurable Technol. Syst. 14(3): 12:1-12:21 (2021) - [c362]Kazuei Hironaka, Kensuke Iizuka, Hideharu Amano:
Implementing VTA, a tensor accelerator on Flow-in-Cloud. ACIT 2021: 46-50 - [c361]Ryuta Kawano
, Hiroki Matsutani, Michihiro Koibuchi, Hideharu Amano:
GPU Parallelization of All-Pairs-Shortest-Path Algorithm in Low-Degree Unweighted Regular Graph. ACIT 2021: 51-55 - [c360]Hideto Kayashima, Hideharu Amano:
TCI Tester: Tester for Through Chip Interface. ASP-DAC 2021: 103-104 - [c359]Tomoki Shimizu, Kohei Ito, Kensuke Iizuka, Kazuei Hironaka, Hideharu Amano:
Hybrid Network of Packet Switching and STDM in a Multi-FPGA System. COOL CHIPS 2021: 1-6 - [c358]Sannomiya Natsuho, Takeshi Ohkawa, Hideharu Amano, Midori Sugaya:
Power Consumption Reduction Method and Edge Offload Server for Multiple Robots. EDGE 2021: 1-19 - [c357]Ying Jie Yan, Hideharu Amano, Masashi Aono, Kaori Ohkoda, Shingo Fukuda, Kenta Saito, Seiya Kasai:
Resource-saving FPGA Implementation of the Satisfiability Problem Solver: AmoebaSATslim. FPT 2021: 1-5 - [c356]Hiroaki Suzuki, Wataru Takahashi, Kazutoshi Wakabayashi, Hideharu Amano:
A programming environment for multi-FPGA systems based on CyberWorkBench: an integrated design tool. HEART 2021: 5:1-5:6 - [c355]Naoya Niwa, Hideharu Amano, Michihiro Koibuchi:
Low-Latency High-Bandwidth Interconnection Networks by Selective Packet Compression. CANDAR 2021: 56-64 - [c354]Takumi Inage, Kazuei Hironaka, Kensuke Iizuka, Kohei Ito, Yasuyu Fukushima, Mitaro Namiki, Hideharu Amano:
M-KUBOS/PYNQ Cluster for multi-access edge computing. CANDAR 2021: 95-101 - [c353]Hideto Kayashima, Hideharu Amano:
Analysis of Resistance Distribution and Voltage Drop in Chips with Inductive Coupling Wireless Communication Interface. CANDAR (Workshops) 2021: 292-296 - [c352]Renzhi Mao, Kaijie Wei
, Hideharu Amano, Yuki Kuno, Masatoshi Arai:
Weight Least Square Filter for Improving the Quality of Depth Map on FPGA. CANDAR (Workshops) 2021: 297-300 - [c351]Yasuyu Fukushima, Kensuke Iizuka, Hideharu Amano:
Parallel Implementation of CNN on Multi-FPGA Cluster. MCSoC 2021: 77-83 - [c350]Aika Kamei
, Takuya Kojima
, Hideharu Amano, Daiki Yokoyama, Hisato Miyauchi, Kimiyoshi Usami, Keizo Hiraga, Kenta Suzuki, Kazuhiro Bessho:
Energy saving in a multi-context coarse grained reconfigurable array with non-volatile flip-flops. MCSoC 2021: 273-280 - [c349]Naoya Niwa, Yoshiya Shikama, Hideharu Amano, Michihiro Koibuchi:
A Case for Low-Latency Network-on-Chip using Compression Routers. PDP 2021: 134-142 - [c348]Yoshiya Shikama, Ryuta Kawano
, Hiroki Matsutani, Hideharu Amano, Yusuke Nagasaka, Naoto Fukumoto, Michihiro Koibuchi:
Low-Latency Low-Energy Memory-Cube Networks using Dual-Voltage Datapaths. PDP 2021: 143-147 - 2020
- [j98]Ryuta Kawano
, Ryota Yasudo
, Hiroki Matsutani, Michihiro Koibuchi, Hideharu Amano:
A Generalized Theory Based on the Turn Model for Deadlock-Free Irregular Networks. IEICE Trans. Inf. Syst. 103-D(1): 101-110 (2020) - [j97]Yuxi Sun, Hideharu Amano:
FiC-RNN: A Multi-FPGA Acceleration Framework for Deep Recurrent Neural Networks. IEICE Trans. Inf. Syst. 103-D(12): 2457-2462 (2020) - [j96]Ryuta Kawano
, Ryota Yasudo
, Hiroki Matsutani, Michihiro Koibuchi, Hideharu Amano:
Traffic-Independent Multi-Path Routing for High-Throughput Data Center Networks. IEICE Trans. Inf. Syst. 103-D(12): 2471-2479 (2020) - [j95]Shin Nishio
, Yulu Pan, Takahiko Satoh, Hideharu Amano, Rodney Van Meter
:
Extracting Success from IBM's 20-Qubit Machines Using Error-Aware Compilation. ACM J. Emerg. Technol. Comput. Syst. 16(3): 32:1-32:25 (2020) - [j94]Takuya Kojima
, Nguyen Anh Vu Doan
, Hideharu Amano:
GenMap: A Genetic Algorithmic Approach for Optimizing Spatial Mapping of Coarse-Grained Reconfigurable Architectures. IEEE Trans. Very Large Scale Integr. Syst. 28(11): 2383-2396 (2020) - [c347]M. M. Imdad Ullah, Akram Ben Ahmed
, Hideharu Amano:
Implementation of FM-Index Based Pattern Search on a Multi-FPGA System. ARC 2020: 376-391 - [c346]Kimiyoshi Usami, Sosuke Akiba, Hideharu Amano, Takeharu Ikezoe, Keizo Hiraga, Kenta Suzuki, Yasuo Kanda:
Non-Volatile Coarse Grained Reconfigurable Array Enabling Two-step Store Control for Energy Minimization. COOL CHIPS 2020: 1-3 - [c345]Ryuta Kawano
, Hiroki Matsutani, Hideharu Amano:
Layout-Oriented Low-Diameter Topology for HPC Interconnection Networks. CANDAR (Workshops) 2020: 93-99 - [c344]Daniel Pinheiro Leal, Midori Sugaya, Hideharu Amano, Takeshi Ohkawa:
FPGA Acceleration of ROS2-Based Reinforcement Learning Agents. CANDAR (Workshops) 2020: 106-112 - [c343]Manfred Orsztynowicz, Hideharu Amano, Kenichi Kubota, Takaaki Miyajima:
Exploiting temporal parallelism in particle-based incompressive fluid simulation on FPGA. CANDAR 2020: 195-201 - [c342]Kohei Ito, Kensuke Iizuka, Kazuei Hironaka, Yao Hu, Michihiro Koibuchi, Hideharu Amano:
Implementing a Multi-ejection Switch and Making the Use of Multiple Lanes in a Circuit-switched Multi-FPGA System. CANDAR (Workshops) 2020: 211-217 - [c341]Kaijie Wei
, Koki Honda, Hideharu Amano:
An implementation methodology for Neural Network on a Low-end FPGA Board. CANDAR 2020: 228-234 - [c340]Yugo Yamauchi, Akram Ben Ahmed, Kazuei Hironaka, Kensuke Iizuka, Hideharu Amano:
Horizontal division of deep learning applications with all-to-all communication on a multi-FPGA system. CANDAR (Workshops) 2020: 277-281 - [c339]Koki Honda, Kaijie Wei
, Masatoshi Arai, Hideharu Amano:
CLAHE implementation on a low-end FPGA board by high-level synthesis. CANDAR (Workshops) 2020: 282-285 - [c338]Daniel Pinheiro Leal, Midori Sugaya, Hideharu Amano, Takeshi Ohkawa:
Automated Integration of High-Level Synthesis FPGA Modules with ROS2 Systems. FPT 2020: 292-293 - [c337]Kensuke Iizuka, Kohei Ito, Kazuei Hironaka, Hideharu Amano:
A Method of Partitioning Convolutional Layer to Multiple FPGAs. ISOCC 2020: 25-26 - [c336]Tomoya Itsubo, Michihiro Koibuchi, Hideharu Amano, Hiroki Matsutani:
Accelerating Deep Learning using Multiple GPUs and FPGA-Based 10GbE Switch. PDP 2020: 102-109
2010 – 2019
- 2019
- [j93]Takuya Kojima
, Hideharu Amano:
A Fine-Grained Multicasting of Configuration Data for Coarse-Grained Reconfigurable Architectures. IEICE Trans. Inf. Syst. 102-D(7): 1247-1256 (2019) - [j92]Ryota Yasudo
, Michihiro Koibuchi, Koji Nakano
, Hiroki Matsutani, Hideharu Amano:
Designing High-Performance Interconnection Networks with Host-Switch Graphs. IEEE Trans. Parallel Distributed Syst. 30(2): 315-330 (2019) - [c335]Yuta Tokusashi, Hiroki Matsutani, Hideharu Amano:
Key-value Store Chip Design for Low Power Consumption. COOL CHIPS 2019: 1-3 - [c334]Yugo Yamauchi, Kazusa Musha, Hideharu Amano:
Implementing a large application(LSTM) on the multi-FPGA system: Flow-in-Cloud. COOL CHIPS 2019: 1-3 - [c333]Michihiro Koibuchi, Lambert Leong, Tomohiro Totoki, Naoya Niwa, Hiroki Matsutani, Hideharu Amano, Henri Casanova:
Sparse 3-D NoCs with Inductive Coupling. DAC 2019: 49 - [c332]Takuya Kojima
, Naoki Ando, Yusuke Matsushita, Hideharu Amano:
Demonstration of Low Power Stream Processing Using a Variable Pipelined CGRA. FPL 2019: 411-412 - [c331]Kazuei Hironaka, Kensuke Iizuka, Akram Ben Ahmed, M. M. Imdad Ullah, Yugo Yamauchi, Yuxi Sun, Miho Yamakura, Aoi Hiruma, Hideharu Amano:
Demonstration of Flow-in-Cloud: A Multi-FPGA System. FPL 2019: 417-418 - [c330]Hiroyuki Noda, Manfred Orsztynowicz, Kensuke Iizuka, Takaaki Miyajima, Naoyuki Fujita, Hideharu Amano:
An ARM-based heterogeneous FPGA accelerator for Hall thruster simulation. HEART 2019: 9:1-9:6 - [c329]Miho Yamakura, Kazuei Hironaka, Keita Azegami, Kazusa Musha, Hideharu Amano:
The Evaluation of Partial Reconfiguration for a Multi-board FPGA System FiCSW. HEART 2019: 15:1-15:4 - [c328]Yuxi Sun, Akram Ben Ahmed
, Hideharu Amano:
Acceleration of Deep Recurrent Neural Networks with an FPGA cluster. HEART 2019: 18:1-18:4 - [c327]Ryuta Kawano
, Hiroki Matsutani, Hideharu Amano:
Deadlock-Free Layered Routing for Infiniband Networks. CANDAR Workshops 2019: 84-90 - [c326]Hideto Kayashima, Takuya Kojima
, Hayate Okuhara, Tsunaaki Shidei, Hideharu Amano:
Real Chip Performance Evaluation on Through Chip Interface IP for Renesas SOTB 65nm Process. CANDAR Workshops 2019: 269-274 - [c325]Ryosuke Kazami, Hideharu Amano:
A Rapid Optimization Method for Visual Indirect SLAM Using a Subset of Feature Points. CANDAR Workshops 2019: 275-279 - [c324]Yasuaki Okamoto, Hideharu Amano:
Acceleration of ART Algorithm on an FPGA Board with Xilinx SDAccel. CANDAR Workshops 2019: 280-284 - [c323]Takeharu Ikezoe, Takuya Kojima
, Hideharu Amano:
A Coarse-Grained Reconfigurable Architecture with a Fault Tolerant Non-Volatile Configurable Memory. FPT 2019: 81-89 - [c322]Hayate Okuhara, Ryosuke Kazami, Hideharu Amano:
A System Delay Monitor Exploiting Automatic Cell-Based Design Flow and Post-Silicon Calibration. MCSoC 2019: 32-37 - [c321]Koki Honda, Kaijie Wei
, Hideharu Amano:
FPGA/Python Co-Design for Lane Line Detection on a PYNQ-Z1 Board. MCSoC 2019: 53-60 - [c320]Sayaka Terashima, Takuya Kojima
, Hayate Okuhara, Kazusa Musha, Hideharu Amano, Ryuichi Sakamoto, Masaaki Kondo, Mitaro Namiki:
A Preliminary Evaluation of Building Block Computing Systems. MCSoC 2019: 312-319 - [c319]Keita Azegami, Kazusa Musha, Kazuei Hironaka, Akram Ben Ahmed, Michihiro Koibuchi, Yao Hu, Hideharu Amano:
A STDM (Static Time Division Multiplexing) Switch on a Multi-FPGA System. MCSoC 2019: 328-333 - [c318]Takuya Kojima
, Hideharu Amano:
Refinements in Data Manipulation Method for Coarse Grained Reconfigurable Architectures. ReCoSoC 2019: 113-120 - [c317]Kazuei Hironaka, Akram Ben Ahmed, Hideharu Amano:
Multi-FPGA Management on Flow-in-Cloud Prototype System. SNPD 2019: 443-448 - [i2]Shin Nishio, Yulu Pan, Takahiko Satoh, Hideharu Amano, Rodney Van Meter:
Extracting Success from IBM's 20-Qubit Machines Using Error-Aware Compilation. CoRR abs/1903.10963 (2019) - 2018
- [j91]Carlos Cesar Cortes Torres, Hayate Okuhara, Nobuyuki Yamasaki, Hideharu Amano:
Analysis of Body Bias Control Using Overhead Conditions for Real Time Systems: A Practical Approach. IEICE Trans. Inf. Syst. 101-D(4): 1116-1125 (2018) - [j90]Takuya Kojima
, Naoki Ando, Hayate Okuhara, Ng. Anh Vu Doan, Hideharu Amano:
Optimization of Body Biasing for Variable Pipelined Coarse-Grained Reconfigurable Architectures. IEICE Trans. Inf. Syst. 101-D(6): 1532-1540 (2018) - [j89]Koya Mitsuzuka, Michihiro Koibuchi, Hideharu Amano, Hiroki Matsutani:
Proxy Responses by FPGA-Based Switch for MapReduce Stragglers. IEICE Trans. Inf. Syst. 101-D(9): 2258-2268 (2018) - [j88]Akio Nomura, Yusuke Matsushita, Junichiro Kadomoto, Hiroki Matsutani, Tadahiro Kuroda, Hideharu Amano:
Escalator Network for a 3D Chip Stack with Inductive Coupling ThruChip Interface. Int. J. Netw. Comput. 8(1): 124-139 (2018) - [j87]Hayate Okuhara
, Akram Ben Ahmed
, Hideharu Amano:
Digitally Assisted On-Chip Body Bias Tuning Scheme for Ultra Low-Power VLSI Systems. IEEE Trans. Circuits Syst. I Regul. Pap. 65-I(10): 3241-3254 (2018) - [j86]Keita Azegami
, Hayate Okuhara
, Hideharu Amano:
Body Bias Control for Renewable Energy Source with a High Inner Resistance. IEEE Trans. Multi Scale Comput. Syst. 4(4): 605-612 (2018) - [j85]Hayate Okuhara
, Akram Ben Ahmed
, Johannes Maximilian Kühn, Hideharu Amano:
Asymmetric Body Bias Control With Low-Power FD-SOI Technologies: Modeling and Power Optimization. IEEE Trans. Very Large Scale Integr. Syst. 26(7): 1254-1267 (2018) - [c316]Kazusa Musha
, Tomohiro Kudoh, Hideharu Amano:
Deep Learning on High Performance FPGA Switching Boards: Flow-in-Cloud. ARC 2018: 43-54 - [c315]Kazuei Hironaka, Ng. Anh Vu Doan, Hideharu Amano:
Towards an Optimized Multi FPGA Architecture with STDM Network: A Preliminary Study. ARC 2018: 142-150 - [c314]Ryosuke Kazami, Hayate Okuhara, Hideharu Amano:
Design automation methodology of a critical path monitor for adaptive voltage controls. COOL CHIPS 2018: 1-3 - [c313]Amila Akagic
, Emir Buza
, Razija Turcinhodzic, Hana Haseljic, Hiroyuki Noda, Hideharu Amano:
Superpixel Accelerator for Computer Vision Applications on Arria 10 SoC. DDECS 2018: 55-60 - [c312]Ryota Yasudo
, Ana Lucia Varbanescu, José Gabriel F. Coutinho, Wayne Luk, Hideharu Amano:
Performance Prediction for Large-Scale Heterogeneous Platforms. FCCM 2018: 220 - [c311]Takuya Kojima
, Hideharu Amano:
A Configuration Data Multicasting Method for Coarse-Grained Reconfigurable Architectures. FPL 2018: 239-242 - [c310]Hideharu Amano:
Accelerator-in-Switch: A Novel Cooperation Framework for FPGAs and GPUs. FPT 2018: 22 - [c309]Ryota Yasudo
, José Gabriel F. Coutinho, Ana Lucia Varbanescu, Wayne Luk, Hideharu Amano, Tobias Becker
:
Performance Estimation for Exascale Reconfigurable Dataflow Platforms. FPT 2018: 314-317 - [c308]Kaijie Wei
, Koki Honda, Hideharu Amano:
FPGA Design for Autonomous Vehicle Driving Using Binarized Neural Networks. FPT 2018: 425-428 - [c307]Takuya Kojima
, Naoki Ando, Yusuke Matshushita, Hayate Okuhara, Ng. Anh Vu Doan, Hideharu Amano:
Real Chip Evaluation of a Low Power CGRA with Optimized Application Mapping. HEART 2018: 13:1-13:6 - [c306]Ryuta Kawano
, Ryota Yasudo
, Hiroki Matsutani, Hideharu Amano:
k-Optimized Path Routing for High-Throughput Data Center Networks. CANDAR 2018: 99-105 - [c305]Naoya Niwa, Tomohiro Totoki, Hiroki Matsutani, Michihiro Koibuchi, Hideharu Amano:
An Trace-Driven Performance Prediction Method for Exploring NoC Design Optimization. CANDAR Workshops 2018: 182-185 - [c304]Hideki Shimura, Hiroyuki Noda, Hideharu Amano:
C4: An FPGA-based Compression Algorithm for ExpEther. CANDAR Workshops 2018: 356-362 - [c303]Tomohiro Totoki, Michihiro Koibuchi, Hideharu Amano:
An Extension of A Temperature Modeling Tool HotSpot 6.0 for Castle-of-Chips Stacking. CANDAR Workshops 2018: 363-369 - [c302]