


Остановите войну!
for scientists:


default search action
John Lygeros
Person information

- affiliation: ETH Zurich, Switzerland
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j118]Jeremy Coulson
, Henk J. van Waarde
, John Lygeros
, Florian Dörfler
:
A Quantitative Notion of Persistency of Excitation and the Robust Fundamental Lemma. IEEE Control. Syst. Lett. 7: 1243-1248 (2023) - [j117]Mohammad Khosravi
, Christopher König, Markus Maier
, Roy S. Smith
, John Lygeros
, Alisa Rupenyan
:
Safety-Aware Cascade Controller Tuning Using Constrained Bayesian Optimization. IEEE Trans. Ind. Electron. 70(2): 2128-2138 (2023) - [i112]Xavier Guidetti, Efe C. Balta, Yannick Nagel, Hang Yin, Alisa Rupenyan, John Lygeros:
Stress Flow Guided Non-Planar Print Trajectory Optimization for Additive Manufacturing of Anisotropic Polymers. CoRR abs/2301.04999 (2023) - 2022
- [j116]Andrea Martinelli, Matilde Gargiani, John Lygeros:
Data-driven optimal control with a relaxed linear program. Autom. 136: 110052 (2022) - [j115]Mohammad H. Mamduhi
, Efe C. Balta
, Alisa Rupenyan
, John Lygeros
:
Information-Operation Technology Integration in Industrial Cyberphysical Systems. Computer 55(11): 115-118 (2022) - [j114]Sandeep Menta
, Joseph Warrington
, John Lygeros
, Manfred Morari
:
Learning Q-Function Approximations for Hybrid Control Problems. IEEE Control. Syst. Lett. 6: 1364-1369 (2022) - [j113]Dominic Liao-McPherson
, Efe C. Balta
, Alisa Rupenyan
, John Lygeros
:
On Robustness in Optimization-Based Constrained Iterative Learning Control. IEEE Control. Syst. Lett. 6: 2846-2851 (2022) - [j112]Matilde Gargiani
, Andrea Zanelli, Dominic Liao-McPherson
, Tyler H. Summers
, John Lygeros
:
Dynamic Programming Through the Lens of Semismooth Newton-Type Methods. IEEE Control. Syst. Lett. 6: 2996-3001 (2022) - [j111]Andrea Martinelli
, Matilde Gargiani
, Marina Draskovic
, John Lygeros
:
Data-Driven Optimal Control of Affine Systems: A Linear Programming Perspective. IEEE Control. Syst. Lett. 6: 3092-3097 (2022) - [j110]Carlo Cenedese
, Patrick Stokkink
, Nikolas Geroliminis, John Lygeros
:
Incentive-based electric vehicle charging for managing bottleneck congestion. Eur. J. Control 68: 100697 (2022) - [j109]Xavier Guidetti
, Alisa Rupenyan
, Lutz Fassl
, Majid Nabavi, John Lygeros
:
Advanced Manufacturing Configuration by Sample-Efficient Batch Bayesian Optimization. IEEE Robotics Autom. Lett. 7(4): 11886-11893 (2022) - [j108]Paul Nathaniel Beuchat
, Joseph Warrington
, John Lygeros
:
Accelerated Point-Wise Maximum Approach to Approximate Dynamic Programming. IEEE Trans. Autom. Control. 67(1): 251-266 (2022) - [j107]Jeremy Coulson
, John Lygeros
, Florian Dörfler
:
Distributionally Robust Chance Constrained Data-Enabled Predictive Control. IEEE Trans. Autom. Control. 67(7): 3289-3304 (2022) - [j106]Ahmed Aboudonia
, Annika Eichler
, Francesco Cordiano
, Goran Banjac
, John Lygeros
:
Distributed Model Predictive Control With Reconfigurable Terminal Ingredients for Reference Tracking. IEEE Trans. Autom. Control. 67(11): 6263-6270 (2022) - [j105]Linbin Huang
, Jeremy Coulson
, John Lygeros
, Florian Dörfler
:
Decentralized Data-Enabled Predictive Control for Power System Oscillation Damping. IEEE Trans. Control. Syst. Technol. 30(3): 1065-1077 (2022) - [j104]Mohammad Khosravi
, Varsha Behrunani, Piotr Myszkorowski, Roy S. Smith
, Alisa Rupenyan
, John Lygeros
:
Performance-Driven Cascade Controller Tuning With Bayesian Optimization. IEEE Trans. Ind. Electron. 69(1): 1032-1042 (2022) - [c224]Ahmed Aboudonia, Andrea Martinelli, Nicolas Hoischen, John Lygeros:
Reconfigurable Plug-and-play Distributed Model Predictive Control for Reference Tracking. CDC 2022: 1130-1135 - [c223]Efe C. Balta, Andrea Iannelli, Roy S. Smith, John Lygeros:
Regret Analysis of Online Gradient Descent-based Iterative Learning Control with Model Mismatch. CDC 2022: 1479-1484 - [c222]Marta Fochesato, Carlo Cenedese, John Lygeros:
A Stackelberg game for incentive-based demand response in energy markets. CDC 2022: 2487-2492 - [c221]Benjamin Gravell, Matilde Gargiani, John Lygeros, Tyler H. Summers:
Policy Iteration for Multiplicative Noise Output Feedback Control. CDC 2022: 2967-2972 - [c220]Marta Fochesato, John Lygeros:
Data-Driven Distributionally Robust Bounds for Stochastic Model Predictive Control. CDC 2022: 3611-3616 - [c219]Alberto Padoan, Jeremy Coulson, Henk J. van Waarde, John Lygeros, Florian Dörfler:
Behavioral uncertainty quantification for data-driven control. CDC 2022: 4726-4731 - [c218]Francesco Micheli, Tyler H. Summers, John Lygeros:
Data-driven distributionally robust MPC for systems with uncertain dynamics. CDC 2022: 4788-4793 - [c217]Aren Karapetyan, Andrea Iannelli, John Lygeros:
On the Regret of H∞ Control. CDC 2022: 6181-6186 - [c216]Carlo Cenedese, Michele Cucuzzella, Antonella Ferrara, John Lygeros:
A Novel Control-Oriented Cell Transmission Model Including Service Stations on Highways. CDC 2022: 6278-6283 - [c215]Francesco Micheli, John Lygeros:
Scenario-based Stochastic MPC for systems with uncertain dynamics. ECC 2022: 833-838 - [c214]Ahmed Aboudonia, Goran Banjac, Annika Eichler, John Lygeros:
Online Computation of Terminal Ingredients in Distributed Model Predictive Control for Reference Tracking. ECC 2022: 847-852 - [c213]Riccardo Zuliani, Efe C. Balta, Alisa Rupenyan, John Lygeros:
Batch Model Predictive Control for Selective Laser Melting. ECC 2022: 1560-1565 - [c212]Dominic Liao-McPherson, Efe C. Balta, Ryan Wüest, Alisa Rupenyan, John Lygeros:
In-layer Thermal Control of a Multi-layer Selective Laser Melting Process. ECC 2022: 1678-1683 - [c211]Matilde Gargiani, Andrea Zanelli, Andrea Martinelli, Tyler H. Summers, John Lygeros:
PAGE-PG: A Simple and Loopless Variance-Reduced Policy Gradient Method with Probabilistic Gradient Estimation. ICML 2022: 7223-7240 - [c210]Efe C. Balta, Mohammad H. Mamduhi, John Lygeros, Alisa Rupenyan:
Controller-Aware Dynamic Network Management for Industry 4.0. IECON 2022: 1-6 - [c209]Andrea Martin, Luca Furieri, Florian Dörfler, John Lygeros, Giancarlo Ferrari-Trecate:
Safe Control with Minimal Regret. L4DC 2022: 726-738 - [i111]Angeliki Kamoutsi, Goran Banjac, John Lygeros:
Stochastic convex optimization for provably efficient apprenticeship learning. CoRR abs/2201.00039 (2022) - [i110]Matilde Gargiani, Andrea Zanelli, Andrea Martinelli, Tyler H. Summers, John Lygeros:
PAGE-PG: A Simple and Loopless Variance-Reduced Policy Gradient Method with Probabilistic Gradient Estimation. CoRR abs/2202.00308 (2022) - [i109]Andrea Martin, Luca Furieri, Florian Dörfler, John Lygeros, Giancarlo Ferrari-Trecate:
Safe Control with Minimal Regret. CoRR abs/2203.00358 (2022) - [i108]Dominic Liao-McPherson, Efe C. Balta, Alisa Rupenyan
, John Lygeros:
On Robustness in Optimization-Based Constrained Iterative Learning Control. CoRR abs/2203.05291 (2022) - [i107]Andrea Martinelli, Matilde Gargiani, Marina Draskovic, John Lygeros:
Data-driven optimal control of affine systems: A linear programming perspective. CoRR abs/2203.12044 (2022) - [i106]Aren Karapetyan, Andrea Iannelli, John Lygeros:
On the Regret of H∞ control. CoRR abs/2203.16237 (2022) - [i105]Benjamin Gravell, Matilde Gargiani, John Lygeros, Tyler H. Summers:
Policy Iteration for Multiplicative Noise Output Feedback Control. CoRR abs/2203.17165 (2022) - [i104]Alberto Padoan, Jeremy Coulson, Henk J. van Waarde, John Lygeros, Florian Dörfler:
Behavioral uncertainty quantification for data-driven control. CoRR abs/2204.02671 (2022) - [i103]Efe C. Balta, Andrea Iannelli, Roy S. Smith, John Lygeros:
Regret Analysis of Online Gradient Descent-based Iterative Learning Control with Model Mismatch. CoRR abs/2204.04722 (2022) - [i102]Marta Fochesato, Carlo Cenedese, John Lygeros:
A Stackelberg game for incentive-based demand response in energy markets. CoRR abs/2204.08730 (2022) - [i101]Xavier Guidetti, Alisa Rupenyan
, Lutz Fassl, Majid Nabavi, John Lygeros:
Advanced Manufacturing Configuration by Sample-efficient Batch Bayesian Optimization. CoRR abs/2205.11827 (2022) - [i100]Efe C. Balta, Mohammad H. Mamduhi, John Lygeros, Alisa Rupenyan
:
Controller-Aware Dynamic Network Management for Industry 4.0. CoRR abs/2205.14449 (2022) - [i99]Carlo Cenedese, Michele Cucuzzella, Antonella Ferrara, John Lygeros:
A Novel Control-Oriented Cell Transition Model Including Service Stations on Highways. CoRR abs/2205.15115 (2022) - [i98]Samuel Balula, Dominic Liao-McPherson, Alisa Rupenyan
, John Lygeros:
Data-driven Reference Trajectory Optimization for Precision Motion Systems. CoRR abs/2205.15694 (2022) - [i97]Linbin Huang, John Lygeros, Florian Dörfler:
Robust and Kernelized Data-Enabled Predictive Control for Nonlinear Systems. CoRR abs/2206.01866 (2022) - [i96]Ahmed Aboudonia, Goran Banjac, Annika Eichler, John Lygeros:
Online Computation of Terminal Ingredients in Distributed Model Predictive Control for Reference Tracking. CoRR abs/2207.09216 (2022) - [i95]Ahmed Aboudonia, Andrea Martinelli, Nicolas Hoischen, John Lygeros:
Reconfigurable Plug-and-play Distributed Model Predictive Control for Reference Tracking. CoRR abs/2207.09233 (2022) - [i94]Milos Katanic, John Lygeros, Gabriela Hug:
Moving-Horizon State Estimation for Power Networks and Synchronous Generators. CoRR abs/2207.12150 (2022) - [i93]Ezzat Elokda, Carlo Cenedese, Kenan Zhang, John Lygeros, Florian Dörfler:
CARMA: Fair and efficient bottleneck congestion management with karma. CoRR abs/2208.07113 (2022) - [i92]Francesco Micheli, Tyler H. Summers, John Lygeros:
Data-driven distributionally robust MPC for systems with uncertain dynamics. CoRR abs/2209.08869 (2022) - [i91]Xavier Guidetti, Marino Kühne, Yannick Nagel, Efe C. Balta, Alisa Rupenyan, John Lygeros:
Data-Driven Process Optimization of Fused Filament Fabrication based on In Situ Measurements. CoRR abs/2210.15239 (2022) - [i90]Yuchao Li, Aren Karapetyan, John Lygeros, Karl Henrik Johansson, Jonas Mårtensson:
Performance Bounds of Model Predictive Control for Unconstrained and Constrained Linear Quadratic Problems and Beyond. CoRR abs/2211.06187 (2022) - [i89]Giuseppe Belgioioso, Dominic Liao-McPherson, Mathias Hudoba de Badyn, Nicolas Pelzmann, John Lygeros, Florian Dörfler:
Stability and Robustness of Distributed Suboptimal Model Predictive Control. CoRR abs/2211.07341 (2022) - [i88]Andrea Martin, Luca Furieri, Florian Dörfler, John Lygeros, Giancarlo Ferrari-Trecate:
Follow the Clairvoyant: an Imitation Learning Approach to Optimal Control. CoRR abs/2211.07389 (2022) - [i87]Aren Karapetyan, Anastasios Tsiamis, Efe C. Balta, Andrea Iannelli, John Lygeros:
Implications of Regret on Stability of Linear Dynamical Systems. CoRR abs/2211.07411 (2022) - [i86]Niklas Schmid, John Lygeros:
Probabilistic Reachability and Invariance Computation of Stochastic Systems using Linear Programming. CoRR abs/2211.07544 (2022) - [i85]Samuel Balula, Dominic Liao-McPherson, Stefan Stevsic, Alisa Rupenyan, John Lygeros:
Drone-based Volume Estimation in Indoor Environments. CoRR abs/2211.08013 (2022) - [i84]Carlo Cenedese, Michele Cucuzzella, Adriano Cotta Ramusino, Davide Spalenza, John Lygeros, Antonella Ferrara:
Optimal service station design for traffic mitigation via genetic algorithm and neural network. CoRR abs/2211.10159 (2022) - 2021
- [j103]Ahmed Aboudonia
, Andrea Martinelli
, John Lygeros
:
Passivity-Based Decentralized Control for Discrete-Time Large-Scale Systems. IEEE Control. Syst. Lett. 5(6): 2072-2077 (2021) - [j102]George J. Pappas, Kostas Daniilidis, Leonidas J. Guibas, Lydia E. Kavraki, Petros Koumoutsakos, Kostas J. Kyriakopoulos, John Lygeros, Michael S. Triantafyllou, Panagiotis Tsiotras:
Robotics in the AI era: A vision for a Hellenic Robotics Initiative. Found. Trends Robotics 9(3): 201-265 (2021) - [j101]Goran Banjac
, John Lygeros:
On the asymptotic behavior of the Douglas-Rachford and proximal-point algorithms for convex optimization. Optim. Lett. 15(8): 2719-2732 (2021) - [j100]Dimitris Gkouletsos
, Andrea Iannelli
, Mathias Hudoba de Badyn
, John Lygeros
:
Decentralized Trajectory Optimization for Multi-Agent Ergodic Exploration. IEEE Robotics Autom. Lett. 6(4): 6329-6336 (2021) - [j99]Felix Rey
, Peter Hokayem
, John Lygeros
:
ADMM for Exploiting Structure in MPC Problems. IEEE Trans. Autom. Control. 66(5): 2076-2086 (2021) - [j98]Basilio Gentile
, Dario Paccagnan
, Bolutife Ogunsula
, John Lygeros
:
The Nash Equilibrium With Inertia in Population Games. IEEE Trans. Autom. Control. 66(12): 5742-5755 (2021) - [j97]Benjamin Flamm
, Annika Eichler
, Joseph Warrington
, John Lygeros
:
Two-Stage Dual Dynamic Programming With Application to Nonlinear Hydro Scheduling. IEEE Trans. Control. Syst. Technol. 29(1): 96-107 (2021) - [c208]Ahmed Aboudonia, Andrea Martinelli, John Lygeros:
Passivity-based Decentralized Control for Discrete-time Large-scale Systems. ACC 2021: 2037-2042 - [c207]Xavier Guidetti
, Alisa Rupenyan
, Lutz Fassl, Majid Nabavi, John Lygeros:
Plasma Spray Process Parameters Configuration using Sample-efficient Batch Bayesian Optimization. CASE 2021: 31-38 - [c206]Anilkumar Parsi, Ahmed Aboudonia, Andrea Iannelli, John Lygeros, Roy S. Smith:
A distributed framework for linear adaptive MPC. CDC 2021: 460-465 - [c205]Alisa Rupenyan
, Mohammad Khosravi, John Lygeros:
Performance-based Trajectory Optimization for Path Following Control Using Bayesian Optimization. CDC 2021: 2116-2121 - [c204]Giuseppe Belgioioso, Dominic Liao-McPherson, Mathias Hudoba de Badyn, Saverio Bolognani, John Lygeros, Florian Dörfler:
Sampled-Data Online Feedback Equilibrium Seeking: Stability and Tracking. CDC 2021: 2702-2708 - [c203]Mathias Hudoba de Badyn, Erik Miehling, Dylan Janak, Behçet Açikmese, Mehran Mesbahi, Tamer Basar, John Lygeros, Roy S. Smith:
Discrete-Time Linear-Quadratic Regulation via Optimal Transport. CDC 2021: 3060-3065 - [c202]Efe C. Balta, Kira Barton, Dawn M. Tilbury, Alisa Rupenyan
, John Lygeros:
Learning-Based Repetitive Precision Motion Control with Mismatch Compensation. CDC 2021: 3605-3610 - [c201]Andrea Martinelli, Matilde Gargiani, John Lygeros:
On the Synthesis of Bellman Inequalities for Data-Driven Optimal Control. CDC 2021: 4352-4357 - [c200]Angeliki Kamoutsi, Goran Banjac, John Lygeros:
Efficient Performance Bounds for Primal-Dual Reinforcement Learning from Demonstrations. ICML 2021: 5257-5268 - [c199]Eugenio Chisari, Alexander Liniger, Alisa Rupenyan
, Luc Van Gool, John Lygeros:
Learning from Simulation, Racing in Reality. ICRA 2021: 8046-8052 - [c198]Christopher König, Matteo Turchetta, John Lygeros, Alisa Rupenyan
, Andreas Krause:
Safe and Efficient Model-free Adaptive Control via Bayesian Optimization. ICRA 2021: 9782-9788 - [c197]Ali Jadbabaie, John Lygeros, George J. Pappas, Pablo A. Parrilo, Benjamin Recht, Claire J. Tomlin, Melanie N. Zeilinger:
Preface. L4DC 2021: 1-5 - [c196]Felix Bünning, Adrian Schalbetter, Ahmed Aboudonia, Mathias Hudoba de Badyn, Philipp Heer, John Lygeros:
Input Convex Neural Networks for Building MPC. L4DC 2021: 251-262 - [e2]Ali Jadbabaie, John Lygeros, George J. Pappas, Pablo A. Parrilo, Benjamin Recht, Claire J. Tomlin, Melanie N. Zeilinger:
Proceedings of the 3rd Annual Conference on Learning for Dynamics and Control, L4DC 2021, 7-8 June 2021, Virtual Event, Switzerland. Proceedings of Machine Learning Research 144, PMLR 2021 [contents] - [i83]Christopher König, Matteo Turchetta, John Lygeros, Alisa Rupenyan
, Andreas Krause:
Safe and Efficient Model-free Adaptive Control via Bayesian Optimization. CoRR abs/2101.07825 (2021) - [i82]Xavier Guidetti, Alisa Rupenyan
, Lutz Fassl, Majid Nabavi, John Lygeros:
Sample-efficient Plasma Spray Process Configuration with Constrained Bayesian Optimization. CoRR abs/2103.13881 (2021) - [i81]Alisa Rupenyan
, Mohammad Khosravi, John Lygeros:
Performance-based Trajectory Optimization for Path Following Control Using Bayesian Optimization. CoRR abs/2103.15416 (2021) - [i80]Linbin Huang, Jianzhe Zhen, John Lygeros, Florian Dörfler:
Robust Data-Enabled Predictive Control: Tractable Formulations and Performance Guarantees. CoRR abs/2105.07199 (2021) - [i79]Ahmed Aboudonia, Andrea Martinelli, John Lygeros:
Passivity-based Decentralized Control for Discrete-time Large-scale Systems. CoRR abs/2107.07277 (2021) - [i78]Anilkumar Parsi, Ahmed Aboudonia, Andrea Iannelli, John Lygeros, Roy S. Smith:
A distributed framework for linear adaptive MPC. CoRR abs/2109.05777 (2021) - [i77]Andrea Martinelli, Matilde Gargiani, John Lygeros:
On the Synthesis of Bellman Inequalities for Data-Driven Optimal Control. CoRR abs/2109.13193 (2021) - [i76]Nicolas Lefebure, Mohammad Khosravi, Mathias Hudoba de Badyn, Felix Bünning, John Lygeros, Colin N. Jones, Roy S. Smith:
Distributed Model Predictive Control of Buildings and Energy Hubs. CoRR abs/2110.01734 (2021) - [i75]Felix Bünning, Benjamin Huber, Adrian Schalbetter, Ahmed Aboudonia, Mathias Hudoba de Badyn, Philipp Heer, Roy S. Smith, John Lygeros:
Physics-informed linear regression is a competitive approach compared to Machine Learning methods in building MPC. CoRR abs/2110.15911 (2021) - [i74]Dominic Liao-McPherson, Efe C. Balta, Ryan Wüest, Alisa Rupenyan, John Lygeros:
In-layer Thermal Control of a Multi-layer Selective Laser Melting Process. CoRR abs/2111.00890 (2021) - [i73]Riccardo Zuliani, Efe C. Balta, Alisa Rupenyan, John Lygeros:
Batch Model Predictive Control for Selective Laser Melting. CoRR abs/2111.08363 (2021) - [i72]Efe C. Balta, Kira Barton, Dawn M. Tilbury, Alisa Rupenyan, John Lygeros:
Learning-Based Repetitive Precision Motion Control with Mismatch Compensation. CoRR abs/2111.10246 (2021) - [i71]Angeliki Kamoutsi, Goran Banjac, John Lygeros:
Efficient Performance Bounds for Primal-Dual Reinforcement Learning from Demonstrations. CoRR abs/2112.14004 (2021) - 2020
- [j96]Francesca Parise, Sergio Grammatico, Basilio Gentile, John Lygeros:
Distributed convergence to Nash equilibria in network and average aggregative games. Autom. 117: 108959 (2020) - [j95]Daniele Alpago, Florian Dörfler, John Lygeros:
An Extended Kalman Filter for Data-Enabled Predictive Control. IEEE Control. Syst. Lett. 4(4): 994-999 (2020) - [j94]Marc Hohmann
, Joseph Warrington, John Lygeros:
A moment and sum-of-squares extension of dual dynamic programming with application to nonlinear energy storage problems. Eur. J. Oper. Res. 283(1): 16-32 (2020) - [j93]Juraj Kabzan
, Miguel de la Iglesia Valls
, Victor J. F. Reijgwart
, Hubertus Franciscus Cornelis Hendrikx
, Claas Ehmke
, Manish Prajapat
, Andreas Bühler
, Nikhil Bharadwaj Gosala, Mehak Gupta
, Ramya Sivanesan
, Ankit Dhall
, Eugenio Chisari
, Napat Karnchanachari
, Sonja Brits
, Manuel Dangel
, Inkyu Sa
, Renaud Dubé
, Abel Gawel
, Mark Pfeiffer
, Alexander Liniger
, John Lygeros
, Roland Siegwart
:
AMZ Driverless: The full autonomous racing system. J. Field Robotics 37(7): 1267-1294 (2020) - [j92]Michel Schubiger, Goran Banjac
, John Lygeros:
GPU acceleration of ADMM for large-scale quadratic programming. J. Parallel Distributed Comput. 144: 55-67 (2020) - [j91]Paul Nathaniel Beuchat
, Angelos Georghiou
, John Lygeros
:
Performance Guarantees for Model-Based Approximate Dynamic Programming in Continuous Spaces. IEEE Trans. Autom. Control. 65(1): 143-158 (2020) - [j90]Georgios Darivianakis
, Annika Eichler
, John Lygeros
:
Distributed Model Predictive Control for Linear Systems With Adaptive Terminal Sets. IEEE Trans. Autom. Control. 65(3): 1044-1056 (2020) - [j89]Francesca Parise
, Basilio Gentile
, John Lygeros
:
A Distributed Algorithm For Almost-Nash Equilibria of Average Aggregative Games With Coupling Constraints. IEEE Trans. Control. Netw. Syst. 7(2): 770-782 (2020) - [j88]Alexander Liniger
, John Lygeros
:
A Noncooperative Game Approach to Autonomous Racing. IEEE Trans. Control. Syst. Technol. 28(3): 884-897 (2020) - [c195]Alexandros Tanzanakis
, John Lygeros:
Constrained Optimal Tracking Control of Unknown Systems: A Multi-Step Linear Programming Approach. CDC 2020: 2455-2462 - [c194]Samuel Balula, Alexander Liniger, Alisa Rupenyan, John Lygeros:
Reference design for closed loop system optimization. ECC 2020: 650-655 - [c193]José L. Vázquez, Marius Brühlmeier, Alexander Liniger, Alisa Rupenyan
, John Lygeros:
Optimization-Based Hierarchical Motion Planning for Autonomous Racing. IROS 2020: 2397-2403 - [c192]Sandeep Menta, Joseph Warrington, John Lygeros, Manfred Morari:
Learning solutions to hybrid control problems using Benders cuts. L4DC 2020: 118-126 - [i70]Alexandros Tanzanakis, John Lygeros:
Data-Driven Control of Unknown Systems: A Linear Programming Approach. CoRR abs/2003.00779 (2020) - [i69]Samuel Balula, Alexander Liniger, Alisa Rupenyan
, John Lygeros:
Reference design for closed loop system optimization. CoRR abs/2003.01429 (2020) - [i68]José L. Vázquez, Marius Brühlmeier, Alexander Liniger, Alisa Rupenyan
, John Lygeros:
Optimization-Based Hierarchical Motion Planning for Autonomous Racing. CoRR abs/2003.04882 (2020) - [i67]Andrea Martinelli, John Lygeros:
Learning Optimal Control Policies for Stochastic Systems with a Relaxed Bellman Operator. CoRR abs/2003.08721 (2020) - [i66]Andrea Martinelli, John Lygeros:
Control of Networked Systems by Clustering: The Degree of Freedom Concept. CoRR abs/2004.10153 (2020) - [i65]Mohammad Khosravi, Varsha Behrunani, Roy S. Smith, Alisa Rupenyan
, John Lygeros:
Cascade Control: Data-Driven Tuning Approach Based on Bayesian Optimization. CoRR abs/2005.03970 (2020) - [i64]Ahmed Aboudonia, Annika Eichler, John Lygeros:
Distributed Model Predictive Control with Asymmetric Adaptive Terminal Sets for the Regulation of Large-scale Systems. CoRR abs/2005.04077 (2020) - [i63]